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Abstract

Biological tools such as genetic lineage tracing, 3D confocal microscopy and next gen-
eration DNA sequencing are providing new ways to quantify the distribution of clones of
normal and mutated cells. Population-wide clone size distributions in vivo are complicated
by multiple cell types, and overlapping birth and death processes. This has led to the in-
creased need for mathematically informed models to understand their biological significance.
Standard approaches usually require knowledge of clonal age. We show that modelling on
clone size independent of time is an alternative method that offers certain analytical advan-
tages; it can help parameterize these models, and obtain distributions for counts of mutated
or proliferating cells, for example. When applied to a general birth-death process common
in epithelial progenitors this takes the form of a gambler’s ruin problem, the solution of
which relates to counting Motzkin lattice paths. Applying this approach to mutational pro-
cesses, an alternative, exact, formulation of the classic Luria-Delbrück problem emerges.
This approach can be extended beyond neutral models of mutant clonal evolution, and also
describe some distributions relating to sub-clones within a tumour. The approaches above
are generally applicable to any Markovian branching process where the dynamics of different
‘coloured’ daughter branches are of interest.

Key Words: Clone Size Distribution; Dyck Paths; Motzkin Triangle; Luria-Delbrück;
Mathematical Modeling

1 Introduction

One approach to understanding the cellular hierarchy in multicellular organized tissue has been
tracking the fate of individual cells either labeled in vivo or isolated ex vivo [1]-[6]. Improved
techniques including genetic lineage tracing and 3D imaging by confocal microscopy have helped
further investigate this basic area of research [7]–[9]. Typically, a cell type of interest is labeled
with an identifier and the distribution of its progeny at later time points are observed. Clone
distribution data can then be used to decipher division dynamics across the population of cells
with great resolution. However, the current methods use population averaging, and are time-
dependent posing analytical challenges. There is a need for alternative statistical approaches
that may be complementary.
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Figure 1: Colony formation in normal and mutated cells. (A) Immunofluorescence images of 2-cell clones with
the keratinocyte marker Keratin14, and the proliferation marker EdU, showing three possible outcomes of division:
two non-proliferating daughters (0/2 EdU+), a non-proliferating and a proliferating daughter (1/2 EdU+), or
two proliferating daughters (2/2 EdU+). Scale bar 50µ. (B) Cell division is a birth-death process with three
possible outcomes based on the proliferative ability of its daughters. As above, a dividing cell (P) may divide to
two dividing daughters (PP), a dividing and differentiated daughter (PD), or two differentiated daughters (DD)
in proportions a, b and c respectively. In tissues with high turnover, the number of new dividing cells is equal
to the number of non-dividing cells (a = c). (C) In the presence of mutagens like UV radiation, this process is
imbalanced in p53 mutant clones in favour of proliferation (a′ > c′). This gives a survival advantage to mutant
clones. (D) Mutant cell formation itself is a birth process that can follow one of three possibilities. The first is cell
division independent and can occur with background exposure. The second and third possibilities occur following
cell division, producing one or two mutant cells out of two daughter cells with probability µ1 = 1− µ0.

Adult mammalian epithelium has a high rate of cell division during steady state. Despite this
rapid rate of proliferation, the tissue remains in homeostasis as new cells are being generated at
the same rate as loss of differentiated cells in a birth-death process (a = c in Figure 1B). A sim-
ple illustration of this is in the inter-follicular epidermis, where cell division occurs in the basal
layer of a multi-layered epithelium. Cell division here can produce proliferating daughters, that
remain in the basal layer, or non-dividing daughters, which are shed to the supra-basal layers,
and eventually lost in a process of differentiation. When these keratinocytes are grown in culture,
a typical cell division can result in two dividing daughters, one dividing daughter or no divid-
ing daughter out of two total daughters as seen through the uptake of the proliferation marker
5-ethynyl-2’-deoxyuridine (EdU, Figure 1A). Genetic lineage tracing in basal keratinocytes has
allowed conditional expression of fluorescent proteins, with all subsequent daughter cells retain-
ing the label, and thus being highlighted as a clone. Clone size distributions thus observed shows
maintenance through a population asymmetry of fate outcome in dividing progenitors, with re-
serve stem cells contributing to wound healing [1],[3],[10]. Additionally, this balance is disturbed
in chronic UV irradiation, where p53 mutant keratinocyte clones gain a survival advantage over
non-mutant clones mediated through increased proportions of proliferative daughters [11] (a > c
in Figure 1C). The recent technical advance of live-imaging in epithelia may provide additional
information to these models, such as the distribution of cell cycle times [12].

There is also an increasing body of work investigating the growth dynamics of pre-neoplastic
and neoplastic tissue [13]–[16]. A growing colony of cells can be modeled as a branching process.
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Luria and Delbrück were the first to produce an analytical examination of the distribution of
the number of mutant cells in growing bacterial colonies [17]. They used this to show that
mutations arise randomly rather than in response to the environment. Their argument was
partly deterministic and Lea and Coulson [18] and Bartlett [19], [20] derived approaches with
greater stochastic rigour. These methods generally consider the problem of how many mutants
are present after a fixed amount of time. An unpublished combinatorial method by Haldane also
exists [21] where all cells divide simultaneously.

These distributions generally assign genes the binary status of mutated or non-mutated. They
do not consider the number of mutations in a gene, or the number of different combinations of
mutations a subclone of cells may contain. Modern sequencing techniques mean greater resolution
of mutations is now possible and there is increased interest in considering distributions associated
with combinations of mutations [22].

As Kendall observed [23], [24] there are broadly three models for mutation formulation (Fig-
ure 1D). The first formulation would indicate a single cell converts to mutated status at any
time independent of the cell division process. This may be the case for continuous exposure to
mutagens, such as UV light [25]. The second formulation is the most common formulation where
mutations occur in one of the two daughter cells during the cell division process. This is likely to
be the case for many mutational processes, where nucleotide errors occur on one of the two DNA
strands [26]. DNA repair machinery then erroneously corrects this during checkpoints in the cell
cycle, resulting in one mutant daughter cell. The third formulation assumes that both daughter
cells are mutant. This is also a valid model, and is likely to arise when double stranded breaks
occur. When double stranded repair incorrectly repairs the damage, rearrangements result and
both daughter cells will be mutant. Some processes such as breakage-fusion-bridge cycles will
even result in two mutant daughter cells with distinct rearrangements [27], [28]. For analytical
purposes in this paper, we will assume the most common second formulation. Additionally, we
assume that a mutation does not increase the chance of cell loss through apoptosis.

In this work, we consider a different statistical approach to clonal distributions. A standard
technique to analyzing a branching process involving two classes of objects, such as mutant/non-
mutant, or progenitor/differentiated, is to write down a Chapman-Kolomogorov equation for
Pm,n(t); the probability of having m and n cells of the two types, at time t, and obtain a solution
[29]. Instead, we determine the distribution of the number of different types of cells that are
present when a fixed number of cells have accumulated, rather than the time that has passed.
With this approach, we will see that treating cell differentiation or mutation as time-independent
results in exact analytic forms for the distributions of interest. In the next section we obtain
the distribution for the number of dividing cells in an epithelial population. We then obtain
distributions for the number of mutant cells in a clone undergoing a pure birth process.

2 Distribution of Colony Sizes in Homeostatic Tissue

Tissue homeostasis is balanced by two types of cells; progenitor (dividing) cells (P ), and differ-
entiated (non-dividing) cells (D). As progenitor cells (P) divide, they produce two daughter cells
which may be either a progenitor cell or a differentiated cell (D) resulting in the combinations
(PP), (PD) or (DD). We assume the probabilities of these occurring are a, b, and c, respectively
represented in Figure 1B. Across a population, these probabilities are assumed to be constant,
holding the same values for any cell division that takes place at steady state. There is the
possibility that apoptosis may form an additional component of this process. Whilst one could
incorporate this as an additional branch in the process of Figure 1A, it is assumed negligible in
the following analysis.
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For simplicity, we assume that we start with a single dividing cell. We also assume the number
of descendant cells can be observed, but that (P) and (D) cells can not be distinguished. There
are two problems we would like to consider. Firstly, if we trace the lineage of a single cell, we
wish to determine the distribution of the number of progenitor (P) cells present. Secondly, the
physical similarity between (P) and (D) cells without any protein markers make the parameters
a, b and c difficult to directly measure. Thus, we would like a method to estimate them.

Time

Frequency

a

a

b
c

t1 t5t4t3t2 tn

1

6
5
4
3
2

0
0

A

No. Cell Divisions

Frequency

1 5432 n

1

6
5
4
3
2

0
0

B Total No. Cells
No. Proliferating Cells

c

t6

a

6

Proliferating Cell
Differentiated Cell

Figure 2: A branching process of differentiated and pro-
liferating cells. A single dividing cell is followed in time
with the height of the solid line indicating total number
of cells, and the height of the dashed line indicating num-
ber of dividing cells. In (A), plotted against time, we see
the rate of cell division is dependent upon the number of
proliferating cells. In (B), plotted against number of cell
divisions, we see the number of proliferating cells only
depends upon the nature and number of cell divisions,
not their timing.

Now, our approach is based on the size of
the clone (rather than time passed). Now,
with each cell division, irrespective of out-
come, the colony size n increases by 1 forming
a clone of n+1 cells. If the cell division results
in two progenitor daughters (PP), the number
of dividing cells k increases to k+1. If the cell
division results in a progenitor cell and a dif-
ferentiated cell (PD), the number of dividing
cells k stays the same. The production of two
differentiated daughters (DD) results in a loss
of dividing cells to k − 1. We can thus model
the number of P cells as a discrete random
walk that can move up, remain flat, or move
down with probabilities a, b and c, where we
have one forward step to take at every cell
division as in Figure 2A,B. Note that if the
colony becomes fully differentiated, k = 0, we
have no dividing cells and our process stops.

We note that the timing of these divisions
does not relate to the count of proliferating
cells. In Figure 2A we see the time dependent
process, with a division rate that will be pro-
portional to the number of proliferating cells.
In Figure 2B we see the same information in-
dexed by the number of cell divisions; the tim-
ing is not important.

Such a problem is closely related to count-
ing Motzkin lattice paths [30]. Lattice paths
are paths connecting positions with integer co-
ordinates and can take a variety of forms [31], [32]. In particular, Motzkin paths start from the
origin (0, 0) on a 2-d integer lattice and allow movement with an up (1, 1) step, a flat (1, 0) step,
or a down (1,−1) step such that we never move below the horizontal axis. There are several path
counting techniques for such conditions [30], [33], [34], which have also seen applications to paths
similar to the ones we describe [35] [36]. These have been studied for a range of combinatorial
problems [37], including some problems with weighted edges [38].

These paths can be utilised to represent our problem. The position (n, k) corresponds to the
total number of cells, n, and the number of dividing cells, k, respectively. The PP, PD or DD
divisions correspond to the up, flat and down steps, respectively. There are three differences
to Motzkin paths to note. Firstly, we start with one (P) cell, represented by position (1, 1).
Secondly, we stop if we touch the horizontal axis, because no dividing (P) cells remain (k = 0).
Lastly, we have probabilities a, b and c associated with each step. Now, we would like to find the
probability Pn,k of finding k dividing cells in a clone of size n. This probability then corresponds
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Figure 3: Cell proliferation as a combinatorial branching process with predictable paths. (A) Cell division in
progenitor cells is a branching process with three possible outcomes (PP, PD or DD, See Figure 1). The expansion
of a single cell to form a clone of cells is thus a combinatorial process, where any outcome of total clone size n and
proliferating cells within it k occurs along fixed paths of a Motzkin like triangle. Clones that reach the horizontal
axis have only non-dividing cells, and therefore do not progress further. (B) Example showing the 9 paths that a
single proliferating cell can take to reach a clone of n = 5 and k = 2. The first three routes have three a divisions
and one c division, while the remaining six routes involve two each of a and b divisions (cumulative probability
= 3a3c + 6a2b2). (C) is a Dyck path, which moves up and down and not below the horizontal axis. (D) is a
Motzkin path, which also includes horizontal moves. (E) is a gamblers ruin problem, which starts from height 1
rather than the origin, representing the formation of a fully differentiated clone from a single dividing cell.

to a weighted sum of Motzkin paths from (1, 1) to (n, k), where Motzkin paths in this context
do not touch the horizontal axis.

2.1 Motzkin Paths Describe the Entire Distribution of Colony Sizes

We have the following distribution for the number of progenitor (P) cells in a colony.

Theorem 2.1. If we seed a single dividing cell, then the probability of having k(> 1) dividing
cells when the colony is of size n is given by:

Pn,k =
bn−k2 c∑
i=0

(
n−1

k+2i−1
)
(
(
k+2i−1

i

)
−
(
k+2i−1
i−1

)
)ak+i−1bn−k−2ici

Proof. We start with Dyck paths; paths from (0, 0) to (0, 2n) that do not go below the horizontal
axis involving steps of type up, (1, 1) or down, (1,−1), such as portrayed in Figure 3C. The
number of such paths is known to be counted by the Catalan numbers Cn = 1

n+1

(
2n
n

)
[39]. A

Dyck triangle is the collection of paths from (0, 0) to (n, k) that do not go below the horizontal
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axis and involve up and down steps. Note that n and k must have the same parity. If Dn,k

count these paths then conditioning over one step we find Dn,k = Dn−1,k−1 + Dn−1,k+1. It
is straightforward to show by substitution that Dn,k = k+1

n+1

(
n+1

1
2 (n−k)

)
satisfies this recurrence,

along with boundary condition D2n,0 = Cn. This formula differs to other counts involving
Dyck triangles because this lattice formulation of the triangle is rotated through π

4 to the usual
presentation [40].

We now turn to Motzkin paths, which are the same as Dyck paths except we now allow an
additional horizontal step (1, 0). Now any Motzkin path from (0, 0) to (n, k) can be partitioned
into a Dyck path from (0, 0) to (k + 2i, k) involving k + i up steps and i down steps, along with
n − k − 2i horizontal steps, where i ∈ 0, 1, ..., bn−k2 c. For any i, the probability of such a path
arising is ak+ibn−k−2ici. Then noting that we have

(
n

k+2i

)
permutations of the horizontal steps

with the Dyck path steps, we sum across the possibilities to get the following probability.

mn,k =
bn−k2 c∑
i=0

Dk+2i,k

(
n

k+2i

)
ak+ibn−k−2ici =

bn−k2 c∑
i=0

(
n

k+2i

)
(
(
k+2i
i

)
−
(
k+2i
i−1
)
)ak+ibn−k−2ici

Finally we note that we are going from position (1, 1) to (n, k) without touching the horizontal
axis, so substituting n→ n− 1 and k → k − 1 gives the required result; Pn,k = mn−1,k−1.

This result allows us to look at the case where all n cells in the colony are fully differentiated
(all are (D) cells) and there is not further potential for growth. In our Motzkin triangle analogy,
this would be a Motzkin path (with an additional final down step) from (1, 1) to (n, 0), such as
the path in Figure 3E. All colonies that have a corresponding path touching the horizontal axis
thus have no proliferating cells. We have an absorbing barrier, also known as the gambler’s ruin
problem.

Corollary 2.1. The probability Pn,0 is given by weighted Motzkin numbers:

Pn,0 =
bn−2

2 c∑
i=0

(
n−2
2i

)
(
(
2i
i

)
−
(

2i
i−1
)
)aibn−2−2ici+1 =

bn−2
2 c∑
i=0

(
n−2
2i

)
C2ia

ibn−2−2ici+1

Proof. For the case where there are no dividing cells remaining in the colony, the colony must
transit through a penultimate stage (n−1, 1) with only one dividing cell remaining, and undergo
an enforced final (DD) division. Multiplying the formula for Pn−1,1 by c gives the required
result.

Both of these results have corresponding generating functions as described in the following
result:

Theorem 2.2. The generating function F (x, t) =
∞∑
n=0

n∑
k=0

Pn,kx
ktn is given by:

F (x, t) =
1−bt−

√
(bt−1)2−4act2
2a +

x(2tax−1+bt+
√

((bt−1)2−4act2))
2a(x−tc−tbx−tax2)

Proof. First we construct a weighted generating function for paths in a standard Motzkin triangle,

m(x, t) =
∞∑
n=0

n∑
k=0

mn,kx
ktn, where mn,k are the Motzkin numbers weighted by the elements a, b

and c associated with each path from (0, 0) to (n, k). Now conditioning over a single step gives
the following recurrence; mn+1,k = cmn,k+1 + bmn,k + amn,k−1. Then substituting this into the
generating function yields the following:

m(x, t) = 1 +
∞∑
n=1

n∑
k=0

mn,kx
ktn = 1 +

∞∑
n′=0

n′+1∑
k=0

mn′+1,kx
ktn
′+1

= 1 +
∞∑
n′=0

n′+1∑
k=0

(cmn′,k+1 + bmn′,k + amn′,k−1)xktn
′+1

= 1 + tc
x (m−m(0, t)) + tbm+ taxm
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Which gives us:

m(x, t) = x−tcm(0,t)
x−tc−tbx−tax2 .

To find m(0, t) we note that a Motzkin path from (0, 0) to (n, 0) involves either a first
horizontal step and a weighted Motzkin path one step smaller, or an up step, a motzkin path, a

down step, and a Motzkin path. This is summarised as mn+1 = bmn + ac
n−1∑
k=0

mkmn−1−k, where

mn is the weighted sum of these paths. Now substituting this recurrence into the generating

function m(0, t) =
∞∑
k=0

mkt
k = 1 + t

∞∑
k=0

mk+1t
k yields m(0, t) = 1 + btm(0, t) + t2acm(0, t)2. The

solution satisfying m(0, 0) = 1 is then:

m(0, t) =
1−bt−

√
(bt−1)2−4act2
2act2

Substituting this above then yields the general form:

m(x, t) =
2tax−1+bt+

√
(bt−1)2−4act2

2at(x−tc−tbc−tax2)

The result is obtained by noting that the generating function for Pn,k corresponds to paths
from (1, 1) to (n, k). Furthermore, a path from (1, 1) to (n, 0) involves a weighted Motzkin path
of length n− 2, followed by a down step, and we find that:

F (x, t) =
∞∑
n=0

Pn,0t
n +

∑
n,k≥1

Pn,kx
ktn = t2c

∞∑
n=0

mn,0t
n + xt

∑
n,k≥0

mn,kx
ktn = t2cm(0, t) +

xtm(x, t).
Substituting the weighted Motzkin generating functions results in the desired form.

2.2 Gambler’s Ruin

We are now in a position to describe the probability of ruin, or equivalently the probability of a
fully differentiated clone, where we have the following result:

Corollary 2.2. The generating function G(t) =
∞∑
n=0

Pn,0t
n is given by:

G(t) =
1−bt−

√
(bt−1)2−4act2
2a

This results in an alternative expression for the probability Pn,0 that a clone of size n is fully
differentiated:

Pn,0 =
−( 1

2 )
n

2a

∑n
r=0

(
2(n−r)
n−r

)(
2r
r

) (b+2
√
ac)n−r(b−2

√
ac)r

(2(n−r)−1)(2r−1)
Furthermore, we find that the probability P0 that a single proliferating cell will become fully

differentiated is given by:

P0 =

{
1 a > c
a
c a < c

Proof. To get the generating function G(t), we simply substitute x = 0 into F (x, t) from Theorem
2.2. To get the alternative expression for the probabilities Pn,0 note that we can write G(t) as:

G(t) = 1
2a [1− bt− (1− (b+ 2

√
ac)t)

1
2 (1− (b− 2

√
ac)t)

1
2 ]

A double binomial expansion gives us:

G(t) = 1
2a [1− bt−

∑∞
j=0

∑∞
k=0

(
2j
j

)(
2k
k

) ( b+2
√
ac

2 )j( b−2
√
ac

2 )k

(2j−1)(2k−1) tj+k]

The constant and linear terms cancel and a reordering of the summation to collect powers of
t leaves us with the required expression.

Lastly we note that G(1) =
∞∑
n=0

Pn,0 and so substituting t = 1 into the generating function

gives us:
G(1) = 1

2a (1− b−
√

(b− 1)2 − 4ac = 1
2a (a+ c− |a− c|)
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where we have used 1− b = a+ c. Separately considering the cases a > c and a < c gives the
required results.

2.3 Estimating Differentiation Probabilities

Time

Frequency

μ1

μ0

μ1
μ1

t1 t5t4t3t2 tn

1

6
5
4
3
2

0
0

A

No. Divisions

Frequency

1 5432 n

1

6
5
4
3
2

0
0

B Total No. Cells
No. Mutant Cells

Non-Mutant Cell
Mutant Cell

Figure 4: A branching process of non-mutated and mu-
tated cells. A single dividing cell is followed in time with
the height of the solid line indicating total number of
cells, and the height of the dashed line indicating number
of mutant cells. In (A), plotted against time, we see the
rate of cell division is proportional to the total number
of cells, resulting in exponential growth. In (B), plotted
against the number of divisions, we see the number of
mutant cells only depends upon the number of mutant
cell divisions, not their timing.

We are now in a position to estimate the
probabilities a, b and c of getting the dif-
ferent daughter cell combinations of (PP),
(PD) or (DD), even when (P) and (D) cells
are visually indistinguishable. Clone size dis-
tributions in a range of homeostatic epithe-
lia demonstrate that dividing progenitor cells
have (PP) outcomes in similar proportions to
(DD) outcomes (or a=c) [11]. Colonies aris-
ing from such populations will eventually be-
come fully differentiated and stop growing,
as represented in the bottom row of Figure
3A. Therefore, at late time points of obser-
vation all colonies of cells with few cell num-
bers will be formed exclusively of non-dividing
cells, as any colonies with dividing cells will
continue to expand in cell number. Thus
repeated measurements of small clone sizes,
nc, of fully differentiated non-dividing colonies
of size n can readily be counted. We can
then compare these counts to the probabili-
ties {c, bc, c(b2 + ac), ...} = {Pn,0}n of either
Corollary 2.2 or 2.1, and hence determine a, b
and c using maximum likelihood. Small clone
sizes form the bulk of clones seen in popula-
tion distributions, and therefore can provide
robust quantifiable results.

It is also important to highlight, that this
is not affected by the presence of additional
cell populations which have a branching birth
process alone (putative stem cell populations).
The clones formed by such populations will be
much larger, continuing to expand with time,
so can be readily identified and excluded.

2.4 Stochastic Processes Approach

Finally, we remark that a lot of the derivations using Motzkin paths can also be replaced with
approaches from stochastic processes. We highlight this with an alternative derivation of the
gambler’s ruin generating function of Corollary 2.2 in the Appendix.
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3 An Exact Luria Delbrück Distribution

We now investigate the mutation process of a growing clone of cells. Here, we assume no death
process is involved, and initially that the mutation provides no additional survival advantage. In
all that follows k = m+ n is the number of cells, where m and n count the number of mutants
and non-mutants, respectively.

Again we start with a single dividing cell. An example of this can be seen in Figure 4A.
The cells are dividing randomly at a rate β according to the following Markovian branching
(Yule-Furry) process. When any non-mutant cell divides we assume a mutant cell arises with
probability µ1, such as the first division of Figure 4A at time t1. Conversely, we may obtain two
non-mutants with probability µ0 = 1 − µ1, such as in the second division portayed at time t2.
Finally, any dividing mutant produces two mutant daughters with probability 1, as displayed at
times t3 and t4. We ignore any back mutation or loss of mutation.

As the colony grows, the rate of division, βk, increases in proportion to the number of cells
present, k. If tk is the time of the kth division, the mean time intervals tk+1− tk correspondingly
decrease as we get exponential growth. Note that at time tk the colony increases in size (by one
cell) to k+ 1 cells. It is this single dividing cell that has the opportunity to effect the number of
mutations at this point; this is independent of the either the time tk at which this takes place,
or the time tk+1 − tk between divisions.

In Figure 4B we see the mutation process as a discrete process on the number of divisions
that have taken place. We assume for the moment that mutant and non-mutant cells divide at
the same rate in a Markovian manner. All cells are thus equally likely to divide at any point
in time. If we have n non-mutant cells and m mutant cells, we then find that a mutant will
divide with probability m

m+n resulting in m + 1 mutants and m + n + 1 cells. Conversely, a
non-mutant divides with probability n

m+n resulting in m + n + 1 cells. This non-mutant will
mutate with probability µ1 resulting in m+ 1 mutants, otherwise we will still have m mutants,
with probability µ0. This observation leads to the following correspondence.

Theorem 3.1. If p
(k)
m denotes the probability of having m mutant cells present when the popu-

lation is of size k, we have the following recurrence, which is initialized with p
(1)
0 = 1.

p
(k)
m = (m−1k−1 + k−m

k−1 µ1)p
(k−1)
m−1 + (k−1−mk−1 µ0)p

(k−1)
m

Proof. This result is a statement of conditional probability. There are two ways we can obtain
m mutants amongst k cells, depending upon the mutation status of the k − 1 cells prior to the
previous cell division. If we have m− 1 mutant cells out of k− 1 cells in total, then to obtain m
mutants in k cells we either select a mutant to divide with probability m−1

k−1 , or pick a non-mutant

to divide and generate a new mutation with probability k−m
k−1 µ1. Alternatively, if we already have

m mutants from k − 1 cells, then we require that the next division be a non-mutant cell that
doesn’t mutate on division, with probability k−1−m

k−1 µ0.

Note that we have reduced the mutation process to a discrete heterogeneous Markovian
random walk starting from (1, 0) where we have either a horizontal step (1, 0) with probability
k−m
k µ0, or the step (1, 1) with probability m

k + k−m
k µ1. We have the following general form for

the k division distribution of mutants, p
(k)
m .

Theorem 3.2.

p
(k)
m = µk−10

∑
{1≤i1<i2<...<im≤k−1}

m∏
j=1

(j−1)+ij µ1µ0
k−j

9
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Figure 5: The distributions for the number of mutants for a range of colony sizes up to 1000 cells. (A) is for
µ1 = 0.05, ρ = 1, (B) is for µ1 = 0.2, ρ = 1, (C) is for µ1 = 0.05, ρ = 2, where µ is the mutation rate and ρ is the
relative mutant fitness (µ1

µ0
).

Proof. We start with a single cell, so the (i−1)th division results in i cells. The required number
of cells is k so we have k−1 cell divisions in total to consider. We require m mutants, so we need
m divisions that either generate a new mutant when a non-mutant divides, or involve a dividing
mutant parent. We let the ithj division be the one that increases the mutation count from j−1 to
j. Then prior to this event we have j−1 mutant cells and ij cells. The probability that the next

dividing cell is a mutant, or a non-mutant developing a mutation, is then
(j−1)+(ij−(j−1))µ1

ij
. For

the remaining cell divisions we require a non-mutant to divide and not mutate. This will keep
the mutant count constant. If this is the ith division, where m mutants are present, this occurs
with probability i−m

i µ0. For the first i1 − 1 divisions there are no mutants present and this will
simply be µ0. Then we find that:

p
(k)
m =

∑
{1≤i1<i2<...<im≤k−1}

µi1−10 ·µ1 · i1
i1+1µ0 · i1+1

i1+2µ0 · . . . · i2−2i2−1µ0 · . . .

. . . 1+(i2−1)µ1

i2
· i2−1i2+1µ0 · . . . · i3−3i3−1µ0 · . . .

...

. . . (m−1)+(im−1−(m−1))µ1

im−1
· im−1−m
im−1+1 µ0 · . . . · im−1−mim−1 µ0

Most term then cancel to leave us with:

p
(k)
m = µk−10

∑
{1≤i1<i2<...<im≤k−1}

m∏
j=1

µ−1
0 ((j−1)+(ij−(j−1))µ1)

k−j

Noting that µ0 = 1− µ1 then gives the desired result.

An example of the resulting distributions can be seen in Figure 5A,B. Although one can
attempt to expand the summation and further reduce this formula, it quickly results in compli-
cated expressions involving Faulhaber’s formula for summing integer powers which do not seem
to readily simplify. We have the following result concerning the moments.

Theorem 3.3. If E
(k)
r represent the rth moment when k cells are present, we have the following

recursions for the first two moments, initialised with E
(1)
1 = 0 and E

(1)
2 = 0.

E
(k)
1 = µ1 + E

(k−1)
1 (1 + µ0

k−1 )

E
(k)
2 = µ1 + E

(k−1)
1 (2− µ0

2k−3
k−1 ) + E

(k−1)
2 (1 + 2µ0

k−1 )
The mean value can be written as follows.

E
(k)
1 = µ1

∑k−1
u=1

∏k−1
r=k−u+1(1 + µ0

r )

Proof. The recurrences for the rth moment are obtained by multiplying the recurrence of Theorem
3.1 by mr and summing over m. The resulting equations reduce to the stated expressions after
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some standard algebraic manipulation. To establish the formula for the mean, we use induction
on the stated result with the first recursion. For the initial values, note that the process starts
with one non-mutant cell, so the mean value and second moment must both be zero.

4 Incorporating Selection

For certain mutations, there may be a subsequent growth advantage. This has been observed with
p53 mutations in epidermal tissue, for example [11]. Our assumption that all cells are equally
likely to divide is no longer valid, with mutants dividing at a different rate to non-mutants.
However, we find that the mutation process is only dependent upon the ratio of these rates, and
we can condition on the number of cells and apply a similar technique to the previous section to
obtain the following.

Theorem 4.1. Let the division rate for non-mutants and mutants be βn and βm, respectively,

with ratio ρ = βm
βn

. If p
(k)
m represents the probability of having m mutant cells when there are

k = m+ n cells present, then we have the following recurrence, initialized with p
(1)
0 = 1.

p
(k)
m = ( ρ(m−1)

ρ(m−1)+n + n
n+ρ(m−1)µ1)p

(k−1)
m−1 + ( n−1

n−1+ρmµ0)p
(k−1)
m

Proof. If we suppose that the mutant cells are dividing at a rate βm and the non-mutant cells
are dividing at a rate βn. We further suppose we have m and n of these cells, respectively. Then
if Tm is the time until the next mutant cell divides, this has exponential distribution with mean

1
βmm

. The time Tn until the next normal cell divides is similarly exponential with mean time
1
βnn

. Then if we know we have a cell division at some point in time, we would like to know which
type of cell will divide. specifically we require:

Pr(Tm > Tn) =
∫∞
0

∫ tm
0

1
βmm

eβmmtm 1
βmm

eβmmtmdtndtm = mβm
mβm+nβn

= ρm
ρm+n

Thus we just have to weight the mutant count by the relative increase in division rate. In
particular, if we have m mutant cells and n−1 non-mutant cells, the probability that we have m
mutants and n non-mutants after the next cell division requires a non-mutant to divide without
a new mutation forming. This occurs with probability n−1

n−1+ρmµ0. Similarly, if we have m − 1
mutant cells and n non-mutant cells, the probability that we have m mutants and n non-mutants
after the next cell division requires a mutant to divide, or a non-mutant to divide with a new

mutation forming. This occurs with probability ρ(m−1)
ρ(m−1)+n + n

n+ρ(m−1)µ1. The recurrence is a

statement of conditional probability connecting these two observations.

The recurrence can be used to derive formulae for p
(k)
m and the moments. The method is

identical to that of Theorem 3.2 and the details are left to the reader. An example of the
distribution can be seen in Figure 5C, where we have mutation rate µ1 = 0.05 and relative
fitness ρ = 2. This gave a comparable distribution to Figure 5B, where the mutation rate is
µ1 = 0.20 with neutral relative fitness ρ = 1, although the variance is notably higher in Figure
5C.

5 Distributions of Sub-Clones in Mutated Colonies

In the questions considered so far, we just have the binary status of mutated or non-mutated.
This is generally the status of a gene, or a portion of a chromosome that may be of interest,
but could also be the status of a single nucleotide of DNA, which number in the billions. DNA
sequencing techniques now mean that individual mutations can now be distinguished by their
position in the genome. For example in Figure 6A we see that five of six cells are mutant, arising

11
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Figure 6: (A) A representation of clonal mutant growth; six cells result from five cell divisions, three of which
produce four mutations(†), which cluster into four clones. (B) represents the cellular count for each mutation
against illustrative chromosomal co-ordinates.

from four mutations produced during three cell divisions (†), that combine into into four distinct
clones. In Figure 6B we have the distribution of the number of cells for each mutation. This
is a symbolic representation of the mutation and sequencing depth information obtained from
modern experiments and points to other avenues of investigation. Firstly we would like to know
the number of cells containing a randomly selected mutation. Secondly, we would like to know
the number of clones. Thirdly, we would like to know the number of cells. Finally, we would like
to know the number of distinct mutations in a randomly selected clone. We have the following
results.

5.1 The Number of Cells Containing a Specific Mutation

Theorem 5.1. If p
(k)
r is the probability that a randomly selected mutation exists in r cells in a

colony of k cells, we have:

p
(k)
r =

k−r+1∑
j=1

j−1
(k−1)2

r−1∏
m=1

(1− j−2
k−m−1 )

This differs slightly to the original problem considered by Luria and Delbrück in that instead
of asking how many cells contain a mutation in a specific gene (or region), which may involve
many different mutation events, we randomly sample a mutation from all mutations found in
that region, and count the corresponding number of cells containing that mutation. We assume
each mutation arises only once, which may not be true for large colonies or small genomes.

Proof. Now there are k − 1 divisions that take place to give a sample size of k. Now if we
randomly select a mutation it can arise during any of these divisions with equal probability. We

let q
(j,k)
r denote the probability that if a mutation forms when there are j cells, it is present in

r cells when the cell population is k ≥ j. Then if p
(k)
r is the probability a randomly selected

mutation is in r cells when the population is of size k, we have:

p
(k)
r = 1

k−1

k−r+1∑
j=1

q
(j,k)
r

If the mutation arises when the population has size j, then this mutation may be present in
any of 1 to k− j + 1 cells, depending on whether the cells containing the mutation divide. Thus
j ≤ k − r + 1. Furthermore, following a population size of k − 1, we either had r − 1 copies of
the mutation and the next cell division duplicates a copy, or we have r mutant cells, and the
dividing cell does not contain the mutation of interest. This gives us the recurrence:

12



q
(j,k)
r = q

(j,k−1)
r (1− r

k−1 ) + q
(j,k−1)
r−1 ( r−1k−1 )

Now if we start with the initial value p
(j,j)
1 = 1, so that initially one of j cells carries the

mutation, then we can show by substitution that this recurrence and initial condition is satisfied
by the following expression:

q
(j,k)
r = (j − 1) (k−j)r−1

(k−1)r
where (a)b = a(a − 1) . . . (a − (b − 1)) is the Pochhammer symbol. Substituting into the

expression above then gives:

p
(k)
r =

k−r+1∑
j=1

j−1
k−1

(k−j)r−1

(k−1)r

This is equivalent to the expression in the theorem.

5.2 Distribution of the Number of Clones

The second problem requires the distribution of the number of clones. Every time a new mutation
occurs, it will occur in a single cell that belongs to some clone already present. That cell will
divide into two daughters, one of which will contain the new mutation. That cell will have a new
combination of mutations and a new clone is born. We thus trivially observe that the number of
clones is always one more than the number of cells divisions that produce new mutations. Now,
mutations can arise during a cell division. For a colony of size k we have k − 1 independent cell
divisions in total, each of which may generate new mutations with probability µ1. We thus find
that:

Theorem 5.2. If C represents the number of colonies, we find that for a colony of size k, C− 1
has Binomial distribution Bin(k − 1, µ1).

�

5.3 Size Distribution of Mutant Clones

The third question concerns the size of the clones. For example, in Figure 6A we note that clone
2 was formed in the 3rd cell division, and contains a single cell. The associated distribution for
the size of a random clone is described in the following result.

Theorem 5.3. If p
(k)
n represents the probability a randomly selected clone from a population of

size k contains n cells, and p
(i,k)
n is the corresponding probability for a clone formed in the ith

cell division, then p
(k)
n = 1

k−1

k−n∑
i=1

p
(i,k)
n where:

p
(i,k)
n =

∑
{i<i1<i2<...<in−1≤k−1}

n∏
j=1

ij−ij−1∏
m=1

(1− j
ij−1+m−1µ0) ·

n−1∏
j=1

j
ij
µ0 where i0 = i.

Furthermore, p
(i,k)
n satisfies the following recurrence:

p
(i,k)
n = p

(i,k−1)
n · (1− n

k−1µ0) + p
(i,k−1)
n−1 · n−1k−1µ0

with boundary values

p
(i,k)
1 =

k−1∏
j=i+1

(1− 1
jµ0)

Proof. A new clone arises whenever a mutation occurs. For a colony of size k, a randomly
selected mutation arises with equal probability 1

k−1 at any of the k− 1 divisions that have taken
place. Let us suppose the colony appears at division i. The clone contains a single cell at this
moment in time and there are k−1− i divisions remaining to take place. If any of these divisions
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occurs in a cell not in the clone, the clone will not change in size. If the division occurs in a
clone cell with mutation, the clone also does not change size because one of the two daughter
cells starts a new distinct clone. However, if the division occurs in a clone cell without mutation,
the clone increases in size by 1. If the clone is of size x and we have y cells, this occurs with

probability x
yµ0. Then if p

(i)
n represents the probability that a clone starting at division i ends

up of size n we require n− 1 of the remaining k− 1− i divisions to be divisions within the clone
without mutation. Then if i1, i2, ..., in−1 denote the corresponding divisions, analogously to the
derivation of Theorem 3.2, we require the sum:

p
(i,k)
n =

∑
{i<i1<i2<...<in−1≤k−1}

(1− 1
i+1µ0) · (1− 1

i+2µ0) · . . . · (1− 1
i1−1µ0) · 1

i1
µ0 · . . .

. . . (1− 2
i1+1µ0) · (1− 2

i1+2µ0) · . . . · (1− 2
i2−1µ0) · 2

i2
µ0 · . . .

...

. . . (1− n−1
in−2+1µ0) · . . . · (1− n−1

in−1−1µ0) · n−1in−1
µ0 · . . .

. . . (1− n
in−1+1µ0) · . . . · (1− n

k−1µ0)

Next note that a clone is equally likely to occur at any of k − 1 cell divisions, so p
(k)
n =

1
k−1

k−1∑
i=1

p
(i,k)
n . Finally we note that we must have i ≤ k − n to provide enough cell divisions to

reach size n, otherwise p
(i,k)
n is zero and so we obtain the required form.

For the recurrence we use a telescoping technique. First we note that we can split the sum
up to give the following (where i0 = i, in = k and n ≥ 2),

p
(i,k)
n =

k−1∑
in−1=i+n−1

∑
{i<i1<i2<...<in−2≤in−1−1}

n∏
j=1

ij−ij−1∏
m=1

(1− j
ij−1+m−1µ0) ·

n−1∏
j=1

j
ij
µ0

=
k−1∑

in−1=i+n−1

n−1
in−1

µ0 ·
k−1∏

j=in−1+1

(1− n
j µ0) · p(i,in−1)

n−1

From this we subtract the corresponding equation for p
(i,k−1)
n · (1− n

k−1µ0) which results in

the term p
(i,k−1)
n−1 · n−1k−1µ0. We then have the stated recursion.

For the initial value note that for a clone formed in the ith cell division to remain one cell in
size, we must ensure that for each subsequent cell division, the single cell either does not divide
(the clone remains the same), or divides with mutation (so one of the daughter cells forms a new
clone). This is 1− 1

jµ0 for the jth division, which results in the initial condition specified in the
theorem.

5.4 Number of Mutations in a Random Clone

Finally, we need the number of mutations in a randomly selected clone. For example, note that
clone 2 from Figure 6A is composed of three mutations, two of which formed during the 3rd cell
division. In general we have the following result.

Theorem 5.4. Let Xi be the Bernoulli variable with success probability 2
i for i = 2, 3, ..., k.

A clone arises at cell division i with probability 1
k−1 , where k is the total population size. The

number of mutations accumulated by a clone formed in cell division i is Poisson(λ
∑i−1
j=1Xi),

where e−λ = µ0.

Proof. New mutations occur during any cell division with a probability µ1 = 1− µ0. Now if we
assume that different mutations arise independently, we can assume they are Poisson distributed
per cell division with some parameter λ so that µ0 = e−λ. Now if a clone occurs at division
i, any subsequent mutations form new clones and do not belong to this clone. However, any
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earlier mutations may have been incorporated into its lineage. The first cell division occurs in
this lineage with probability 1, the second division with probability 2

3 , the rth with probability
2
r . The total number of mutations in the lineage is then a sum of identical Poisson variables over
cell divisions in this lineage.

6 Conclusions

We have shown that the number of mutated or proliferating cells in a clone has a natural de-
pendency upon the total clone size, rather than time taken for a single cell to grow into the
observed clone, resulting in combinatorial and generating function approaches to analyze their
distributions.

The approaches above are applicable to any Markovian branching process where daughter
branches in the process have distinct characteristics. In the examples we have discussed, the
branches represented the differentiation status, or the mutation status of daughter nodes. How-
ever, the branches can be more generally coloured as we like and the distributions of the number
of descending nodes examined with these techniques.

These approaches are exact but can be difficult to handle for large samples sizes and some
asymptotics would be useful. Furthermore, the results all assume that the processes of cell
division are Markovian and so the cell cycle exponentially distributed. This is unlikely to be
accurate, with cell cycle generally being better approximated by gamma distributions. This may
have significant effect on some results and warrants further exploration.
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Appendix

Alternative proof of Corollary 2.2 using stochastic processes methods.

Proof. Consider a random walk which moves up or down by one unit at each step, starting from
height 1. We are interested in the number of steps taken until we first reach height 0.

We let un denote the probability of being at height 0 after n steps, where the walk is initially
unrestricted and may move below or above height 0. This requires x up steps and x + 1 down
steps for some x ≤ n−1

2 and so we obtain the multinomial sum for n ≥ 1:

un =
bn−1

2 c∑
x=0

n!
x!(x+1)!(n−2x−1)!a

xbn−2x−1cx+1

This can be used to construct an associated generating function:
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U(t) =
∞∑
n=0

unt
n =

∞∑
n=1

bn−1
2 c∑

x=0

n!
x!(x+1)!(n−2x−1)!a

xbn−2x−1cx+1tn

= c
b

∞∑
x=0

∞∑
n=2x+1

n!
x!(x+1)!(n−2x−1)! (bt)

n(acb2 )x = c
b

∞∑
x=0

∞∑
m=0

(m+2x+1)!
x!(x+1)!(m)! (bt)

m+2x+1(acb2 )x

= ct
∞∑
x=0

(
2x+1
x

)
(act2)x

∞∑
m=0

(
m+2x+1

m

)
(bt)m = ct

∞∑
x=0

(
2x+1
x

)
(act2)x 1

(1−bt)2x+2

= ct
(1−bt)2

∞∑
x=0

(
2x+1
x

)
( act2

(1−bt)2 )x = ct
(1−bt)2

(1−bt)2
2act2 [ 1

(1− 4act2

(1−bt)2
)
1
2
− 1]

= 1
2at [(1−

4act2

(1−bt)2 )−
1
2 − 1]

Here we have used the identity 2z
∞∑
x=0

(
2x+1
x

)
zx = (1− 4z)−

1
2 − 1 on the penultimate line.

Similarly, we let vn denote the probabililty of being at height 0 after n steps, this time starting
from height 0. Again, we do not prohibit negative heights. This requires x up steps and x down
steps for some x ≤ n

2 and so we obtain the multinomial sum for n ≥ 1:

vn =
bn2 c∑
x=0

n!
x!x!(n−2x)!a

xbn−2xcx

This also has an associated generating function:

V (t) =
∞∑
n=0

vnt
n =

∞∑
n=0

bn2 c∑
x=0

n!
(x!)2(n−2x)!a

xbn−2xcxtn

=
∞∑
x=0

∞∑
n=2x

n!
(x!)2(n−2x)! (

ac
b2 )x(bt)n =

∞∑
x=0

∞∑
m=0

(m+2x)!
(x!)2m! (acb2 )x(bt)m+2x

=
∞∑
x=0

∞∑
m=0

(
m+2x
m

)(
2x
x

)
(act2)x(bt)m =

∞∑
x=0

(
2x
x

)
(act2)x

∞∑
m=0

(
m+2x
m

)
(bt)m

=
∞∑
x=0

(
2x
x

)
(act2)x 1

(1−bt)2x+1 = 1
1−bt

∞∑
x=0

(
2x
x

)
( act2

(1−bt)2 )x

= 1
1−bt (1−

4act2

(1−bt)2 )−
1
2

We are interested in the first visit to height 0 starting from height 1. Now, if we know we are
at height 0 after n steps, then there must be a first visit to height zero after r steps for some r
with 1 ≤ r ≤ n. If fr represents the probability of a first visit to 0 after r steps we then have
the discrete convolution:

un =
∑n
r=1 frvn−r

Multiplying by tn and summing then results in the following relation between generating
functions:

U = FV
where F =

∑∞
r=0 frt

r is the generating funtion for the probabilities fr we desire. Then
substituting the generating functions above yields the following:

F (t) = 1−bt
2at [1− (1− 4act2

(1−bt)2 )
1
2 ]

To obtain the required expression in Corollary 2.2, we note that the generating function

G(t) =
∞∑
n=0

Pn,0t
n relates to the probability of ruin Pn,0 when there are n cells present. We start

from 1 cell, so this involves n− 1 steps and we find fn−1 = Pn. In terms of generating functions,
we find G(t) = tF (t), which gives the desired form for G(t).
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