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ENUMERATING LATTICES OF SUBSETS

DONALD M. DAVIS

Abstract. If X1, . . . , Xk are sets such that no one is contained
in another, there is an associated lattice on 2[k] corresponding to
inclusion relations among unions of the sets. Two lattices on 2[k]

are equivalent if there is a permutation of [k] under which they
correspond. We show that for k = 1, 2, 3, and 4, there are 1, 1,
4, and 50 equivalence classes of lattices on 2[k] obtained from sets
in this way. We cannot find a reference to previous work on this
enumeration problem in the literature, and so wish to introduce it
for subsequent investigation. We explain how the problem arose
from algebraic topology.

1. Introduction

For a possible application to algebraic topology, we have become interested in an

enumeration problem for lattices of subsets, which we have been unable to find in the

literature. We wish to introduce it for further investigation.

Let [k] = {1, . . . , k}, and 2[k] its power set. If M = {X1, . . . , Xk} is a collection of

sets, and S ⊂ [k], let

(1.1) MS :=
⋃

i∈S

Xi.

We say that M is proper if it is never the case that Xi ⊂ Xj for i 6= j. Any M defines

a lattice L(M) on 2[k] by S ≤ T if MS ⊂ MT . Lattices L and L′ on 2[k] are said to be

equivalent if there is a permutation σ of [k] under which the induced permutation of

2[k] preserves the lattice relations; i.e., σ(S) ≤′ σ(T ) iff S ≤ T . We wish to enumerate

the equivalence classes of all possible L(M)’s for proper M’s of size k.

For k = 1 and k = 2, there is only one equivalence class each of such L(M)’s.

Indeed, for k = 2, we must have M{1} and M{2} both strictly contained in M{1,2}.

For k = 3, there are four equivalence classes. Out of the three possible nontrivial

inclusions M{1} ⊂ M{2,3}, M{2} ⊂ M{1,3}, and M{3} ⊂ M{1,2}, it can be the case that
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2 DONALD M. DAVIS

0, 1, 2 or 3 of these hold, giving the four equivalence classes. We also observe that

each of the four equivalence classes can be realized by actual sets. See Table 1 for

realizations.

Inclusions X1 X2 X3

∅ {a} {b} {c}
M{3} ⊂ M{1,2} {a, c} {b, d} {c, d}

M{3} ⊂ M{1,2}, M{2} ⊂ M{1,3} {a, b, d} {b, c} {c, d}
M{3} ⊂ M{1,2}, M{2} ⊂ M{1,3}, M{1} ⊂ M{2,3} {a, b} {b, c} {c, a}

Table 1: k = 3

Note that the condition that M be proper forces that these inclusions are strict, and

each of these inclusions is equivalent to a corresponding equality involving M{1,2,3}.

For example, M{1} ⊂ M{2,3} iff M{2,3} = M{1,2,3}. For consideration of equivalence

classes of L(M)’s when k > 3, we find the equality viewpoint to be more convenient

than the containment viewpoint, which leads to the following alternative formulation.

Let Sk denote the collection of subsets of [k] of cardinality greater than 1. A

configuration of size k is an equivalence relation on Sk such that S ∼ T implies

S ∪ {i} ∼ T ∪ {i} for all i. Configurations ∼ and ∼′ are equivalent if there is a

permutation σ of [k] such that σ(S) ∼′ σ(T ) iff S ∼ T . A configuration ∼ is realizable

if there exists a proper collection M as above such that MS = MT iff S ∼ T .

Note that we do not include singleton sets in Sk because of the “proper” condition

on M. We would never have M{i} = MT if |T | > 1. So if we included singleton sets,

they would be only equivalent to themselves.

The four equivalence classes of configurations of size 3 are those in which 0, 1, 2,

or 3 of the sets {1, 2}, {1, 3}, and {2, 3} are ∼ {1, 2, 3}.

Our main theorem is

Theorem 1.2. There are exactly 50 equivalence classes of configurations of size 4,

and each is realizable.

We felt that this enumeration problem would be of the type that would have been

studied and have its results appearing on Sloane’s website ([3]), but the sequence 1,

1, 4, 50 does not appear there in any context related to counting sets. Nor have we

been able to find references to this specific problem in the literature.
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This enumeration problem, in a slightly different form, was suggested to me by Sam

Gitler. In Section 4, we present our understanding of the algebraic topology which

motivated it.

2. Enumeration when k = 4

In this section, we derive the 50 equivalence classes of configurations of size 4. We

will abbreviate {i, j, k} as ijk, etc. We will make constant use of the fact that if

ij ∼ ijk, then ijℓ ∼ ijkℓ, which we sometimes call unioning. We will not record

equivalences of sets of the same size, since they are always a consequence of other

equivalences. For example, if 12 ∼ 13, then both are equivalent to 123, and if 12 ∼ 34,

then both are equivalent to 1234. We divide into cases according to the number of

3-sets which are equivalent to 1234. We think of relations ∼ 1234 as being “at the

top,” while relations ij ∼ ijk which are not ∼ 1234 as being “at the bottom.”

Case 0: No 3-sets equivalent to 1234. Then there can be no equivalences at

all (except that a set is equivalent to itself), due to unioning. Thus there is one

configuration of this type.

Case 1: Exactly one 3-set ∼ 1234. WLOG 123 ∼ 1234. We cannot have, say,

12 ∼ 123 ∼ 1234, since this would imply 124 ∼ 1234, which does not hold. It can be

the case that either 0, 1, 2, or 3 of the relations 12 ∼ 124, 13 ∼ 134, and 23 ∼ 234

hold. (Note that these can be thought of as being obtained by dividing the relation

123 ∼ 1234 by 3 or 2 or 1.) Any other ij ∼ ijk would imply a 3-set ∼ 1234 which is

not the case. Thus there are four equivalence classes of configurations of this type.

Case 2: Exactly two 3-sets ∼ 1234. WLOG these are 123 and 124. The only 2-set

that might ∼ 1234 is 12. Thus there are two possibilities for what ∼ 1234, depending

on whether or not 12 is included. This choice does not affect the possibilities for

equivalences ij ∼ ijk which are not ∼ 1234. These possibilities are 23 ∼ 234,

24 ∼ 234, 13 ∼ 134, and 14 ∼ 134, which may be thought of as dividing the top

relations by appropriate integers. Note that if exactly one of these four relations holds,

then it doesn’t matter which one, since any two are related by possibly interchanging

1 and 2, or possibly interchanging 3 and 4, and these do not affect the relations at the

top. Similarly if three of the four relations hold, it doesn’t matter which three; each

situation is equivalent under a permutation. So far we have found four possibilities at
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the bottom, obtained by choosing 0, 1, 3, or 4 of the four possible equivalences. There

are also three possible equivalence classes in which we choose two of the four possible

equivalences at the bottom. These are obtained by choosing 23 ∼ 234 and any one

of the other three. It is easily verified that no two of these three possibilities are

equivalent under interchanges of 1 and 2 or of 3 and 4, which are the permutations

that leave the top part fixed. Thus there are 2(4 + 3) = 14 equivalence classes of

configurations of this type.

Case 3: Exactly three 3-sets ∼ 1234. These may be assumed to be 123, 124,

and 134. We may also have 0, 1, 2, or 3 of 12, 13, and 14 equivalent to 1234. If

none of them or all of them are ∼ 1234, then we obtain unique equivalence classes

of configurations in which 0, 1, 2, or 3 of 23, 24, and 34 are equivalent to 234. If,

say, we have just 12 ∼ 1234 (and not 13 or 14), then 2 has a different status than 3

and 4 (which are interchangeable). In this case, we can have 0 or 3 of 23, 24, and 34

equivalent to 234, or just 23, or just 34, or 23 and 24, or 23 and 34, so six possibilities

at the bottom. A similar situation occurs if two of the three (12, 13, and 14) are

equivalent to 1234; one of 2, 3, and 4 will have a different status than the others,

and so there will be six possibilities at the bottom. Thus there are 2 · 4 + 2 · 6 = 20

equivalence classes of configurations of this type.

Case 4: All four 3-sets ∼ 1234. Note that in this case it is impossible to have a

relation ij ∼ ijk at the bottom, since ijk ∼ 1234. Of the
(

4
2

)

= 6 2-sets, we can

have any number, t, from 0 to 6 of them ∼ 1234. For t = 0, 1, 5, or 6, there is

just one equivalence class of such configuration. When t = 2, the configuration when

12 ∼ 1234 and 23 ∼ 1234 is not equivalent to the one when 12 ∼ 1234 and 34 ∼ 1234.

Similarly when t = 4, there are two inequivalent configurations. When t = 3, there

are three inequivalent configurations, represented by having the three sets ∼ 1234

be {12, 13, 14}, {12, 23, 34}, or {12, 13, 23}. Thus there are 4 · 1 + 2 · 2 + 3 = 11

configurations of this type.

Thus there are 1 + 4 + 14 + 20 + 11 = 50 equivalence classes of configurations

altogether.
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3. Tabulation and realization

In Tables 2 and 3, we list representatives of the 50 equivalence classes of configu-

rations of size 4 obtained above. Table 2 handles Cases 0 to 3 above, while Table 3

handles Case 4. We use a dash instead of ∼ to improve the spacing in the table. We

also list explicit small sets realizing each configuration. For example, looking at the

third entry in Table 2, if X1 = {a, d}, X2 = {b, e}, X3 = {c}, and X4 = {d, e}, then

X1 ∪X2 = X1 ∪X2 ∪X4, and no other equalities hold, except for that obtained by

unioning with X3.
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Sets equaling 1234 Other equivalences X1 X2 X3 X4

∅ ∅ a b c d
123 ∅ ad be cf ef
123 12-124 ad be c de
123 12-124, 13-134 ad be ce de
123 12-124, 13-134, 23-234 ade bdf cef def

123, 124 ∅ ace bdf cdg efg
123, 124 23-234 ac bde cdf ef
123, 124 23-234, 24-234 a bcd ce de
123, 124 23-234, 13-134 ace bde cdf ef
123, 124 23-234, 14-134 ac bd ce de
123, 124 23-234, 24-234, 13-134 ad bcd ce de
123, 124 23-234, 24-234, 13-134, 14-134 acd bcd ce de

12, 123, 124 ∅ ace bdf cd ef
12, 123, 124 23-234 acf bde cdf ef
12, 123, 124 23-234, 24-234 ae bcd ce de
12, 123, 124 23-234, 13-134 acef bdeg cdfg efg
12, 123, 124 23-234, 14-134 ace bdf cef def
12, 123, 124 23-234, 24-234, 13-134 ade bcdf cef def
12, 123, 124 23-234, 24-234, 13-134, 14-134 acde bcdf cef def
123, 124, 134 ∅ abce bdf cdg efg
123, 124, 134 23-234 abc bde cdf ef
123, 124, 134 23-234, 24-234 ab bcd ce de
123, 124, 134 23-234, 24-234, 34-234 a bc bd cd

12, 123, 124, 134 ∅ abce bdf cd ef
12, 123, 124, 134 23-234 abcf bde cdf ef
12, 123, 124, 134 34-234 abd ce bc de
12, 123, 124, 134 23-234, 24-234 abe bcd ce de
12, 123, 124, 134 23-234, 34-234 abe cd bce de
12, 123, 124, 134 23-234, 24-234, 34-234 ad bc bd cd

13, 14, 123, 124, 134 ∅ abcd bf cef def
13, 14, 123, 124, 134 23-234 abcd bdf cef def
13, 14, 123, 124, 134 34-234 abcde beg bcfg defg
13, 14, 123, 124, 134 23-234, 24-234 abcd bcdf cef def
13, 14, 123, 124, 134 23-234, 34-234 abcd bdf bcef def
13, 14, 123, 124, 134 23-234, 24-234, 34-234 abc bce bde cde

12, 13, 14, 123, 124, 134 ∅ abcd be ce de
12, 13, 14, 123, 124, 134 23-234 abcde bdf cef def
12, 13, 14, 123, 124, 134 23-234, 24-234 abcde bcdf cef def
12, 13, 14, 123, 124, 134 23-234, 24-234, 34-234 abcd bce bde cde

Table 2: k = 4, Cases 0 to 3
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2-sets equaling 1234 X1 X2 X3 X4

∅ abd ace bcf def
12 abd ace bc de

12, 23 abe acde bc de
12, 34 ac bd ab cd

12, 13, 14 abc ad bd cd
12, 23, 34 ade bcd abe cde
12, 13, 23 abde acdf bcef def

12, 13, 24, 34 bcde abdf abef cdef
12, 13, 14, 24 abcd abe bde cde

12, 13, 14, 23, 24 abcd abce bde cde
12, 13, 14, 23, 24, 34 abc abd acd bcd

Table 3: k = 4, All 3-sets ∼ 1234

Sets realizing a certain configuration can be obtained systematically, although we

obtained those in the tables using a Maple program. We use the 17th entry in Table

2 to illustrate how the sets can be obtained without using a computer. We want sets

Xi such that all relations are implied by X1 ∪X2 = X1 ∪X2 ∪X3 ∪X4, X2 ∪X3 =

X2 ∪ X3 ∪ X4, and X1 ∪ X4 = X1 ∪ X3 ∪ X4. In terms of inclusions, this says

X3 ⊂ X1 ∪ X2, X4 ⊂ X1 ∪ X2, X4 ⊂ X2 ∪ X3, X3 ⊂ X1 ∪ X4, X4 6⊂ X1 ∪ X3,

X3 6⊂ X2 ∪X4, X2 6⊂ X1 ∪X3 ∪X4, and X1 6⊂ X2 ∪X3 ∪X4. The “proper” condition

adds the requirements X3 6⊂ X1 and X4 6⊂ X2.

Table 4 serves as a Venn diagram. Columns labeled 1 or 2 refer to just X1 or X2

without the other, and the first column means “Neither X1 nor X2,” with similar

notation for the rows. The condition X3 ⊂ X1 ∪X2 forces the ∅ entries in the second

and third entries in the first column, and the other ∅ entries are forced similarly by

the other inclusions above. The six noninclusions force, respectively, the entries d, c,

b, a, f , and e in Table 4.

1 1&2 2
a b

3 ∅ c ∅
3&4 ∅ e f
4 ∅ ∅ d

Table 4: Venn diagram for one configuration
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For future work, we might wish to know which pairs of sets have nontrivial inter-

section. In this example, from Table 4, all pairs intersect except X1 and X2. This

much would be forced. Having X1 ∩X2 6= ∅ could be obtained by placing an element

in any of the blank spaces in Table 4.

4. Topological motivation

First of all, our enumeration problem for sets is an interpretation of an enumeration

problem for square-free monomials. Let m1, . . . , mk be square-free monomials in a set

of variables, such that no mi divides mj for i 6= j. If S ⊂ [k], let mS denote the least

common multiple (lcm) of those mi for which i ∈ S. Define a lattice on 2[k] by S ≤ T

if mS divides mT . Since lcm is the product of the variables involved in the union of a

set of monomials, this is clearly equivalent to our lattice L(M) defined at the outset.

Let R be a commutative ring with 1. Given a simplicial complex K with vertex set

[n], there is an ideal I(K) in R[x1, . . . , xn] generated by all monomials xi1 · · ·xir such

that (i1, . . . , ir) 6∈ K. (For future reference, the quotient R[x1, . . . , xn]/I(K) is called

the Stanley-Reisner ring R(K).) If we choose a minimal set of monomials generating

this ideal, then this set of monomials will satisfy the condition that no mi divides mj .

Conversely, given a set of square-free monomials M in variables x1, . . . , xn, there is a

simplicial complex K with vertex set [n] such that σ 6∈ K iff some subset {i1, . . . , ir}

of the vertices of σ satisfies that xi1 · · ·xir ∈ M .

A simplicial complex K with vertex set [n] gives rise to a topological space called

a moment-angle complex ZK defined in [1, p.88]. In [1, p.103], it is proved that there

is an isomorphism

(4.1) H∗(ZK ;R) ≈ Tor∗,∗
R[x1,...,xn]

(R(K), R),

where grading in the RHS is by total degree. Using the Taylor resolution (e.g., [2,

p.439]), these Tor groups are related to our lattices L(M).

If the ideal I(K) is spanned by monomials m1, . . . , mk in variables x1, . . . , xn, the

Taylor resolution leads to a cochain complex C(K) whose cohomology is isomorphic

to the RHS of (4.1). In grading −j, C(K) is a free R-module on classes eS for all

S ⊂ [k] of cardinality j. The boundary homomorphism sends eS to an alternating

sum of classes eS−{j} for which M{j} ⊂ MS−{j}. From the point of view of our tables,
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eS maps to an alternating sum of classes eT for which T has cardinality j − 1 and

T ∼ S.

The second grading in the Tor group is determined by giving eS grading equal

to twice the cardinality of MS in (1.1). From the point of view of monomials,

|eS| = deg(lcm{mi : i ∈ S}). Thus the isomorphism (4.1) depends not just on the

lattice L(M) but also on the sets Xi which led to the lattice. For example, the first

lattice in Table 1 could have been realized either by (X1, X2, X3) = ({a}, {b}, {c}) or

({a, b, c}, {c, d, e}, {e, f, a}). These give rise to different simplicial complexes, differ-

ent Stanley-Reisner rings, different moment-angle complexes, and different bigraded

Tor groups, even though the lattices are equal. Their Tor groups are isomorphic if

the second bigrading is ignored, but this bigrading is essential to the isomorphism

(4.1).

The isomorphism (4.1) is in fact an isomorphism of rings. The ring structure of the

RHS depends on which pairs of monomials have gcd > 1, or equivalently by which

sets intersect. The question posed to me by Sam Gitler asked to take into account

in the enumeration also this information about overlaps. This can be done, but is

more complicated. We have chosen to focus here on the simpler question just based

on inclusions.
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