
ar
X

iv
:1

31
1.

74
03

v1
 [

cs
.F

L
]

 2
8

N
ov

 2
01

3

Remarks on Privileged Words

Michael Forsyth, Amlesh Jayakumar, and Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
{mfforsyth,a3jayakumar,shallit}@uwaterloo.ca

June 1, 2018

Abstract

We discuss the notion of privileged word, recently introduced by Peltomäki. A word
w is privileged if it is of length ≤ 1, or has a privileged border that occurs exactly twice
in w. We prove the following results: (1) if wk is privileged for some k ≥ 1, then wj

is privileged for all j ≥ 0; (2) the language of privileged words is neither regular nor
context-free; (3) there is a linear-time algorithm to check if a given word is privileged;
and (4) there are at least 2n−5/n2 privileged binary words of length n.

1 Introduction

We say that a word x is a border of w if it is both a prefix and a suffix of w.
Peltomäki [4, 5] recently introduced the notion of privileged word. A word w is privileged

if

(a) it is of length ≤ 1, or

(b) it has a privileged border that appears exactly twice in w.

Here are the first few privileged words over a binary alphabet:

0, 1, 00, 11, 000, 010, 101, 111, 0000, 0110, 1001, 1111, 00000, 00100, 01010, 01110, 10001,

10101, 11011, 11111, 000000, 001100, 010010, 011110, 100001, 101101, 110011, 111111.

An easy induction shows that ai is privileged for for any letter a and i ≥ 0.
We now recall two results of Peltomäki [4].

Theorem 1. Let w be privileged.

1

http://arxiv.org/abs/1311.7403v1

(a) If t is a privileged prefix (resp., suffix) of w, then t is also a suffix (resp., prefix) of w.

(b) If v is a border of w then v is privileged.

Define the number of leading a’s in w to be the largest integer n such that an is a prefix
of w, and similarly for the number of trailing a’s. Then we have

Corollary 2. If w is privileged, then the number of leading a’s in w equals the number of
trailing a’s.

Proof. Write w = aizaj where z neither begins nor ends in a. Then by Theorem 1 (a) we
see that i ≥ j and j ≥ i.

We now state a useful lemma.

Lemma 3. Let w be a nonempty word. Then w is privileged if and only if its longest proper
privileged prefix is also a suffix of w.

Proof. =⇒: follows from Theorem 1 (a) above.
⇐=: Let u be the longest proper privileged prefix of w. Let v be the shortest prefix of

w containing exactly two occurrences of u; this is well-defined since u is a suffix of w. Then
v itself is privileged. So either v = w, or |u| < |v| < |w| and v is a longer proper privileged
prefix of w, a contradiction.

We now prove a result on powers and privileged words.

Theorem 4. Let w be any word and k an integer ≥ 1. If wk is privileged, then wj is
privileged for all integers j ≥ 0.

Proof. Suppose k ≥ 2. Then w is a border of wk, and hence by Theorem 1 (b) we know w
is privileged.

It remains to show that if w is privileged, then so is wj for all j ≥ 0. We prove this by
induction on j. The result is clearly true for j = 0 or j = 1, so assume j ≥ 2 and wj−1 is
privileged.

Let u be the longest proper privileged prefix of wj. If |u| ≤ |wj−1|, then u is also a
privileged prefix of wj−1. Then Theorem 1 (a) and induction together imply that u is a
suffix of wj−1. Then u is also a suffix of wj, and by Lemma 3 we know wj is privileged.

Otherwise |u| > |wj−1|. Write u = wj−1y for some y, where y is a proper prefix of w.
Since j ≥ 2, we see that y is also a proper prefix of wj−1 and hence a proper prefix of u.
Thus y is a border of u, and hence, by Theorem 1 (b), y is privileged. Since y is a privileged
prefix of w, by Theorem 1 (a), it is also a suffix of w. Write w = zy for some z. By induction
we know that wj−1 is privileged. Since wj−1 is a prefix of u, by Theorem 1 (a), it is also a
suffix of u, so there exists x such that u = xwj−1. Since u = wj−1y = xwj−1, we see that
|x| = |y| and x is a proper prefix of w. Thus in fact x = y. So u = ywj−1. Then

wj = wwj−1 = (zy)wj−1 = z(ywj−1) = zu,

and it follows that u is a suffix of wj. By Lemma 3, we conclude that wj is privileged. This
completes the induction.

2

2 The set of privileged words

Let Σ be a fixed alphabet and consider P, the set of privileged words over Σ. We prove here
that P is neither regular nor context-free.

Proposition 5. If |Σ| ≥ 2, then P is not regular.

Proof. Let 0, 1 be distinct letters in Σ. Assume P is regular, and consider L = P ∩ 0+10+.
By Corollary 2 we have L = {0n10n : n ≥ 1}. By the pumping lemma, L is not regular,
and hence neither is P.

Proposition 6. If |Σ| ≥ 2, then P is not context-free.

Proof. Assume P is context-free, and consider the regular language R = 0+10+110+. By a
well-known closure property of the context-free languages, L := P ∩ R is context-free. We
will now use Ogden’s lemma [3] to show that L is not context-free, a contradiction.

We claim that
L = {00a100b1100c : a = c and a > b}.

To see this, note that L ⊆ R. Thus it suffices to show that a word w of the form
0a+110b+1110c+1 word is privileged if and only if a = c and a > b.

(⇒) Since w begins and ends with 0, by Corollary 2, we know that a+ 1 = c+ 1 and so
a = c. Suppose b ≥ a. Then 0a+110a+1 is a privileged prefix of w, yet it is not a suffix of w.
By Theorem 1 (a), w is not privileged. Thus a > b.

(⇐) Let w = 00a100b1100a where a > b. Then the longest proper privileged prefix of w
is 0a+1, which appears again as a suffix of w. Thus w is privileged.

Now let n be as in Ogden’s lemma, and let w = 0n10n−1110n, where the first block
of n zeros is marked as required by Ogden’s lemma. Then there exists some decomposition
w = uxvyz where xvy contains at most n ‘marked’ characters, xy contains at least 1 ‘marked’
character, and uxivyiz ∈ L for all i ≥ 0.

We see that if either x or y contain a 1, then ux0vy0z will have too few ones, and thus
will not be in L. Otherwise, we know x lies entirely in the first block of zeros. If y does not
lie in the last block of zeros, then if i = 0, we will have a < c, so ux0vy0z /∈ P ∩R. If y does
lie in the last block of zeros, then ux0vy0z = 00n−j100n−11100n−k for some j, k > 0. Since
n− j ≤ n− 1, we see that w /∈ L.

Hence no decomposition for w exists with ux0vy0z ∈ L, and thus P∩R is not context-free.
Thus, the language of privileged words is not context-free.

3 A linear-time algorithm for determining if a word is

privileged

In this section we present an efficient algorithm for determining if a given word is privileged.
Algorithm P:

function check-privileged(w)

3

if |w| ≤ 1 then

return True
else

T [0]← 0
p← 1
for i = 1 to |w| − 1 do

j ← T [i− 1]
while true do

if w[j] = w[i] then
T [i]← j + 1
if T [i] = p then

p← i+ 1
end if

exit while loop
else if j = 0 then

T [i]← 0
exit while loop

end if

j ← T [j − 1]
end while

end for

if p = |w| then
return True

else

return False
end if

end if

end function

Our algorithm is a slightly modified version of the algorithm for building a failure table
in the well-known Knuth-Morris-Pratt linear-time string-matching algorithm [2].

Theorem 7. Algorithm P returns “true” if and only if w is privileged.

Proof. It is easy to see that if |w| = 0 or |w| = 1, then w is privileged and the algorithm
returns “true”. Otherwise, we consider the value for p at each iteration of the for-loop.

We now claim that at the end of each iteration of the for-loop, p equals the length of the
longest privileged prefix of the first i+ 1 characters of w.

To see the claim, observe that, when entering the first loop we have p = 1, and is the
longest privileged prefix of the first character of w. This establishes our base case. Otherwise,
we assume p is the longest privileged prefix of the first i characters of w at the beginning of
the for loop, and prove our claim for the end of this iteration. We note that T [i] represents
the length of the longest subword u which is both a prefix and suffix of the first i+1 characters
of w (the word “read so far”). If T [i] = p, we know u is privileged, and p is increased to

4

i+1. Since p is increased as soon as this equality is found, this is the first time u is repeated
in w, and thus the word read so far is privileged. This proves our claim.

After w has been completely read by our algorithm, p represents the length of the longest
privileged prefix of w. The algorithm returns “true” if and only if p = |w|, in which case w
is privileged.

Next, we have

Theorem 8. Algorithm P runs in O(n) time, where n = |w|.

Proof. Starting with the KMP algorithm, we have added one extra if statement in the main
loop, allowing this algorithm to run in the same O(|w|) time bound as the original algorithm.

More formally, we consider the number of times the inner while loop is executed, as all
else takes constant time. The first time the while loop is executed, i = 1 and j = 0. Upon
each iteration, we see that either

1. i is incremented by 1, and j is incremented by at most 1;

2. j decreases

We see i is incremented by exactly 1 when w[j] = w[i] or j = 0, due to moving to the next
iteration of the for loop. When j = 0, then j will remain 0 beginning the next execution of
the while loop. When w[i] = w[j], then j will be set to j + 1 in the next execution of the
while loop.

If neither of the above cases are fulfilled, we see j is set to T [j − 1], which is known by a
property of the failure array to be strictly less than j.

With these cases, we see that either i increases or i − j increases. Since the algorithm
terminates when i = |w| − 1, i will increase exactly n− 2 times, where n = |w|. Also, since
j < i at each stage of the algorithm, i − j can increase at most n − 3 times. Since these
are the only possible cases, the while loop will execute no more than 2n − 5 times. Thus,
Algorithm P takes O(n) time to complete.

4 A lower bound on the number of privileged binary

words

Let B(n) denote the number of privileged binary words of length n.
We observe that if x = 0t1w10t, and w contains no occurrences of 0t, then x is privileged.

By choosing the appropriate value of t, we get our lower bound. First, though, we need a
detour into generalized Fibonacci sequences.

We need to count the number of words of length n that contain no occurrence of 0t. As
is well-known [1, p. 269] and easily proved, this is G

(t)
n , where

G(t)
n =

{

2n, if 0 ≤ n < t;

G
(t)
n−1 +G

(t)
n−2 + · · ·+G

(t)
n−t, if n ≥ t.

5

We point out that in the case where t = 2, this is Fn+2, the (n + 2)’nd Fibonacci number,
where F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

It is well-known from the theory of linear recurrences that

G(t)
n = Θ(γn

t),

where 1 < γt < 2 is the root of the equation xt − xt−1 − · · · − x − 1 = 0. Since γt
t − γt−1

t −
· · · − γt − 1 = 0, multiplying by γt − 1 we get γt+1

t − 2γt
t + 1 = 0, so γt = 2− γ−t

t .
The next step is to find a good lower bound on γt.

Lemma 9. Let s ≥ 2 be an integer and let β be a real number with 0 ≤ β ≤ 6
s
. Then

2s − βs2s−1 ≤ (2− β)s.

Proof. For s = 2, the claim is 4 − 4β ≤ (2 − β)2 = 4 − 4β + β2. Otherwise, assume s ≥ 3.
The result is clearly true for β = 0, so assume β > 0. By the binomial formula, we have

(2− β)s =
∑

0≤i≤s

2s−i(−β)i
(

s

i

)

= 2s − βs2s−1 +
∑

2≤i≤s

2s−i(−β)i
(

s

i

)

= 2s − βs2s−1 +
∑

1≤j≤(s−1)/2

(

2s−2jβ2j

(

s

2j

)

− 2s−2j−1β2j+1

(

s

2j + 1

))

(1)

+

{

βs, if s even;

0, otherwise.

It therefore suffices to show that each term of the sum (1) is positive, or, equivalently,
that

2s−2jβ2j

(

s

2j

)

≥ 2s−2j−1β2j+1

(

s

2j + 1

)

.

for 1 ≤ j ≤ (s− 1)/2.
Now β ≤ 6

s
by hypothesis, so β ≤ 6

s−2
. Hence βs − 2β ≤ 6. Adding 2β − 2 to both

sides we get βs − 2 ≤ 4 + 2β, and so βs−2
2+β
≤ 2. If i ≥ 2 ≥ βs−2

2+β
then (2 + β)i ≥ βs− 2, so

2(i+ 1) ≥ β(s− i), and

2

β
≥

s− i

i+ 1
=

(

s
i+1

)

(

s
i

) .

Thus 2
(

s
i

)

≥ β
(

s
i+1

)

. Let i = 2j, and multiply both sides by 2s−2jβ2j to get 2s−2jβ2j
(

s
2j

)

≥

2s−2j−1β2j+1
(

s
2j+1

)

, which is what we needed.

6

Theorem 10. Let t ≥ 2 be an integer and define

αt = 2−
1

2t − t
2
− t2

2t

.

Then αt ≤ 2− α−t
t .

Proof. It is easy to verify that
3t2

4
≥

t3

2t
+

t4

22t

for all real t ≥ 2. Hence

0 ≤
3t2

4
−

t3

2t
−

t4

22t
,

and, adding t2t−1 to both sides, we get

t2t−1 ≤ t2t−1 +
3t2

4
−

t3

2t
−

t4

22t

=

(

t

2
+

t2

2t

)(

2t −
t

2
−

t2

2t

)

.

Setting βt =
1

2t− t

2
− t2

2t

, we therefore have

βtt2
t−1 ≤

t

2
+

t2

2t
,

or

−βtt2
t−1 ≥ −

t

2
−

t2

2t
.

Add 2t to both sides to get

2t − βtt2
t−1 ≥ 2t −

t

2
−

t2

2t
.

Now it is easily verified that βt ≤ 6/t for t ≥ 2, so we can apply Lemma 9 with s = t to get
2t − βt2t−1 ≤ (2− β)t. It follows that

(2− β)t ≥ 2t −
t

2
−

t2

2t
,

and so
βt ≥ (2− βt)

−t.

It follows that
2− βt ≤ 2− (2− β)−t.

Since αt = 2− βt, we get
αt ≤ 2− α−t

t ,

as desired.

7

We can now apply this to get a bound on G
(t)
n .

Corollary 11. Let t ≥ 2 be an integer and n ≥ 0. Then G
(t)
n ≥ αn

t , where αt = 2− 1

2t− t

2
− t2

2t

<

2.

Proof. By induction on n. Clearly G
(t)
n = 2n ≥ αn

t for 0 ≤ n < t by definition. Otherwise we
have

G(t)
n = G

(t)
n−1 + · · ·+G

(t)
n−t

≥ αn−1
t + · · ·+ αn−t

t

=
αn
t − αn−t

t

αt − 1
.

However, αt ≤ 2− α−t
t by Theorem 10, so

αt − 1 ≤ 1− α−t
t .

Hence (αt − 1)αn
t ≤ (1− α−t

t)αn
t = αn

t − αn−t
t , so from above we have

G(t)
n ≥

αn
t − αn−t

t

αt − 1
≥ αn

t .

Now we state and prove our lower bound on the number of binary privileged words of
length n.

Theorem 12. There are at least
2n−5

n2

privileged binary words of length n.

Proof. Each word of the form 0t1w10t is privileged, where |w| = n− 2t− 2 and w contains

no factor 0t. The number of such w, as we have seen, is G
(t)
n−2t−2. So it suffices to pick the

right t to get a lower bound on G
(t)
n−2t−2.

It is easy to check, using the data in the next section, that our bound holds for n ≤ 10.
So assume n ≥ 11.

Now

G
(t)
n−2t−2 ≥ αn−2t−2

t

= (2− βt)
n−2t−2

≥ 2n−2t−2 − βt(n− 2t− 2)2n−2t−3

= 2n−2t−2(1− βt(n/2− t− 1)),

by Lemma 9 with s = n− 2t− 2, provided βt ≤ 6/(n− 2t− 2).

8

We now choose t = ⌊log2 n⌋+ 1, so that

2t−1 ≤ n < 2t. (2)

It is now easy to verify that βt ≤ 6/(n− 2t− 2) for n ≥ 11.
On the other hand, it is easy to verify that

3t

4
≥

t2

2t+1

for all real t ≥ 0, so
3t

4
+ 1−

t2

2t+1
> 0.

Adding 2t−1 to both sides, and using (2), we get

n

2
< 2t−1 < 2t−1 +

3t

4
+ 1−

t2

2t+1
,

which implies
n

2
− t− 1 ≤

1

2

(

2t −
t

2
−

t2

2t

)

and so βt(n/2− t− 1) ≤ 1/2.
It follows that

B(n) ≥ G
(t)
n−2t−2 ≥ 2n−2t−2(1− βt(n/2− t− 1) ≥ 2n−2t−3 ≥

2n−5

n2
.

Open Problem 13. What is the true asymptotic behavior of B(n) as n→∞?

Define the function f as follows:

f(n) =

{

n, if n ≥ 2;

nf(⌊log2 n⌋), otherwise.

It should be possible to improve Theorem 12 to B(n) = Ω(2nclog
∗(n)/f(n)), where c is a

constant and, as usual, log∗(n) is the number of times we need to apply log2 to n to get a
number ≤ 1. We sketch the outline of an incomplete argument here:

We generalize our argument above to count the number of privileged words of length n
having any privileged border of length ⌊log2 n⌋. We can use our previous argument provided
the count for arbitrary patterns is larger than the count for 0t.

More precisely, if x(p, n) is the number of strings of length n beginning with the pattern p,
ending with p, and having no other occurrence of p, then x(p, n) satisfies a linear recurrence
of order t = |p|. By analyzing this carefully, it should be possible to show that, provided n
is in a certain range with respect to |p|, we have x(p, n) ≥ x(0t, n).

9

Then we can imitate our analysis above, setting t = ⌊log2 n⌋, to get

B(n) ≥
∑

p privileged

|p|=⌊log2 n⌋

x(p, n)

≥ cB(⌊log2 n⌋) ·
2n

n2
,

for a constant c. By iterating this relationship log∗(n) times, we would get the claimed
bound.

5 Explicit enumeration of privileged words

We finish with a table giving the number B(n) of privileged binary words of length n for
0 ≤ n ≤ 38. It is sequence A231208 in Sloane’s On-line Encyclopedia of Integer Sequences
[6].

n B(n) n B(n) n B(n)
0 1 13 328 26 875408
1 2 14 568 27 1649236
2 2 15 1040 28 3112220
3 4 16 1848 29 5888548
4 4 17 3388 30 11160548
5 8 18 38576 31 21198388
6 8 19 71444 32 40329428
7 16 20 133256 33 76865388
8 20 21 248676 34 146720792
9 40 22 466264 35 280498456
10 60 23 875408 36 536986772
11 108 24 1649236 37 1029413396
12 176 25 3112220 38 1975848400

References

[1] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[2] D. E. Knuth, J. H. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J.
Comput. 6 (1977), 323–350.

[3] W. Ogden. A helpful result for proving inherent ambiguity. Math. Systems Theory 2

(1968), 191–194.

10

[4] J. Peltomäki. Introducing privileged words: privileged complexity of Sturmian words.
Theoret. Comput. Sci. 500 (2013), 57–67.

[5] J. Peltomäki. Privileged factors in the Thue-Morse word — a comparison of privileged
words and palindromes. Preprint, June 28 2013, http://arxiv.org/abs/1306.6768.

[6] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at
http://oeis.org.

11

http://arxiv.org/abs/1306.6768
http://oeis.org

	1 Introduction
	2 The set of privileged words
	3 A linear-time algorithm for determining if a word is privileged
	4 A lower bound on the number of privileged binary words
	5 Explicit enumeration of privileged words

