Preprint, arXiv:1312.1166
ON $a^{n}+b n$ MODULO m

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract

Let a and $m>0$ be integers. We show that for any integer b relatively prime to m, the set $\left\{a^{n}+b n: n=1, \ldots, m^{2}\right\}$ contains a complete system of residues modulo m. We also pose several conjectures for further research; for example, we conjecture that any integer $n>1$ can be written as $k+m$ with $2^{k}+m$ prime, where k and m are positive integers.

1. Introduction

Let p be a prime and let a be a positive integer. In 2011 the author and W. Zhang [SZ] showed that for each $k=p^{a}, p^{a}+1, \ldots, 2 p^{a}-1$ the set $\left\{\binom{n}{k}: n=\right.$ $0,1,2, \ldots\}$ is dense in the ring of p-adic integers, i.e., it contains a complete system of residues modulo any power of p.

In this paper, we establish the following new result.
Theorem 1.1. Let a, b and $m>0$ be integers. If b is relatively prime to m, then the set $\left\{a^{n}+b n: n=1, \ldots, m^{2}\right\}$ contains a complete system of residues modulo m.

Our proof of Theorem 1.1 will be given in Section 2.
Now we pose several conjectures for further research.
Conjecture 1.1. For any integers a and $m>0$, the set

$$
\left\{a^{n}-n: n=1, \ldots, 2 p_{m}-3\right\}
$$

contains a complete system of residues modulo m, where p_{m} denotes the m-th prime. We may also replace $a^{n}-n$ by $a^{n}+n$.

Remark 1.1. For example, $\left\{2^{n}-n: n=1, \ldots, 195\right\}$ contains a complete system of residues modulo 29 , and $195<2 p_{29}-3=2 \times 109-3=215$.

The following conjecture was motivated by Theorem 1.1 in the cases $b= \pm 1$.
2000 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10, 11A41, 11D61, 11P32.

Supported by the National Natural Science Foundation (grant 11171140) of China.

Conjecture 1.2. The diophantine equation

$$
x^{n}+n=y^{m} \text { with } m, n, x, y>1
$$

has only two integral solutions:

$$
5^{2}+2=3^{3} \quad \text { and } \quad 5^{3}+3=2^{7}
$$

Also, the diophantine equation

$$
x^{n}-n=y^{m} \text { with } m, n, x, y>1
$$

has only two integral solutions:

$$
2^{5}-5=3^{3} \quad \text { and } \quad 2^{7}-7=11^{2} .
$$

Remark 1.2. Conjecture 1.2 seems difficult.
By Theorem 1.1, $2^{k}-k$ or $2^{k}+k$ modulo a positive integer m behaves better than 2^{k}. So our following conjecture is somewhat reasonable.

Conjecture 1.3. (i) For any integer $n>1$, there is a positive integer $k<n$ with $n-k+2^{k}$ prime. Also, for any integer $n>3$ there is a positive integer $k<n$ with $n+k+2^{k}$ prime.
(ii) Any integer $n>3$ can be written as $p+\left(2^{k}-k\right)+\left(2^{m}-m\right)$, where p is a prime, and k and m are positive integers.

Remark 1.3. (i) We have verified the first assertion in Conjecture 1.3(i) for n up to 2×10^{6} except for $n=1657977$. For $n=421801$, the least positive integer k with $n-k+2^{k}$ prime is 149536 . For $n=1657977$, the least positive integer k with $n-k+2^{k}$ prime is greater than 2×10^{5}. We have also verified the second assertion in Conjecture 1.3(i) for all $n=4,5, \ldots, 2 \times 10^{6}$; for example, the least positive integer k with $299591+k+2^{k}$ prime is 51116 .
(ii) The author verified Conjecture 1.3 (ii) for all $n=4,5, \ldots, 2 \times 10^{8}$. (After learning Conjecture 1.3(ii) from the author, Qing-Hu Hou checked it for all n up to 10^{10} without finding any counterexample.) In contrast, R. Crocker [C] proved in 1971 that there are infinitely many positive odd integers not of the form $p+2^{k}+2^{m}$, where p is a prime, and k and m are positive integers. See also H. Pan $[\mathrm{P}]$ for a further refinement of Crocker's result.

Our following conjecture is somewhat similar to Conjectures 1.1 and 1.2.

Conjecture 1.4. (i) Let m be any positive integer. Then, either of the sets

$$
\left\{p_{n}-n: n=1, \ldots, 2 p_{m}-3\right\} \quad \text { and } \quad\left\{n p_{n}: n=1, \ldots, 2 p_{m}-3\right\}
$$

contains a complete system of residues modulo m.
(ii) For any non-constant integer-valued polynomial $P(x)$ with positive leading coefficients, there are infinitely many positive integers n with $p_{n}-n\left(\right.$ or $p_{n}+$ n) in the range $P(\mathbb{Z})$ if and only if $\operatorname{deg}(P)<4$. Also, for any positive integer $n \neq 3$, the number $n p_{n}+1$ is not of the form x^{m} with $m, x \in\{2,3, \ldots\}$.

Remark 1.4. For example, both $\left\{p_{n}-n: n=1, \ldots, 11\right\}$ and $\left\{n p_{n}: n=\right.$ $1, \ldots, 11\}$ contain a complete system of residues modulo 4 . Note that $2 p_{4}-3=$ 11 and that $3 p_{3}+1=3 \times 5+1=2^{4}$.

Conjecture 1.5. (i) Let m be any positive integer. Then either of the following four sets

$$
\begin{aligned}
& \left\{\binom{2 n}{n}+n: n=1, \ldots,\left\lfloor\frac{m^{2}}{2}\right\rfloor+3\right\}, \\
& \left\{\binom{2 n}{n}-n: n=1, \ldots,\left\lfloor\frac{m^{2}}{2}\right\rfloor+15\right\}, \\
& \left\{C_{n}-n: n=1, \ldots,\left\lfloor\frac{m^{2}}{2}\right\rfloor+7\right\}, \\
& \left\{C_{n}+n: n=1, \ldots,\left\lfloor\frac{m^{2}}{2}\right\rfloor+23\right\}
\end{aligned}
$$

contains a complete system of residues modulo m, where C_{n} denotes the Catalan number $\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$.
(ii) For any integer $n>2$, neither $\binom{2 n}{n}+n \operatorname{nor}\binom{2 n}{n}-n$ has the form x^{m} with $m, x \in\{2,3, \ldots\}$. For any integer $n>3$, neither $C_{n}+n$ nor $C_{n}-n$ has the form x^{m} with $m, x \in\{2,3, \ldots\}$.

Remark 1.5. We also have some other conjectures similar to Conjecture 1.5.
For a positive integer n, let $p(n)$ denote the number of ways to write n as a sum of positive integers with the order of addends ignored. Concerning the partition function $p(n), \mathrm{M}$. Newman [N] conjectured that for any integers $m>0$ and r there are infinitely many positive integers n with $p(n) \equiv r(\bmod m)$.
Conjecture 1.6. (i) For any positive integer n, we have $p(n) \neq x^{m}$ for all $m, x \in\{2,3, \ldots\}$.
(ii) Any integer $n>3$ can be written in the form $p+p(k)+p(m)$, where p is a prime, and k and m are positive integers.
(iii) Each integer $n>4$ can be written as $p+2^{k}+p(m)$, where p is a prime, and k and m are positive integers.

Remark 1.6. (i) We also conjecture that no Bell number has the form x^{m} with $m, x \in\{2,3, \ldots\}$.
(ii) For the representation function corresponding to Conjecture 1.7(ii), see [S, A202650].

For a positive integer n, let $q(n)$ denote the number of ways to write n as a sum of distinct positive integers with the order of addends ignored. The function $q(n)$ is usually called the strict partition function.
Conjecture 1.7. (i) For any integer $m>0$ and r, there are infinitely many positive integers n with $q(n) \equiv r(\bmod m)$.
(ii) For each integer $n>1, q(k) q(n-k)+1$ is prime for some $0<k<n$. Also, for any integer $n>5, q(k) q(n-k)-1$ is prime for some $0<k<n$.
(iii) For any integer $n>1$, there is a positive integer $k<n$ such that $p(k)^{2}+q(n-k)^{2}($ or $p(k)+q(n-k))$ is prime.

Remark 1.7. It is known that

$$
p(n) \sim \frac{e^{\pi \sqrt{2 n / 3}}}{4 \sqrt{3} n} \text { and } q(n) \sim \frac{e^{\pi \sqrt{n / 3}}}{4\left(3 n^{3}\right)^{1 / 4}} \quad \text { as } n \rightarrow+\infty
$$

(cf. [HR] and [AS, p. 826]). Part (i) of Conjecture 1.7 is an analogue of Newman's conjecture on the partition function, for example, the least positive integer n with $q(n) \equiv 31(\bmod 42)$ is 8400 . Part (ii) implies that there are infinitely many primes p with $p-1$ a product of two strict partition numbers. Similarly, part (iii) implies that there are infinitely many primes of the form $p(k)^{2}+q(m)^{2}$ with k and m positive integers. We have verified part (iii) for n up to 10^{5}. For some sequences related to parts (ii)-(iii), see A233417, A232504, A233307, A233346 of [S].
Conjecture 1.8. (i) Any integer $n>9$ can be written as $k+m$ with k and m positive integers such that $2^{\varphi(k) / 2+\varphi(m) / 6}+3$ is prime. Also, any integer $n>13$ can be written as $k+m$ with k and m positive integers such that $2^{\varphi(k) / 2+\varphi(m) / 6}-3$ is prime.
(ii) Any integer $n>25$ can be written as $k+m$ with k and m positive integers such that $3 \times 2^{\varphi(k) / 2+\varphi(m) / 8}+1$ is prime. Also, any integer $n>14$ can be written as $k+m$ with k and m positive integers such that $3 \times 2^{\varphi(k) / 2+\varphi(m) / 12}-1$ is prime.

Remark 1.8. We have verified this for n up to 50000 . The conjecture implies that there are infinitely many primes in any of the four forms $2^{n}+3,2^{n}-3$, $2^{n} 3+1$ and $2^{n} 3-1$.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. (i) We first use induction to show the claim that if m is relatively prime to $a b$ then $\left\{a^{n}+b n: n=1, \ldots, m^{2}\right\}$ contains a complete system of residues modulo m.

The claim holds trivially for $m=1$.
Now let $m>1$ be relatively prime to $a b$, and assume the claim for smaller values of m relatively prime to $a b$. Write $m=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, where $p_{1}<\ldots<p_{r}$ are distinct primes and a_{1}, \ldots, a_{r} are positive integers. Note that $m_{0}=m / p_{r}$ is relatively prime to $a b$.

Let r be any integer. By the induction hypothesis, there is a positive integer $k \leqslant m_{0}^{2}$ such that $a^{k}+b k=r+m_{0} q_{0}$ for some $q_{0} \in \mathbb{Z}$. Since $b \prod_{i=1}^{r}\left(p_{i}-1\right)$ is relatively prime to p_{r}, there is a nonnegative integer $q<p_{r}$ such that

$$
q \times b \prod_{i=1}^{r}\left(p_{i}-1\right) \equiv-q_{0} \quad\left(\bmod p_{r}\right)
$$

Set $n=k+m_{0} q \prod_{i=1}^{r}\left(p_{i}-1\right)$. Since $\varphi(m)$ divides $m_{0} \prod_{i=1}^{r}\left(p_{i}-1\right)$, by applying Euler's theorem we obtain
$a^{n}+b n \equiv a^{k}+b\left(k+m_{0} q \prod_{i=1}^{r}\left(p_{i}-1\right)\right)=r+m_{0}\left(q_{0}+b q \prod_{i=1}^{r}\left(p_{i}-1\right) \equiv r \quad(\bmod m)\right.$.
Note that

$$
\begin{aligned}
0<k \leqslant n & \leqslant m_{0}^{2}+m_{0}\left(p_{r}-1\right) \prod_{i=1}^{r}\left(p_{i}-1\right) \\
& <m_{0}^{2}+m_{0}\left(p_{r}-1\right) m=m_{0}^{2}\left(1+p_{r}^{2}-p_{r}\right)<m_{0}^{2} p_{r}^{2}=m^{2}
\end{aligned}
$$

This concludes the induction step.
(ii) Now we assume that b is relatively prime to m. If a is also relatively prime to m, then the desired result follows from the claim in (i). Below we suppose that a is not relatively prime to m. Write $m=u v$, where $u>1$ and $v>0$ are integers such that a is divisible by any prime divisor of u and a is relatively prime to v. Let r be an arbitrary integer. As b is relatively to $u, b s \equiv r(\bmod u)$ for some $s \in\{0,1, \ldots, u-1\}$. Choose $a_{*} \in \mathbb{Z}$ with $a a_{*} \equiv 1(\bmod v)$. As a^{u} and $a_{*}^{s} b u$ are both relatively prime to v, by (i) there is a positive integer $k \leqslant v^{2}$ such that

$$
\begin{equation*}
\left(a^{u}\right)^{k}+a_{*}^{s} b u k \equiv a_{*}^{s}(r-b s) \quad(\bmod v) \tag{2.1}
\end{equation*}
$$

Set $n=u k+s$. Then

$$
n \leqslant u v^{2}+u-1<u\left(v^{2}+1\right) \leqslant u\left(v^{2}+v^{2}\right) \leqslant u^{2} v^{2}=m^{2} .
$$

In view of (2.1),

$$
\begin{equation*}
a^{u k+s}+b u k \equiv r-b s \quad(\bmod v), \text { i.e., } a^{n}+b n \equiv r \quad(\bmod v) . \tag{2.2}
\end{equation*}
$$

For any prime divisor p of u, the p-adic order of u is smaller than u since $p^{u} \geqslant 2^{u} \geqslant u+1$. Therefore,

$$
\begin{equation*}
a^{n}+b n=a^{u k+s}+b(u k+s) \equiv 0+b s \equiv r \quad(\bmod u) . \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3) we obtain that $a^{n}+b n \equiv r(\bmod m)$.
In view of the above, we have completed the proof of Theorem 1.1.
Acknowledgment. The author would like to thank Dr. H. Pan for helpful comments.

References

[AS] M. Abramowitz and I. A. Stegun (eds.),, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,, 9th printing, New York, Dover, 1972.
[C] R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103-107.
[HR] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatorial analysis,, Proc. London Math. Soc. 17 (1918), 75-115.
[N] M. Newman, Periodicity modulo m and divisibility properties of the partition function, Trans. Amer. Math. Soc. 97 (1960), 225-236.
[P] H. Pan, On the integers not of the form $p+2^{a}+2^{b}$, Acta Arith. 148 (2011), 55-61.
[S] Z.-W.Sun, Sequences A202650, A231201, A231725, A232398, A232504, A232616, A232862, A233307, A233346 and A233417 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org.
[SZ] Z.-W. Sun and W. Zhang, Binomial coefficients and the ring of p-adic integers, Proc. Amer. Math. Soc. 139 (2011), 1569-1577.

