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Abstract. Let a and m > 0 be integers. We show that for any integer b rela-

tively prime to m, the set {an+bn : n = 1, . . . ,m2} contains a complete system
of residues modulo m. We also pose several conjectures for further research; for

example, we conjecture that any integer n > 1 can be written as k + m with
2k +m prime, where k and m are positive integers.

1. Introduction

Let p be a prime and let a be a positive integer. In 2011 the author and W.
Zhang [SZ] showed that for each k = pa, pa + 1, . . . , 2pa − 1 the set {

(

n
k

)

: n =
0, 1, 2, . . .} is dense in the ring of p-adic integers, i.e., it contains a complete
system of residues modulo any power of p.

In this paper, we establish the following new result.

Theorem 1.1. Let a, b and m > 0 be integers. If b is relatively prime to m,

then the set {an + bn : n = 1, . . . , m2} contains a complete system of residues

modulo m.

Our proof of Theorem 1.1 will be given in Section 2.
Now we pose several conjectures for further research.

Conjecture 1.1. For any integers a and m > 0, the set

{an − n : n = 1, . . . , 2pm − 3}

contains a complete system of residues modulo m, where pm denotes the m-th

prime. We may also replace an − n by an + n.

Remark 1.1. For example, {2n − n : n = 1, . . . , 195} contains a complete
system of residues modulo 29, and 195 < 2p29 − 3 = 2× 109− 3 = 215.

The following conjecture was motivated by Theorem 1.1 in the cases b = ±1.

2000 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10,

11A41, 11D61, 11P32.
Supported by the National Natural Science Foundation (grant 11171140) of China.

1

http://arxiv.org/abs/1312.1166v3
http://arxiv.org/abs/1312.1166
http://math.nju.edu.cn/~zwsun


2 ZHI-WEI SUN

Conjecture 1.2. The diophantine equation

xn + n = ym with m,n, x, y > 1

has only two integral solutions:

52 + 2 = 33 and 53 + 3 = 27.

Also, the diophantine equation

xn − n = ym with m,n, x, y > 1

has only two integral solutions:

25 − 5 = 33 and 27 − 7 = 112.

Remark 1.2. Conjecture 1.2 seems difficult.

By Theorem 1.1, 2k−k or 2k+k modulo a positive integer m behaves better
than 2k. So our following conjecture is somewhat reasonable.

Conjecture 1.3. (i) For any integer n > 1, there is a positive integer k < n
with n − k + 2k prime. Also, for any integer n > 3 there is a positive integer

k < n with n+ k + 2k prime.

(ii) Any integer n > 3 can be written as p+ (2k − k) + (2m −m), where p is

a prime, and k and m are positive integers.

Remark 1.3. (i) We have verified the first assertion in Conjecture 1.3(i) for n up
to 2× 106 except for n = 1657977. For n = 421801, the least positive integer k
with n− k + 2k prime is 149536. For n = 1657977, the least positive integer k
with n− k+2k prime is greater than 2× 105. We have also verified the second
assertion in Conjecture 1.3(i) for all n = 4, 5, . . . , 2×106; for example, the least
positive integer k with 299591 + k + 2k prime is 51116.

(ii) The author verified Conjecture 1.3(ii) for all n = 4, 5, . . . , 2×108. (After
learning Conjecture 1.3(ii) from the author, Qing-Hu Hou checked it for all n
up to 1010 without finding any counterexample.) In contrast, R. Crocker [C]
proved in 1971 that there are infinitely many positive odd integers not of the
form p + 2k + 2m, where p is a prime, and k and m are positive integers. See
also H. Pan [P] for a further refinement of Crocker’s result.

Our following conjecture is somewhat similar to Conjectures 1.1 and 1.2.
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Conjecture 1.4. (i) Let m be any positive integer. Then, either of the sets

{pn − n : n = 1, . . . , 2pm − 3} and {npn : n = 1, . . . , 2pm − 3}

contains a complete system of residues modulo m.

(ii) For any non-constant integer-valued polynomial P (x) with positive lead-

ing coefficients, there are infinitely many positive integers n with pn−n (or pn+
n) in the range P (Z) if and only if deg(P ) < 4. Also, for any positive integer

n 6= 3, the number npn + 1 is not of the form xm with m, x ∈ {2, 3, . . .}.

Remark 1.4. For example, both {pn − n : n = 1, . . . , 11} and {npn : n =
1, . . . , 11} contain a complete system of residues modulo 4. Note that 2p4−3 =
11 and that 3p3 + 1 = 3× 5 + 1 = 24.

Conjecture 1.5. (i) Let m be any positive integer. Then either of the following

four sets

{(

2n

n

)

+ n : n = 1, . . . ,

⌊

m2

2

⌋

+ 3

}

,

{(

2n

n

)

− n : n = 1, . . . ,

⌊

m2

2

⌋

+ 15

}

,

{

Cn − n : n = 1, . . . ,

⌊

m2

2

⌋

+ 7

}

,

{

Cn + n : n = 1, . . . ,

⌊

m2

2

⌋

+ 23

}

contains a complete system of residues modulo m, where Cn denotes the Catalan

number 1
n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n+1

)

.

(ii) For any integer n > 2, neither
(

2n
n

)

+ n nor
(

2n
n

)

− n has the form xm

with m, x ∈ {2, 3, . . .}. For any integer n > 3, neither Cn + n nor Cn − n has

the form xm with m, x ∈ {2, 3, . . .}.

Remark 1.5. We also have some other conjectures similar to Conjecture 1.5.

For a positive integer n, let p(n) denote the number of ways to write n as
a sum of positive integers with the order of addends ignored. Concerning the
partition function p(n), M. Newman [N] conjectured that for any integersm > 0
and r there are infinitely many positive integers n with p(n) ≡ r (mod m).

Conjecture 1.6. (i) For any positive integer n, we have p(n) 6= xm for all

m, x ∈ {2, 3, . . .}.
(ii) Any integer n > 3 can be written in the form p+ p(k) + p(m), where p

is a prime, and k and m are positive integers.

(iii) Each integer n > 4 can be written as p+2k + p(m), where p is a prime,

and k and m are positive integers.
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Remark 1.6. (i) We also conjecture that no Bell number has the form xm with
m, x ∈ {2, 3, . . .}.

(ii) For the representation function corresponding to Conjecture 1.7(ii), see
[S, A202650].

For a positive integer n, let q(n) denote the number of ways to write n as
a sum of distinct positive integers with the order of addends ignored. The
function q(n) is usually called the strict partition function.

Conjecture 1.7. (i) For any integer m > 0 and r, there are infinitely many

positive integers n with q(n) ≡ r (mod m).
(ii) For each integer n > 1, q(k)q(n − k) + 1 is prime for some 0 < k < n.

Also, for any integer n > 5, q(k)q(n− k)− 1 is prime for some 0 < k < n.
(iii) For any integer n > 1, there is a positive integer k < n such that

p(k)2 + q(n− k)2 ( or p(k) + q(n− k)) is prime.

Remark 1.7. It is known that

p(n) ∼ eπ
√

2n/3

4
√
3n

and q(n) ∼ eπ
√

n/3

4(3n3)1/4
as n → +∞

(cf. [HR] and [AS, p. 826]). Part (i) of Conjecture 1.7 is an analogue of New-
man’s conjecture on the partition function, for example, the least positive in-
teger n with q(n) ≡ 31 (mod 42) is 8400. Part (ii) implies that there are
infinitely many primes p with p− 1 a product of two strict partition numbers.
Similarly, part (iii) implies that there are infinitely many primes of the form
p(k)2 + q(m)2 with k and m positive integers. We have verified part (iii) for n
up to 105. For some sequences related to parts (ii)-(iii), see A233417, A232504,
A233307, A233346 of [S].

Conjecture 1.8. (i) Any integer n > 9 can be written as k + m with k and

m positive integers such that 2ϕ(k)/2+ϕ(m)/6 + 3 is prime. Also, any integer

n > 13 can be written as k + m with k and m positive integers such that

2ϕ(k)/2+ϕ(m)/6 − 3 is prime.

(ii) Any integer n > 25 can be written as k+m with k and m positive integers

such that 3×2ϕ(k)/2+ϕ(m)/8+1 is prime. Also, any integer n > 14 can be written

as k + m with k and m positive integers such that 3 × 2ϕ(k)/2+ϕ(m)/12 − 1 is

prime.

Remark 1.8. We have verified this for n up to 50000. The conjecture implies
that there are infinitely many primes in any of the four forms 2n + 3, 2n − 3,
2n3 + 1 and 2n3− 1.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. (i) We first use induction to show the claim that if m
is relatively prime to ab then {an + bn : n = 1, . . . , m2} contains a complete
system of residues modulo m.
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The claim holds trivially for m = 1.
Now let m > 1 be relatively prime to ab, and assume the claim for smaller

values of m relatively prime to ab. Write m = pa1

1 . . . par

r , where p1 < . . . < pr
are distinct primes and a1, . . . , ar are positive integers. Note that m0 = m/pr
is relatively prime to ab.

Let r be any integer. By the induction hypothesis, there is a positive integer
k 6 m2

0 such that ak + bk = r +m0q0 for some q0 ∈ Z. Since b
∏r

i=1(pi − 1) is
relatively prime to pr, there is a nonnegative integer q < pr such that

q × b

r
∏

i=1

(pi − 1) ≡ −q0 (mod pr).

Set n = k+m0q
∏r

i=1(pi−1). Since ϕ(m) divides m0

∏r
i=1(pi−1), by applying

Euler’s theorem we obtain

an+bn ≡ ak+b

(

k+m0q

r
∏

i=1

(pi−1)

)

= r+m0

(

q0+bq

r
∏

i=1

(pi−1

)

≡ r (mod m).

Note that

0 < k 6 n 6m2
0 +m0(pr − 1)

r
∏

i=1

(pi − 1)

<m2
0 +m0(pr − 1)m = m2

0(1 + p2r − pr) < m2
0p

2
r = m2.

This concludes the induction step.
(ii) Now we assume that b is relatively prime to m. If a is also relatively

prime to m, then the desired result follows from the claim in (i). Below we
suppose that a is not relatively prime to m. Write m = uv, where u > 1
and v > 0 are integers such that a is divisible by any prime divisor of u and
a is relatively prime to v. Let r be an arbitrary integer. As b is relatively
to u, bs ≡ r (mod u) for some s ∈ {0, 1, . . . , u − 1}. Choose a∗ ∈ Z with
aa∗ ≡ 1 (mod v). As au and as

∗
bu are both relatively prime to v, by (i) there

is a positive integer k 6 v2 such that

(au)k + as
∗
buk ≡ as

∗
(r − bs) (mod v). (2.1)

Set n = uk + s. Then

n 6 uv2 + u− 1 < u(v2 + 1) 6 u(v2 + v2) 6 u2v2 = m2.

In view of (2.1),

auk+s + buk ≡ r − bs (mod v), i.e., an + bn ≡ r (mod v). (2.2)
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For any prime divisor p of u, the p-adic order of u is smaller than u since
pu > 2u > u+ 1. Therefore,

an + bn = auk+s + b(uk + s) ≡ 0 + bs ≡ r (mod u). (2.3)

Combining (2.2) and (2.3) we obtain that an + bn ≡ r (mod m).
In view of the above, we have completed the proof of Theorem 1.1. �
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