ENUMERATION OF *k*-FIBONACCI PATHS USING INFINITE WEIGHTED AUTOMATA

RODRIGO DE CASTRO AND JOSÉ L. RAMÍREZ

ABSTRACT. In this paper, we introduce a new family of generalized colored Motzkin paths, where horizontal steps are colored by means of $F_{k,l}$ colors, where $F_{k,l}$ is the *l*-th *k*-Fibonacci number. We study the enumeration of this family according to the length. For this, we use infinite weighted automata.

1. INTRODUCTION

A lattice path of length n is a sequence of points P_1, P_2, \ldots, P_n with $n \ge 1$ such that each point P_i belongs to the plane integer lattice and each two consecutive points P_i and P_{i+1} connect by a line segment. We will consider lattice paths in $\mathbb{Z} \times \mathbb{Z}$ using three step types: a rise step U = (1, 1), a fall step D = (1, -1) and a $F_{k,l}$ -colored length horizontal step $H_l = (l, 0)$ for every positive integer l, such that H_l is colored by means of $F_{k,l}$ colors, where $F_{k,l}$ is the l-th k-Fibonacci number.

Many kinds of generalizations of the Fibonacci Numbers have been presented in the literature [10, 11] and the corresponding references. One of them is the *k*-Fibonacci Numbers. For any positive integer number k, the *k*-Fibonacci sequence, say $\{F_{k,n}\}_{n \in \mathbb{N}}$, is defined recurrently by

$$F_{k,0} = 0$$
, $F_{k,1} = 1$, $F_{k,n+1} = kF_{k,n} + F_{k,n-1}$, for $n \ge 1$.

The generating function of the k-Fibonacci numbers is $f_k(x) = \frac{x}{1-kx-x^2}$, [4, 6]. This sequence was studied by Horadam in [9]. Recently, Falcón and Plaza [6] found the k-Fibonacci numbers by studying the recursive application of two geometrical transformations used in the four-triangle longest-edge (4TLE) partition. The interested reader is also referred to [1, 3, 4, 5, 6, 12, 13, 16], for further information about this.

A generalized $F_{k,l}$ -colored Motzkin path or simply k-Fibonacci path is a sequence of rise, fall and $F_{k,l}$ -colored length horizontal steps (l = 1, 2, ...) running from (0, 0) to (n, 0) that never pass below the x-axis. We denote by $\mathcal{M}_{F_{k,n}}$ the set of all k-Fibonacci paths of length n and $\mathcal{M}_k = \bigcup_{n=0}^{\infty} \mathcal{M}_{F_{k,n}}$. In Figure 1 we show the set $\mathcal{M}_{F_{2,3}}$.

A grand k-Fibonacci path is a k-Fibonacci path without the condition that never going below the x-axis. We denote by $\mathcal{M}_{F_{k,n}}^*$ the set of all grand k-Fibonacci paths of length n and $\mathcal{M}_k^* = \bigcup_{n=0}^{\infty} \mathcal{M}_{F_{k,n}}^*$. A prefix k-Fibonacci path is a k-Fibonacci path without the

¹⁹⁹¹ Mathematics Subject Classification. 52B05, 11B39, 05A15.

Key words and phrases. Generalized colored Motzkin paths, k-Fibonacci paths, infinite weighted automata, generating functions.

FIGURE 1. k-Fibonacci Paths of length 3, $|\mathcal{M}_{F_{2,3}}| = 13$.

condition that ending on the x-axis. We denote by $\mathcal{PM}_{F_{k,n}}$ the set of all prefix k-Fibonacci paths of length n and $\mathcal{PM}_k = \bigcup_{n=0}^{\infty} \mathcal{PM}_{F_{k,n}}$. Analogously, we have the family of prefix grand k-Fibonacci paths. We denote by $\mathcal{PM}_{F_{k,n}}^*$ the set of all prefix grand k-Fibonacci paths of length n and $\mathcal{PM}_k^* = \bigcup_{n=0}^{\infty} \mathcal{PM}_{F_{k,n}}^*$.

In this paper, we study the generating function for the k-Fibonacci paths, grand k-Fibonacci paths, prefix k-Fibonacci paths, and prefix grand k-Fibonacci paths, according to the length. We use Counting Automata Methodology (CAM) [2], which is a variation of the methodology developed by Rutten [14] called Coinductive Counting. Counting Automata Methodology uses infinite weighted automata, weighted graphs and continued fractions. The main idea of this methodology is find a counting automaton such that there exist a bijection between all words recognized by an automaton \mathcal{M} and the family of combinatorial objects. From the counting automaton \mathcal{M} is possible find the ordinary generating function (GF) of the family of combinatorial objects [2].

2. Counting Automata Methodology

The terminology and notation are mainly those of Sakarovitch [15]. An *automaton* \mathcal{M} is a 5-tuple $\mathcal{M} = (\Sigma, Q, q_0, F, E)$, where Σ is a nonempty input alphabet, Q is a nonempty set of states of $\mathcal{M}, q_0 \in Q$ is the initial state of $\mathcal{M}, \emptyset \neq F \subseteq Q$ is the set of final states of \mathcal{M} and $E \subseteq Q \times \Sigma \times Q$ is the set of transitions of \mathcal{M} . The language recognized by an automaton \mathcal{M} is denoted by $L(\mathcal{M})$. If Q, Σ and E are finite sets, we say that \mathcal{M} is a finite automaton [15].

Example 1. Consider the finite automaton $\mathcal{M} = (\Sigma, Q, q_0, F, E)$ where $\Sigma = \{a, b\}, Q = \{q_0, q_1\}, F = \{q_0\}$ and $E = \{(q_0, a, q_1), (q_0, b, q_0), (q_1, a, q_0)\}$. The transition diagram of \mathcal{M} is as shown in Figure 2. It is easy to verify that $L(\mathcal{M}) = (b \cup aa)^*$.

FIGURE 2. Transition diagram of \mathcal{M} , Example 1.

FIGURE 3. Transition diagram of $\mathcal{M}_{\mathcal{D}}$, Example 2.

Example 2. Consider the infinite automaton $\mathcal{M}_{\mathcal{D}} = (\Sigma, Q, q_0, F, E)$, where $\Sigma = \{a, b\}$, $Q = \{q_0, q_1, \ldots\}$, $F = \{q_0\}$ and $E = \{(q_i, a, q_{i+1}), (q_{i+1}, b, q_i) : i \in \mathbb{N}\}$. The transition diagram of $\mathcal{M}_{\mathcal{D}}$ is as shown in Figure 3.

The language accepted by $\mathcal{M}_{\mathcal{D}}$ is

 $L(\mathcal{M}_{\mathcal{D}}) = \{ w \in \Sigma^* : |w|_a = |w|_b \text{ and for all prefix } v \text{ of } w, |v|_b \le |v|_a \}.$

An ordinary generating function $F = \sum_{n=0}^{\infty} f_n z^n$ corresponds to a formal language L if $f_n = |\{w \in L : |w| = n\}|$, i.e., if the *n*-th coefficient f_n gives the number of words in L with length n.

Given an alphabet Σ and a semiring \mathbb{K} . A formal power series or formal series S is a function $S : \Sigma^* \to \mathbb{K}$. The image of a word w under S is called the *coefficient* of w in S and is denoted by s_w . The series S is written as a formal sum $S = \sum_{w \in \Sigma^*} s_w w$. The set of formal power series over Σ with coefficients in \mathbb{K} is denoted by $\mathbb{K}\langle \langle \Sigma^* \rangle \rangle$.

An automaton over Σ^* with weights in \mathbb{K} , or \mathbb{K} -automaton over Σ^* is a graph labelled with elements of $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle$, associated with two maps from the set of vertices to $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle$. Specifically, a weighted automaton \mathcal{M} over Σ^* with weights in \mathbb{K} is a 4-tuple $\mathcal{M} = (Q, I, E, F)$ where Q is a nonempty set of states of \mathcal{M} , E is an element of $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle^{Q\times Q}$ called transition matrix. I is an element of $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle^Q$, i.e., I is a function from Q to $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle$. I is the initial function of \mathcal{M} and can also be seen as a row vector of dimension Q, called initial vector of \mathcal{M} and F is an element of $\mathbb{K}\langle\langle \Sigma^* \rangle\rangle^Q$. F is the final function of \mathcal{M} and can also be seen as a column vector of dimension Q, called final vector of \mathcal{M} .

We say that \mathcal{M} is a counting automaton if $\mathbb{K} = \mathbb{Z}$ and $\Sigma^* = \{z\}^*$. With each automaton, we can associate a counting automaton. It can be obtained from a given automaton replacing every transition labelled with a symbol $a, a \in \Sigma$, by a transition labelled with z. This transition is called a *counting transition* and the graph is called a *counting automaton* of \mathcal{M} . Each transition from p to q yields an equation

$$L(p)(z) = zL(q)(z) + [p \in F] + \cdots$$

We use L_p to denote L(p)(z). We also use Iverson's notation, [P] = 1 if the proposition P is true and [P] = 0 if P is false.

2.1. Convergent Automata and Convergent Theorems. We denote by $L^{(n)}(\mathcal{M})$ the number of words of length *n* recognized by the automaton \mathcal{M} , including repetitions.

Definition 3. We say that an automaton \mathcal{M} is convergent if for all integer $n \ge 0$, $L^{(n)}(\mathcal{M})$ is finite.

The proof of following theorems and propositions can be found in [2].

Theorem 4 (First Convergence Theorem). Let \mathcal{M} be an automaton such that each vertex (state) of the counting automaton of \mathcal{M} has finite degree. Then \mathcal{M} is convergent.

Example 5. The counting automaton of the automaton $\mathcal{M}_{\mathcal{D}}$ in Example 2 is convergent.

The following definition plays an important role in the development of applications because it allows to simplify counting automata whose transitions are formal series.

Definition 6. Let \mathcal{M} be an automaton, and let $f(z) = \sum_{n=0}^{\infty} f_n z^n$ be a formal power series with $f_n \in \mathbb{N}$ for all $n \ge 0$ and $f_0 = 0$. In a counting automaton of \mathcal{M} the set of counting transitions from state p to state q, without intermediate final states, see Figure 4 (left), is represented by a graph with a single edge labeled by f(z), see Figure 4 (right).

FIGURE 4. Transitions from the state p to q and its transition in parallel.

This kind of transition is called a transition in parallel. The states p and q are called visible states and the intermediate states are called hidden states.

Example 7. In Figure 5 (left) we display a counting automaton \mathcal{M}_1 without transitions in parallel, i.e., every transition is label by z. The transitions from state q_1 to q_2 correspond to the series $\frac{1-\sqrt{1-4z}}{2} = z + z^2 + 2z^3 + 5z^4 + 14z^5 + \cdots$. However, this automaton can also be represented using transitions in parallel. Figure 5 (right) displays two examples.

Theorem 8 (Second Convergence Theorem). Let \mathcal{M} be an automaton, and let $f_1^q(z), f_2^q(z), \ldots$, be transitions in parallel from state $q \in Q$ in a counting automaton of \mathcal{M} . Then \mathcal{M} is convergent if the series

$$F^q(z) = \sum_{k=1}^{\infty} f_k^q(z)$$

is a convergent series for each visible state $q \in Q$ of the counting automaton.

FIGURE 5. Counting automata with transitions in parallel, Example 7.

Proposition 9. If f(z) is a polynomial transition in parallel from state p to q in a finite counting automaton \mathcal{M} , then this gives rise to an equation in the system of GFs equations of \mathcal{M}

$$L_p = f(z)L_q + [p \in F] + \cdots$$

Proposition 10. Let \mathcal{M} be a convergent automaton such that a counting automaton of \mathcal{M} has a finite number of visible states q_0, q_1, \ldots, q_r , in which the number of transitions in parallel starting from each state is finite. Let $f_1^{q_t}(z), f_2^{q_t}(z), \ldots, f_{s(t)}^{q_t}(z)$ be the transitions in parallel from the state $q_t \in Q$. Then the GF for the language $L(\mathcal{M})$ is $L_{q_0}(z)$. It is obtained by solving the system of r + 1 GFs equations

$$L(q_t)(z) = f_1^{q_t}(z)L(q_{t_1})(z) + f_2^{q_t}(z)L(q_{t_2})(z) + \dots + f_{s(t)}^{q_t}(z)L(q_{t_{s(t)}})(z) + [q_t \in F],$$

with $0 \leq t \leq r$, where q_{t_k} is the visible state joined with q_t through the transition in parallel $f_k^{q_t}$, and $L(q_{t_k})$ is the GF for the language accepted by \mathcal{M} if q_{t_k} is the initial state.

Example 11. The system of GFs equations associated with \mathcal{M}_2 , see Example 7, is

$$\begin{cases} L_0 &= (2z+z^2)L_1 + 1\\ L_1 &= \frac{1-\sqrt{1-4z}}{2}L_2\\ L_2 &= 2zL_0. \end{cases}$$

Solving the system for L_0 , we find the GF for the language \mathcal{M}_2 and therefore of \mathcal{M}_1 and \mathcal{M}_3

$$L_0 = \frac{1}{1 - (2z^2 + z^3)(1 - \sqrt{1 - 4z})} = 1 + 4z^3 + 6z^4 + 10z^5 + 40z^6 + 114z^7 + \dots$$

2.2. An Example of the Counting Automata Methodology (CAM). A counting automaton associated with an automaton \mathcal{M} can be used to model combinatorial objects

if there is a bijection between all words recognized by the automaton \mathcal{M} and the combinatorial objects. Such method, along with the previous theorems and propositions constitute the **Counting Automata Methodology (CAM)**, see [2].

We distinguish three phases in the CAM:

- (1) Given a problem of enumerative combinatorics, we have to find a convergent automaton \mathcal{M} (see Theorems 4 and 8) whose GF is the solution of the problem.
- (2) Find a general formula for the GF of \mathcal{M}' , where \mathcal{M}' is an automaton obtained from \mathcal{M} truncating a set of states or edges see Propositions 9 and 10. Sometimes we find a relation of iterative type, such as a continued fraction.
- (3) Find the GF f(z) to which converge the GFs associated to each \mathcal{M}' , which is guaranteed by the Convergences theorems.

Example 12. A Motzkin path of length n is a lattice path of $\mathbb{Z} \times \mathbb{Z}$ running from (0,0) to (n,0) that never passes below the x-axis and whose permitted steps are the up diagonal step U = (1,1), the down diagonal step D = (1,-1) and the horizontal step H = (1,0). The number of Motzkin paths of length n is the *n*-th Motzkin number m_n , sequence A001006¹. The number of words of length n recognized by the convergent automaton \mathcal{M}_{Mot} , see Figure 6, is the *n*th Motzkin number and its GF is

$$M(z) = \sum_{i=0}^{\infty} m_i z^i = \frac{1 - z - \sqrt{1 - 2z - 3z^2}}{2z^2}.$$
$$\mathcal{M}_{\text{Mot}} : \underbrace{z}_{q_0} \underbrace{z}_{q_1} \underbrace{z}_{q_2} \underbrace{z}_{q_2} \underbrace{z}_{q_3} \ldots$$

FIGURE 6. Convergent automaton associated with Motzkin paths.

In this case the edge from state q_i to state q_{i+1} represents a rise, the edge from the state q_{i+1} to q_i represents a fall and the loops represent the level steps, see Table 1.

Moreover, it is clear that a word is recognized by \mathcal{M}_{Mot} if and only if the number of steps to the right and to the left coincide, which ensures that the path is well formed. Then

$$m_n = |\{w \in L(\mathcal{M}_{\mathrm{Mot}}) : |w| = n\}| = L^{(n)}(\mathcal{M}_{\mathrm{Mot}}).$$

¹Many integer sequences and their properties are found electronically on the On-Line Encyclopedia of Sequences [17].

Let \mathcal{M}_{Mots} , $s \ge 1$ be the automaton obtained from \mathcal{M}_{Mot} , by deleting the states q_{s+1}, q_{s+2}, \ldots . Therefore the system of GFs equations of \mathcal{M}_{Mots} is

$$\begin{cases} L_0 = zL_0 + zL_1 + 1, \\ L_i = zL_{i-1} + zL_i + zL_{i+1}, & 1 \le i \le s - 1, \\ L_s = zL_{s-1} + zL_s. \end{cases}$$

Substituting repeatedly into each equation L_i , we have

$$L_0 = \frac{H}{1 - \frac{F^2}{1 - \frac{F^2}{\frac{1}{1 - F^2}}}} \left\{ s \text{ times,} \right\}$$

where $F = \frac{z}{1-z}$ and $H = \frac{1}{1-z}$. Since \mathcal{M}_{Mot} is convergent, then as $s \to \infty$ we obtain a convergent continued fraction M of the GF of \mathcal{M}_{Mot} . Moreover,

$$M = \frac{H}{1 - F^2\left(\frac{M}{H}\right)}.$$

Hence $z^2 M^2 - (1 - z)M + 1 = 0$ and

$$M(z) = \frac{1 - z \pm \sqrt{1 - 2z - 3z^2}}{2z^2}$$

Since $\epsilon \in L(\mathcal{M}_{Mot})$, $M \to 0$ as $z \to 0$. Hence, we take the negative sign for the radical in M(z).

3. Generating Function for the k-Fibonacci Paths

In this section we find the generating function for k-Fibonacci paths, grand k-Fibonacci paths, prefix k-Fibonacci paths and prefix grand k-Fibonacci paths, according to the length.

Lemma 13 ([2]). The GF of the automaton \mathcal{M}_{Lin} , see Figure 7, is

$$E(z) = \frac{1}{1 - h_0(z) - \frac{f_0(z) g_0(z)}{1 - h_1(z) - \frac{f_1(z) g_1(z)}{\cdot \cdot}}},$$

where $f_i(z), g_i(z)$ and $h_i(z)$ are transitions in parallel for all integer $i \ge 0$.

FIGURE 7. Linear infinite counting automaton \mathcal{M}_{Lin}

The last lemma coincides with Theorem 1 in [7] and Theorem 9.1 in [14]. However, this presentation extends their applications, taking into account that $f_i(z), g_i(z)$ and $h_i(z)$ are GFs, which can be GFs of several variables.

Corollary 14. If for all integers $i \ge 0$, $f_i(z) = f(z)$, $g_i(z) = g(z)$ and $h_i(z) = h(z)$ in \mathcal{M}_{Lin} , then the GF is

(1)
$$B(z) = \frac{1 - h(z) - \sqrt{(1 - h(z))^2 - 4f(z)g(z)}}{2f(z)g(z)}$$

(2)
$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_n {\binom{m+2n}{m}} (f(z)g(z))^n (h(z))^m$$

(3)
$$= \frac{1}{1 - h(z) - \frac{f(z)g(z)}{1 - h(z) - \frac{f(z)g(z)}{1 - h(z) - \frac{f(z)g(z)}{\cdot}}}$$

where C_n is the nth Catalan number, sequence A000108.

Theorem 15. The generating function for the k-Fibonacci paths according to the their length is

(4)
$$T_k(z) = \sum_{i=0}^{\infty} |\mathcal{M}_{F_{k,i}}| z^i$$

(5)
$$= \frac{1 - (k+1)z - z^2 - \sqrt{(1 - (k+1)z - z^2)^2 - 4z^2(1 - kz - z^2)^2}}{2z^2(1 - kz - z^2)}$$

(6)
$$= \frac{1}{1 - \frac{z}{1 - kz - z^2} - \frac{z^2}{1 - \frac{z}{1 - kz - z^2} - \frac{z^2}{1 - \frac{z}{1 - kz - z^2} - \frac{z^2}{\cdot \cdot}}}$$

and

$$[z^{t}]T_{k}(z) = \sum_{n=0}^{t} \sum_{m=0}^{t-2n} \binom{m+2n}{m} C_{n} F_{k,t-2n-m+1}^{(m)},$$

where C_n is the n-th Catalan number and $F_{k,j}^{(r)}$ is a convolved k-Fibonacci number. Convolved k-Fibonacci numbers $F_{k,j}^{(r)}$ are defined by

$$f_k^{(r)}(x) = (1 - kx - x^2)^{-r} = \sum_{j=0}^{\infty} F_{k,j+1}^{(r)} x^j, \quad r \in \mathbb{Z}^+.$$

Note that

$$F_{k,m+1}^{(r)} = \sum_{j_1+j_2+\dots+j_r=m} F_{k,j_1+1}F_{k,j_2+1}\cdots F_{k,j_r+1}.$$

Moreover, using a result of Gould [8, p. 699] on Humbert polynomials (with n = j, m = 2, x = k/2, y = -1, p = -r and C = 1), we have

$$F_{k,j+1}^{(r)} = \sum_{l=0}^{\lfloor j/2 \rfloor} {j+r-l-1 \choose j-l} {j-l \choose l} k^{j-2l}.$$

Ramírez [13] studied some properties of convolved k-Fibonacci numbers.

Proof. Equations (5) and (6) are clear from Corollary 14 taking f(z) = z = g(z) and $h(z) = \frac{z}{1-kz-z^2}$. Note that h(z) is the GF of k-Fibonacci numbers. In this case the edge from state q_i to state q_{i+1} represents a rise, the edge from the state q_{i+1} to q_i represents a fall and the loops represent the $F_{k,l}$ -colored length horizontal steps (l = 1, 2, ...). Moreover, from Equation (2), we obtain

$$T_{k}(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n} {m+2n \choose m} z^{2n} \left(\frac{z}{1-kz-z^{2}}\right)^{m}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n} {m+2n \choose m} z^{2n+m} \left(\frac{1}{1-kz-z^{2}}\right)^{m}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n} {m+2n \choose m} z^{2n+m} \sum_{i=0}^{\infty} F_{k,i+1}^{(m)} z^{i}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{i=0}^{\infty} C_{n} F_{k,i+1}^{(m)} {m+2n \choose m} z^{2n+m+i},$$

taking s = 2n + m + i

$$T_k(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{s=2n+m}^{\infty} C_n F_{k,s-2n-m+1}^{(m)} \binom{m+2n}{m} z^s.$$

Hence

$$[z^{t}]T_{k}(z) = \sum_{n=0}^{t} \sum_{m=0}^{t-2m} C_{n}F_{k,t-2n-m+1}^{(m)} \binom{m+2n}{m}.$$

In Table 2 we show the first terms of the sequence $|\mathcal{M}_{F_{k,i}}|$ for k = 1, 2, 3, 4.

k	Sequence
1	$1, 1, 3, 8, 23, 67, 199, 600, 1834, 5674, 17743, \ldots$
2	$1, 1, 4, 13, 47, 168, 610, 2226, 8185, 30283, 112736, \ldots$
3	$1, 1, 5, 20, 89, 391, 1735, 7712, 34402, 153898, 690499, \ldots$
4	$1, 1, 6, 29, 155, 820, 4366, 23262, 124153, 663523, 3551158, \ldots$

TABLE 2. Sequences $|\mathcal{M}_{F_{k,i}}|$ for k = 1, 2, 3, 4.

Definition 16. For all integers $i \ge 0$ we define the continued fraction $E_i(z)$ by:

$$E_{i}(z) = \frac{1}{1 - h_{i}(z) - \frac{f_{i}(z)g_{i}(z)}{1 - h_{i+1}(z) - \frac{f_{i+1}(z)g_{i+1}(z)}{\vdots}}}$$

where $f_i(z), g_i(z), h_i(z)$ are transitions in parallel for all integers positive *i*. Lemma 17 ([2]). The GF of the automaton \mathcal{M}_{BLin} , see Figure 8, is

$$E_b(z) = \frac{1}{1 - h_0(z) - f_0(z)g_0(z)E_1(z) - f_0'(z)g_0'(z)E_1'(z)},$$

where $f_i(z), f'_i(z), g_i(z), g'_i(z), h_i(z)$ and $h'_i(z)$ are transitions in parallel for all $i \in \mathbb{Z}$.

$$\mathcal{M}_{\text{BLin}}: \begin{array}{c} h'_2 & h'_1 & h'_0 & h_0 & h_1 & h_2 \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\$$

FIGURE 8. Linear infinite counting automaton \mathcal{M}_{BLin} .

Corollary 18. If for all integers i, $f_i(z) = f(z) = f'_i(z)$, $g_i(z) = g(z) = g'_i(z)$ and $h_i(z) = h(z) = h'_i(z)$ in \mathcal{M}_{BLin} , then we have the GF

(7)
$$B_b(z) = \frac{1}{\sqrt{(1-h(z))^2 - 4f(z)g(z)}}$$

(8)
$$= \frac{1}{1 - h(z) - \frac{2f(z)g(z)}{1 - h(z) - \frac{f(z)g(z)}{1 - h(z) - \frac{f(z)g(z)}{\cdot}}}$$

where f(z), g(z) and h(z) are transitions in parallel. Moreover, if f(z) = g(z), then we have the GF

(9)
$$B_b(z) = \frac{1}{1 - h(z)} + \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^n \frac{n}{n + 2k} \binom{n+2k}{k} \binom{l+2n+2k}{l} f(z)^{2n+2k} h(z)^l.$$

Theorem 19. The generating function for the grand k-Fibonacci paths according to the their length is

(10)
$$T_k^*(z) = \sum_{i=0}^{\infty} |\mathcal{M}_{F_{k,i}}^*| z^i = \frac{1 - kz - z^2}{\sqrt{(1 - (k+1)z - z^2)^2 - 4z^2(1 - kz - z^2)^2}}$$

(11)
$$= \frac{1}{1 - \frac{z}{1 - kz - z^2} - \frac{2z^2}{1 - \frac{z}{1 - kz - z^2} - \frac{z^2}{1 - \frac{z}{1 - kz - z^2} - \frac{z^2}{\cdot \cdot \cdot}}}$$

and

(12)
$$[z^t]T_k^*(z) = F_{k+1,t}^{(1)} + \sum_{n=1}^t \sum_{m=0}^{t-2n-2m} 2^n \frac{n}{n+2m} \binom{n+2m}{m} \binom{l+2n+2m}{l} F_{k,t-2n-2m-l+1}^{(l)},$$

with $t \ge 1$.

Proof. Equations (10) and (11) are clear from Corollary 18, taking f(z) = z = g(z) and $h(z) = \frac{z}{1-kz-z^2}$. Moreover, from Equation (9), we obtain

$$T_{k}^{*}(z) = \frac{1}{1 - \frac{z}{1 - kz - z^{2}}} + \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} 2^{n} \frac{n}{n + 2m} \binom{n+2m}{m} \binom{l+2n+2m}{l} z^{2n+2m} \left(\frac{z}{1 - kz - z^{2}}\right)^{l}$$
$$= 1 + \sum_{j=0}^{\infty} F_{k+1,j}^{(1)} z^{j} + \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{u=0}^{\infty} 2^{n} \frac{n}{n + 2m} \binom{n+2m}{m} \binom{l+2n+2m}{l} F_{k,u}^{(l)} z^{2n+2m+u+1},$$

taking s = 2n + 2m + l + u

$$T_k^{\star}(z) = 1 + \sum_{j=0}^{\infty} F_{k+1,j}^{(1)} z^j + \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{s=2n+2m+l}^{\infty} 2^n \frac{n}{n+2m} \binom{n+2m}{m} \binom{l+2n+2m}{l} F_{k,s-2n-2m-l}^{(l)} z^s.$$

Therefore Equation (12) is clear.

In Table 3 we show the first terms of the sequence $|\mathcal{M}_{F_{k,i}}^*|$ for k = 1, 2, 3, 4.

k	Sequence
1	$1, 4, 11, 36, 115, 378, 1251, 4182, 14073, 47634, \ldots$
2	$1, 5, 16, 63, 237, 920, 3573, 14005, 55156, 218359, \ldots$
3	$1, 6, 23, 108, 487, 2248, 10371, 48122, 223977, 1046120, \ldots$
4	$1, 7, 32, 177, 949, 5172, 28173, 153963, 842940, 4624581, \ldots$

TABLE 3. Sequences $|\mathcal{M}^*_{F_{k,i}}|$ for k = 1, 2, 3, 4 and $i \ge 1$.

In Figure 9 we show the set $\mathcal{M}_{F_{2,3}}^*$.

FIGURE 9. grand k-Fibonacci Paths of length 3, $|\mathcal{M}_{F_{2,3}}^*| = 16$.

Lemma 20 ([2]). The GF of the automaton $FIN_{\mathbb{N}}(\mathcal{M}_{Lin})$, see Figure 10, is

$$G(z) = E(z) + \sum_{j=1}^{\infty} \left(\prod_{i=0}^{j-1} (f_i(z)E_i(z))E_j(z) \right),$$

where E(z) is the GF in Lemma 13.

FIGURE 10. Linear infinite counting automaton $\operatorname{Fin}_{\mathbb{N}}(\mathcal{M}_{Lin})$.

Corollary 21. If for all integer $i \ge 0$, $f_i(z) = f(z), g_i(z) = g(z)$ and $h_i(z) = h(z)$ in $FIN_{\mathbb{N}}(\mathcal{M}_{Lin})$, then the GF is:

(13)
$$G(z) = \frac{1 - 2f(z) - h(z) - \sqrt{(1 - h(z))^2 - 4f(z)g(z)}}{2f(z)(f(z) + g(z) + h(z) - 1)}$$

(14)
$$= \frac{1}{1 - f(z) - h(z) - \frac{f(z)g(z)}{1 - h(z)}}}}}}}}}}$$

where f(z), g(z) and h(z) are transitions in parallel and B(z) is the GF in Corollary 14. Moreover, if f(z) = g(z) and $h(z) \neq 0$, then we obtain the GF

(15)
$$G(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{n+1}{n+k+1} \binom{n+2k+l}{k,l,k+n} f^{2k+n}(z) h^l(z).$$

Theorem 22. The generating function for the prefix k-Fibonacci paths according to the their length is

$$PT_{k}(z) = \sum_{i=0}^{\infty} |\mathcal{PM}_{F_{k,i}}| z^{i}$$
$$= \frac{(1-2z)(1-kz-z^{2})-z-\sqrt{(1-z(k+1)-z^{2})^{2}+4z^{2}(1-kz-z^{2})^{2}}}{2z((1-kz-z^{2})(2z-1)+z)}$$

and

$$[z^{t}] PT_{k}(z) = \sum_{n=0}^{t} \sum_{m=0}^{t} \sum_{l=0}^{t-2m-n} \frac{n+1}{n+m+1} \binom{n+2m+l}{m,l,m+n} F_{k,t-2m-n-l+1}^{(l)}, \ t \ge 0.$$

Proof. The proof is analogous to the proof of Theorem 15 and 19.

In Table 4 we show the first terms of the sequence $|\mathcal{PM}_{F_{k,i}}|$ for k = 1, 2, 3, 4.

k	Sequence
1	$1, 2, 6, 19, 62, 205, 684, 2298, 7764, 26355, 89820, \ldots$
2	$1, 2, 7, 26, 101, 396, 1564, 6203, 24693, 98605, 394853, \ldots$
3	$1, 2, 8, 35, 162, 757, 3558, 16766, 79176, 374579, 1775082, \ldots$
4	$1, 2, 9, 46, 251, 1384, 7668, 42555, 236463, 1315281, 7322967, \ldots$
	TABLE 4. Sequences $ \mathcal{PM}_{F_{k,i}} $ for $k = 1, 2, 3, 4$.

In Figure 11 we show the set $\mathcal{MP}_{F_{2,3}}$.

FIGURE 11. prefix k-Fibonacci paths of length 3, $|\mathcal{PM}_{F_{2,3}}| = 26$.

Lemma 23. The GF of the automaton $\operatorname{Fin}_{\mathbb{Z}}(\mathcal{M}_{BLin})$, see Figure 12, is

$$H(z) = \frac{EE'}{E + E' - EE'(1 - h_0)} \left(1 + \sum_{j=1}^{\infty} \prod_{k=1}^{j-1} f_k E_k f_0 E_j + \sum_{j=1}^{\infty} \prod_{k=1}^{j-1} g'_k E'_k g'_0 E'_j \right)$$
$$= \frac{E'(z)G(z) + E(z)G'(z) - E(z)E'(z)}{E(z) + E'(z) - E(z)E'(z)(1 - h_0(z))},$$

where G(z) is the GF in Lemma 20 and G'(z), E'(z) are the GFs obtained from G(z) and E(z) changing f(z) to g'(z) and g(z) to f'(z).

$$\cdots \underbrace{ \begin{array}{c} h_2' \\ f_1' \\ g_1' \\ g_1' \\ g_0' \\ g_0' \\ g_0 \\ g_0 \\ g_0 \\ g_0 \\ g_1 \\ g_1 \\ g_1 \\ g_1 \\ g_0 \\ g_1 \\$$

FIGURE 12. Linear infinite counting automaton $\operatorname{FIN}_{\mathbb{Z}}(\mathcal{M}_{BLin})$.

Moreover, if for all integer $i \ge 0$, $f_i(z) = f(z) = f'_i(z)$, $g_i(z) = g(z) = g'_i(z)$ and $h_i(z) = h(z) = h'_i(z)$ in $\text{Fin}_{\mathbb{Z}}(\mathcal{M}_{BLin})$, then the GF is

(16)
$$H(z) = \frac{1}{1 - f(z) - g(z) - h(z)}$$

Theorem 24. The generating function for the prefix grand k-Fibonacci paths according to the their length is

$$PT_k^*(z) = \sum_{i=0}^{\infty} |\mathcal{PM}_{F_{k,i}^*}| z^i = \frac{1-kz-z^2}{1-(k+3)z-(1-2k)z^2+2z^3}.$$

Proof. The proof is analogous to the proof of Theorem 15 and 19.

In Table 5 we show the first terms of the sequence $|\mathcal{PM}^*_{F_{k,i}}|$ for k = 1, 2, 3, 4.

k	Sequence
1	$1, 3, 10, 35, 124, 441, 1570, 5591, 19912, 70917, 252574, \ldots$
2	$1, 3, 11, 44, 181, 751, 3124, 13005, 54151, 225492, 938997, \ldots$
3	$1, 3, 12, 55, 264, 1285, 6280, 30727, 150392, 736157, 3603528, \ldots$
4	$1, 3, 13, 68, 379, 2151, 12268, 70061, 400249, 2286780, 13065595 \dots$
	TABLE 5 Sequences $\mathcal{D}M^*$ for $k=1,2,3,4$

TABLE 5. Sequences $|\mathcal{PM}^*_{F_{k,i}}|$ for k = 1, 2, 3, 4.

4. Acknowledgments

The second author was partially supported by Universidad Sergio Arboleda under Grant no. DII- 262.

References

- C. Bolat and H. Köse, On the properties of k-Fibonacci numbers, International Journal of Contemporary Mathematical Sciences, 5(22)(2010), 1097–1105.
- [2] R. De Castro, A. Ramírez and J. Ramírez, Applications in enumerative combinatorics of infinite weighted automata and graphs, *Scientific Annals of Computer Science*, 24(1)(2014), 137–171.
- [3] S. Falcón, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9(6)(2011), 1403–1410.
- [4] S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons and Fractals, 33(1)(2007), 38–49.
- [5] S. Falcón and A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons and Fractals, 39(3)(2009), 1005–1019.
- [6] S. Falcón and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons and Fractals, 32(5)(2007), 1615–1624.
- [7] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics, 32(2)(1980), 125– 161.
- [8] H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Mathematical Journal, 32(4)(1965), 697–711.
- [9] A. F. Horadam, A generalizaed Fiboncci sequence, American Mathematical Monthly, 68(1961), 455– 459.
- [10] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, 2001.
- [11] P. Larcombe, O. Bagdasar and E. Fennessey, Horadam sequences: a survey, Bulletin of the Institute of Combinatorics and its Applications, 67(2013), 49–72.
- [12] J. Ramírez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese Journal of Mathematics, (2013).
- [13] J. Ramírez, Some properties of convolved k-Fibonacci numbers, ISRN Combinatorics, 2013.
- [14] J. Rutten, Coinductive counting with weighted automata, Journal of Automata, Languages and Combinatorics, 8(2)(2003), 319–352.
- [15] J. Sakarovitch, *Elements of Automata Theory*, Cambridge University Press, Cambridge, 2009.
- [16] A. Salas, About k-Fibonacci numbers and their associated numbers, International Mathematical Forum, 50(6)(2011), 2473–2479.
- [17] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.

Universidad Nacional de Colombia, Departamento de Matemáticas, AA 14490, Bogotá, Colombia

E-mail address: rdcastrok@unal.edu.co

UNIVERSIDAD NACIONAL DE COLOMBIA, DEPARTAMENTO DE MATEMÁTICAS, AA 14490, AND, UNIVER-SIDAD SERGIO ARBOLEDA, INSTITUTO DE MATEMÁTICAS Y SUS APLICACIONES, BOGOTÁ, COLOMBIA *E-mail address*: jlramirezr@unal.edu.co; josel.ramirez@ima.usegioarboleda.edu.co