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ENUMERATION OF k-FIBONACCI PATHS USING INFINITE
WEIGHTED AUTOMATA

RODRIGO DE CASTRO AND JOSÉ L. RAMÍREZ

Abstract. In this paper, we introduce a new family of generalized colored Motzkin
paths, where horizontal steps are colored by means of Fk,l colors, where Fk,l is the l-th
k-Fibonacci number. We study the enumeration of this family according to the length.
For this, we use infinite weighted automata.

1. Introduction

A lattice path of length n is a sequence of points P1, P2, . . . , Pn with n ⩾ 1 such that each
point Pi belongs to the plane integer lattice and each two consecutive points Pi and Pi+1
connect by a line segment. We will consider lattice paths in Z ×Z using three step types:
a rise step U = (1,1), a fall step D = (1,−1) and a Fk,l−colored length horizontal step
Hl = (l,0) for every positive integer l, such that Hl is colored by means of Fk,l colors,
where Fk,l is the l-th k-Fibonacci number.
Many kinds of generalizations of the Fibonacci Numbers have been presented in the liter-
ature [10, 11] and the corresponding references. One of them is the k-Fibonacci Numbers.
For any positive integer number k, the k-Fibonacci sequence, say {Fk,n}n∈N, is defined
recurrently by

Fk,0 = 0, Fk,1 = 1, Fk,n+1 = kFk,n + Fk,n−1, for n ⩾ 1.

The generating function of the k-Fibonacci numbers is fk(x) =
x

1−kx−x2 , [4, 6]. This sequence
was studied by Horadam in [9]. Recently, Falcón and Plaza [6] found the k-Fibonacci
numbers by studying the recursive application of two geometrical transformations used in
the four-triangle longest-edge (4TLE) partition. The interested reader is also referred to
[1, 3, 4, 5, 6, 12, 13, 16], for further information about this.
A generalized Fk,l-colored Motzkin path or simply k-Fibonacci path is a sequence of rise,
fall and Fk,l−colored length horizontal steps (l = 1,2, . . . ) running from (0,0) to (n,0) that
never pass below the x-axis. We denote byMFk,n

the set of all k-Fibonacci paths of length
n andMk = ⋃

∞
n=0MFk,n

. In Figure 1 we show the setMF2,3
.

A grand k-Fibonacci path is a k-Fibonacci path without the condition that never going
below the x-axis. We denote by M∗

Fk,n
the set of all grand k-Fibonacci paths of length

n and M∗
k = ⋃

∞
n=0M

∗
Fk,n

. A prefix k-Fibonacci path is a k-Fibonacci path without the
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Figure 1. k-Fibonacci Paths of length 3, ∣MF2,3
∣ = 13.

condition that ending on the x-axis. We denote by PMFk,n
the set of all prefix k-Fibonacci

paths of length n and PMk = ⋃
∞
n=0PMFk,n

. Analogously, we have the family of prefix grand
k-Fibonacci paths. We denote by PM∗

Fk,n
the set of all prefix grand k-Fibonacci paths of

length n and PM∗
k = ⋃

∞
n=0PM

∗
Fk,n

.
In this paper, we study the generating function for the k-Fibonacci paths, grand k-
Fibonacci paths, prefix k-Fibonacci paths, and prefix grand k-Fibonacci paths, according
to the length. We use Counting Automata Methodology (CAM) [2], which is a varia-
tion of the methodology developed by Rutten [14] called Coinductive Counting. Counting
Automata Methodology uses infinite weighted automata, weighted graphs and continued
fractions. The main idea of this methodology is find a counting automaton such that
there exist a bijection between all words recognized by an automaton M and the family
of combinatorial objects. From the counting automaton M is possible find the ordinary
generating function (GF) of the family of combinatorial objects [2].

2. Counting Automata Methodology

The terminology and notation are mainly those of Sakarovitch [15]. An automaton M is a
5-tupleM = (Σ,Q, q0, F,E), where Σ is a nonempty input alphabet, Q is a nonempty set
of states ofM, q0 ∈ Q is the initial state ofM, ∅ ≠ F ⊆ Q is the set of final states ofM and
E ⊆ Q×Σ×Q is the set of transitions ofM. The language recognized by an automatonM
is denoted by L(M). If Q,Σ and E are finite sets, we say that M is a finite automaton
[15].

Example 1. Consider the finite automaton M = (Σ,Q, q0, F,E) where Σ = {a, b}, Q =
{q0, q1}, F = {q0} and E = {(q0, a, q1), (q0, b, q0), (q1, a, q0)}. The transition diagram of M
is as shown in Figure 2. It is easy to verify that L(M) = (b ∪ aa)∗.

q0 q1

b
a

a

Figure 2. Transition diagram ofM, Example 1.
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q0 q1 q2 q3

a

b

a

b

a

b

⋯

Figure 3. Transition diagram ofMD, Example 2.

Example 2. Consider the infinite automaton MD = (Σ,Q, q0, F,E), where Σ = {a, b},
Q = {q0, q1, . . .}, F = {q0} and E = {(qi, a, qi+1), (qi+1, b, qi) ∶ i ∈ N}. The transition diagram
ofMD is as shown in Figure 3.
The language accepted byMD is

L(MD) = {w ∈ Σ
∗ ∶ ∣w∣a = ∣w∣b and for all prefix v of w, ∣v∣b ≤ ∣v∣a} .

An ordinary generating function F = ∑∞n=0 fnzn corresponds to a formal language L if
fn = ∣{w ∈ L ∶ ∣w∣ = n}∣, i.e., if the n-th coefficient fn gives the number of words in L with
length n.
Given an alphabet Σ and a semiring K. A formal power series or formal series S is a
function S ∶ Σ∗ → K. The image of a word w under S is called the coefficient of w in S

and is denoted by sw. The series S is written as a formal sum S = ∑w∈Σ∗ sww. The set of
formal power series over Σ with coefficients in K is denoted by K ⟨⟨Σ∗⟩⟩.

An automaton over Σ∗ with weights in K, or K-automaton over Σ∗ is a graph labelled with
elements of K ⟨⟨Σ∗⟩⟩, associated with two maps from the set of vertices to K ⟨⟨Σ∗⟩⟩. Specif-
ically, a weighted automaton M over Σ∗ with weights in K is a 4-tuple M = (Q,I,E,F )
where Q is a nonempty set of states ofM, E is an element of K ⟨⟨Σ∗⟩⟩Q×Q called transition
matrix. I is an element of K ⟨⟨Σ∗⟩⟩Q, i.e., I is a function from Q to K ⟨⟨Σ∗⟩⟩. I is the
initial function of M and can also be seen as a row vector of dimension Q, called initial
vector ofM and F is an element of K ⟨⟨Σ∗⟩⟩Q. F is the final function ofM and can also
be seen as a column vector of dimension Q, called final vector ofM.
We say thatM is a counting automaton if K = Z and Σ∗ = {z}∗. With each automaton, we
can associate a counting automaton. It can be obtained from a given automaton replacing
every transition labelled with a symbol a, a ∈ Σ, by a transition labelled with z. This
transition is called a counting transition and the graph is called a counting automaton of
M. Each transition from p to q yields an equation

L(p)(z) = zL(q)(z) + [p ∈ F ] +⋯.
We use Lp to denote L(p)(z). We also use Iverson’s notation, [P ] = 1 if the proposition P

is true and [P ] = 0 if P is false.

2.1. Convergent Automata and Convergent Theorems. We denote by L(n)(M) the
number of words of length n recognized by the automatonM, including repetitions.

Definition 3. We say that an automatonM is convergent if for all integer n ⩾ 0, L(n)(M)
is finite.

The proof of following theorems and propositions can be found in [2].
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Theorem 4 (First Convergence Theorem). LetM be an automaton such that each vertex
(state) of the counting automaton ofM has finite degree. ThenM is convergent.

Example 5. The counting automaton of the automatonMD in Example 2 is convergent.

The following definition plays an important role in the development of applications because
it allows to simplify counting automata whose transitions are formal series.

Definition 6. LetM be an automaton, and let f(z) = ∑∞n=0 fnzn be a formal power series
with fn ∈ N for all n ⩾ 0 and f0 = 0. In a counting automaton of M the set of counting
transitions from state p to state q, without intermediate final states, see Figure 4 (left), is
represented by a graph with a single edge labeled by f(z), see Figure 4 (right).

p q
p q

f(z)

⋮

⋮

⋮

⋮

⋮
⋯
⋯

⋯
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶n − 1 states, n transitions⋮

Figure 4. Transitions from the state p to q and its transition in parallel.

This kind of transition is called a transition in parallel. The states p and q are called visible
states and the intermediate states are called hidden states.

Example 7. In Figure 5 (left) we display a counting automatonM1 without transitions in
parallel, i.e., every transition is label by z. The transitions from state q1 to q2 correspond

to the series 1−
√
1−4z
2
= z + z2 + 2z3 + 5z4 + 14z5 +⋯. However, this automaton can also be

represented using transitions in parallel. Figure 5 (right) displays two examples.

Theorem 8 (Second Convergence Theorem). Let M be an automaton, and let
f
q
1
(z), f q

2
(z), . . . , be transitions in parallel from state q ∈ Q in a counting automaton of

M. ThenM is convergent if the series

F q(z) = ∞∑
k=1

f
q

k(z)
is a convergent series for each visible state q ∈ Q of the counting automaton.
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q0

q1

q2

q0

q1

q2

q0

q1

q2

q3

2z + z2

1 −
√
1 − 4z

2
2z

2z

2z

z z − z
√
1 − 4z

2

M1

⋯

M2:

M3:

Figure 5. Counting automata with transitions in parallel, Example 7.

Proposition 9. If f(z) is a polynomial transition in parallel from state p to q in a finite
counting automatonM, then this gives rise to an equation in the system of GFs equations
of M

Lp = f(z)Lq + [p ∈ F ] +⋯.
Proposition 10. Let M be a convergent automaton such that a counting automaton of
M has a finite number of visible states q0, q1, . . . , qr, in which the number of transitions in
parallel starting from each state is finite. Let f qt

1
(z), f qt

2
(z), . . . , f qt

s(t)(z) be the transitions

in parallel from the state qt ∈ Q. Then the GF for the language L(M) is Lq0(z). It is
obtained by solving the system of r + 1 GFs equations

L(qt)(z) = f
qt
1
(z)L(qt1)(z) + f

qt
2
(z)L(qt2)(z) + ⋯ + f

qt
s(t)(z)L(qts(t))(z) + [qt ∈ F ],

with 0 ≤ t ≤ r, where qtk is the visible state joined with qt through the transition in parallel
f
qt
k , and L(qtk) is the GF for the language accepted by M if qtk is the initial state.

Example 11. The system of GFs equations associated withM2, see Example 7, is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L0 = (2z + z2)L1 + 1

L1 =
1 −
√
1 − 4z

2
L2

L2 = 2zL0.

Solving the system for L0, we find the GF for the languageM2 and therefore ofM1 and
M3

L0 =
1

1 − (2z2 + z3)(1 −√1 − 4z) = 1 + 4z3 + 6z4 + 10z5 + 40z6 + 114z7 +⋯.
2.2. An Example of the Counting Automata Methodology (CAM). A counting
automaton associated with an automatonM can be used to model combinatorial objects
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if there is a bijection between all words recognized by the automatonM and the combina-
torial objects. Such method, along with the previous theorems and propositions constitute
the Counting Automata Methodology (CAM), see [2].
We distinguish three phases in the CAM:

(1) Given a problem of enumerative combinatorics, we have to find a convergent au-
tomatonM (see Theorems 4 and 8) whose GF is the solution of the problem.

(2) Find a general formula for the GF ofM′, whereM′ is an automaton obtained from
M truncating a set of states or edges see Propositions 9 and 10. Sometimes we find
a relation of iterative type, such as a continued fraction.

(3) Find the GF f(z) to which converge the GFs associated to each M′, which is
guaranteed by the Convergences theorems.

Example 12. A Motzkin path of length n is a lattice path of Z ×Z running from (0,0) to(n,0) that never passes below the x-axis and whose permitted steps are the up diagonal
step U = (1,1), the down diagonal step D = (1,−1) and the horizontal step H = (1,0). The
number of Motzkin paths of length n is the n-th Motzkin number mn, sequence A0010061.
The number of words of length n recognized by the convergent automatonMMot, see Figure
6, is the nth Motzkin number and its GF is

M (z) = ∞∑
i=0

miz
i =

1 − z −
√
1 − 2z − 3z2

2z2
.

q0 q1 q2 q3

z

z

z

z

z

z

z z z z

⋯

MMot ∶

Figure 6. Convergent automaton associated with Motzkin paths.

In this case the edge from state qi to state qi+1 represents a rise, the edge from the state
qi+1 to qi represents a fall and the loops represent the level steps, see Table 1.

(qi, z, qi+1) ∈ E⇔ (qi+1, z, qi) ∈ E⇔ (qi, z, qi) ∈ E⇔
Table 1. Bijection betweenMMot and Motzkin paths.

Moreover, it is clear that a word is recognized byMMot if and only if the number of steps
to the right and to the left coincide, which ensures that the path is well formed. Then

mn = ∣{w ∈ L(MMot) ∶ ∣w∣ = n}∣ = L(n)(MMot).
1Many integer sequences and their properties are found electronically on the On-Line Encyclopedia of

Sequences [17].
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LetMMots, s ≥ 1 be the automaton obtained fromMMot, by deleting the states qs+1, qs+2, . . . .
Therefore the system of GFs equations ofMMots is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L0 = zL0 + zL1 + 1,

Li = zLi−1 + zLi + zLi+1, 1 ≤ i ≤ s − 1,

Ls = zLs−1 + zLs.

Substituting repeatedly into each equation Li, we have

L0 =
H

1 −
F 2

1 −
F 2

⋮

1 − F 2

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
s times,

where F = z
1−z and H = 1

1−z . Since MMot is convergent, then as s → ∞ we obtain a
convergent continued fraction M of the GF ofMMot. Moreover,

M =
H

1 − F 2 (M
H
).

Hence z2M2 − (1 − z)M + 1 = 0 and

M(z) = 1 − z ±
√
1 − 2z − 3z2

2z2
.

Since ǫ ∈ L(MMot), M → 0 as z → 0. Hence, we take the negative sign for the radical in
M(z).

3. Generating Function for the k-Fibonacci Paths

In this section we find the generating function for k-Fibonacci paths, grand k-Fibonacci
paths, prefix k-Fibonacci paths and prefix grand k-Fibonacci paths, according to the length.

Lemma 13 ([2]). The GF of the automatonMLin, see Figure 7, is

E(z) = 1

1 − h0 (z) − f0 (z) g0 (z)
1 − h1 (z) − f1 (z) g1 (z)

⋱

,

where fi(z), gi(z) and hi(z) are transitions in parallel for all integer i ⩾ 0.

0 1 2 3

f0

g0

f1

g1

f2

g2

h0 h1 h2 h3

⋯

MLin ∶

Figure 7. Linear infinite counting automatonMLin
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The last lemma coincides with Theorem 1 in [7] and Theorem 9.1 in [14]. However, this
presentation extends their applications, taking into account that fi(z), gi(z) and hi(z) are
GFs, which can be GFs of several variables.

Corollary 14. If for all integers i ≥ 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) inMLin,
then the GF is

B(z) = 1 − h(z) −
√(1 − h(z))2 − 4f(z)g(z)

2f(z)g(z)(1)

=
∞
∑
n=0

∞
∑
m=0

Cn(m + 2n
m
)(f (z) g (z))n (h(z))m(2)

=
1

1 − h (z) − f (z) g (z)
1 − h (z) − f (z) g (z)

1 − h (z) − f (z) g (z)
⋱

,(3)

where Cn is the nth Catalan number, sequence A000108.

Theorem 15. The generating function for the k-Fibonacci paths according to the their
length is

Tk(z) = ∞∑
i=0
∣MFk,i

∣zi(4)

=
1 − (k + 1)z − z2 −√(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2

2z2(1 − kz − z2)(5)

=
1

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

⋱

(6)

and

[zt]Tk(z) = t

∑
n=0

t−2n
∑
m=0
(m + 2n

m
)CnF

(m)
k,t−2n−m+1,

where Cn is the n-th Catalan number and F
(r)
k,j is a convolved k-Fibonacci number.

Convolved k-Fibonacci numbers F
(r)
k,j are defined by

f
(r)
k (x) = (1 − kx − x2)−r = ∞∑

j=0
F
(r)
k,j+1x

j , r ∈ Z+.



ENUMERATION OF k-FIBONACCI PATHS 9

Note that

F
(r)
k,m+1 = ∑

j1+j2+⋯+jr=m
Fk,j1+1Fk,j2+1⋯Fk,jr+1.

Moreover, using a result of Gould [8, p. 699] on Humbert polynomials (with n = j,m =
2, x = k/2, y = −1, p = −r and C = 1), we have

F
(r)
k,j+1 =

⌊j/2⌋
∑
l=0
(j + r − l − 1

j − l
)(j − l

l
)kj−2l.

Ramı́rez [13] studied some properties of convolved k-Fibonacci numbers.

Proof. Equations (5) and (6) are clear from Corollary 14 taking f(z) = z = g(z) and
h(z) = z

1−kz−z2 . Note that h(z) is the GF of k-Fibonacci numbers. In this case the edge
from state qi to state qi+1 represents a rise, the edge from the state qi+1 to qi represents a fall
and the loops represent the Fk,l−colored length horizontal steps (l = 1,2, . . . ). Moreover,
from Equation (2), we obtain

Tk(z) = ∞∑
n=0

∞
∑
m=0

Cn(m + 2n
m
)z2n ( z

1 − kz − z2
)m

=
∞
∑
n=0

∞
∑
m=0

Cn(m + 2n
m
)z2n+m ( 1

1 − kz − z2
)m

=
∞
∑
n=0

∞
∑
m=0

Cn(m + 2n
m
)z2n+m ∞

∑
i=0

F
(m)
k,i+1z

i

=
∞
∑
n=0

∞
∑
m=0

∞
∑
i=0

CnF
(m)
k,i+1(m + 2nm

)z2n+m+i,

taking s = 2n +m + i

Tk(z) = ∞∑
n=0

∞
∑
m=0

∞
∑

s=2n+m
CnF

(m)
k,s−2n−m+1(m + 2nm

)zs.
Hence

[zt]Tk(z) = t

∑
n=0

t−2m
∑
m=0

CnF
(m)
k,t−2n−m+1(m + 2nm

).
�

In Table 2 we show the first terms of the sequence ∣MFk,i
∣ for k = 1,2,3,4.
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k Sequence
1 1, 1, 3, 8, 23, 67, 199, 600, 1834, 5674, 17743, . . .
2 1, 1, 4, 13, 47, 168, 610, 2226, 8185, 30283, 112736, . . .
3 1, 1, 5, 20, 89, 391, 1735, 7712, 34402, 153898, 690499, . . .
4 1, 1, 6, 29, 155, 820, 4366, 23262, 124153, 663523, 3551158, . . .

Table 2. Sequences ∣MFk,i
∣ for k = 1,2,3,4.

Definition 16. For all integers i ≥ 0 we define the continued fraction Ei(z) by:
Ei(z) = 1

1 − hi (z) − fi (z) gi (z)
1 − hi+1 (z) − fi+1 (z) gi+1 (z)

⋱

,

where fi(z), gi(z), hi(z) are transitions in parallel for all integers positive i.

Lemma 17 ([2]). The GF of the automatonMBLin, see Figure 8, is

Eb(z) = 1

1 − h0(z) − f0(z)g0(z)E1(z) − f ′0(z)g′0(z)E′1(z),
where fi(z), f ′i (z), gi(z), g′i(z), hi(z) and h′i(z) are transitions in parallel for all i ∈ Z.

0 1 2−1−2

f0

g0

f1

g1g′
0

g′
1

f ′
1

f ′
0

⋯⋯

MBLin ∶ h0 h1 h2
h′
1

h′
2

Figure 8. Linear infinite counting automatonMBLin.

Corollary 18. If for all integers i, fi(z) = f(z) = f ′i(z), gi(z) = g(z) = g′i(z) and hi(z) =
h(z) = h′i(z) inMBLin, then we have the GF

Bb(z) = 1√(1 − h(z))2 − 4f(z)g(z)(7)

=
1

1 − h(z) − 2f(z)g(z)
1 − h(z) − f(z)g(z)

1 − h(z) − f(z)g(z)
⋱

,(8)

where f(z), g(z) and h(z) are transitions in parallel. Moreover, if f(z) = g(z), then we
have the GF

Bb(z) = 1

1 − h(z) +
∞
∑
n=1

∞
∑
k=0

∞
∑
l=0

2n
n

n + 2k
(n + 2k

k
)(l + 2n + 2k

l
)f(z)2n+2kh(z)l.(9)
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Theorem 19. The generating function for the grand k-Fibonacci paths according to the
their length is

T ∗k (z) = ∞∑
i=0
∣M∗

Fk,i
∣zi = 1 − kz − z2√(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2(10)

=
1

1 − z
1−kz−z2 −

2z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

⋱

(11)

and

[zt]T ∗k (z) = F (1)k+1,t +
t

∑
n=1

t

∑
m=0

t−2n−2m
∑
l=0

2n
n

n + 2m
(n + 2m

m
)(l + 2n + 2m

l
)F (l)k,t−2n−2m−l+1,(12)

with t ⩾ 1.

Proof. Equations (10) and (11) are clear from Corollary 18, taking f(z) = z = g(z) and
h(z) = z

1−kz−z2 . Moreover, from Equation (9), we obtain

T ∗k (z) = 1

1 − z
1−kz−z2

+
∞
∑
n=1

∞
∑
m=0

∞
∑
l=0

2n
n

n + 2m
(n + 2m

m
)(l + 2n + 2m

l
)z2n+2m ( z

1 − kz − z2
)l

= 1 +
∞
∑
j=0

F
(1)
k+1,jz

j +
∞
∑
n=1

∞
∑
m=0

∞
∑
l=0

∞
∑
u=0

2n
n

n + 2m
(n + 2m

m
)(l + 2n + 2m

l
)F (l)k,uz

2n+2m+u+1,

taking s = 2n + 2m + l + u

T ∗k (z) = 1 + ∞∑
j=0

F
(1)
k+1,jz

j+

∞
∑
n=1

∞
∑
m=0

∞
∑
l=0

∞
∑

s=2n+2m+l
2n

n

n + 2m
(n + 2m

m
)(l + 2n + 2m

l
)F (l)k,s−2n−2m−lz

s.

Therefore Equation (12) is clear. �

In Table 3 we show the first terms of the sequence ∣M∗
Fk,i
∣ for k = 1,2,3,4.

k Sequence
1 1, 4, 11, 36, 115, 378, 1251, 4182, 14073, 47634, . . .
2 1, 5, 16, 63, 237, 920, 3573, 14005, 55156, 218359, . . .
3 1, 6, 23, 108, 487, 2248, 10371, 48122, 223977, 1046120, . . .
4 1, 7, 32, 177, 949, 5172, 28173, 153963, 842940, 4624581, . . .

Table 3. Sequences ∣M∗
Fk,i
∣ for k = 1,2,3,4 and i ⩾ 1.
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In Figure 9 we show the setM∗
F2,3

.

b b b bb b

×2 ×2 ×5

Figure 9. grand k-Fibonacci Paths of length 3, ∣M∗
F2,3
∣ = 16.

Lemma 20 ([2]). The GF of the automaton FinN(MLin), see Figure 10, is

G(z) = E(z) + ∞∑
j=1
(j−1∏
i=0
(fi(z)Ei(z))Ej(z)) ,

where E(z) is the GF in Lemma 13.

0 1 2 3

f0

g0

f1

g1

f2

g2

h0 h1 h2 h3

⋯

FinN(MLin) ∶

Figure 10. Linear infinite counting automaton FinN(MLin).

Corollary 21. If for all integer i ⩾ 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) in
FinN(MLin), then the GF is:

G(z) = 1 − 2f(z) − h(z) −√(1 − h(z))2 − 4f(z)g(z)
2f(z) (f(z) + g(z) + h(z) − 1)(13)

=
1

1 − f(z) − h(z) − f(z)g(z)
1 − h(z) − f(z)g(z)

1 − h(z) − f(z)g(z)
⋱

,(14)

where f(z), g(z) and h(z) are transitions in parallel and B(z) is the GF in Corollary 14.
Moreover, if f(z) = g(z) and h(z) ≠ 0, then we obtain the GF

G(z) = ∞∑
n=0

∞
∑
k=0

∞
∑
l=0

n + 1

n + k + 1
(n + 2k + l
k, l, k + n

)f 2k+n(z)hl(z).(15)
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Theorem 22. The generating function for the prefix k-Fibonacci paths according to the
their length is

PTk(z) = ∞∑
i=0
∣PMFk,i

∣zi

=
(1 − 2z)(1 − kz − z2) − z −√(1 − z(k + 1) − z2)2 + 4z2(1 − kz − z2)2

2z((1 − kz − z2)(2z − 1) + z)
and

[zt]PTk(z) = t

∑
n=0

t

∑
m=0

t−2m−n
∑
l=0

n + 1

n +m + 1
(n + 2m + l
m, l,m + n

)F (l)k,t−2m−n−l+1, t ⩾ 0.

Proof. The proof is analogous to the proof of Theorem 15 and 19. �

In Table 4 we show the first terms of the sequence ∣PMFk,i
∣ for k = 1,2,3,4.

k Sequence
1 1, 2, 6, 19, 62, 205, 684, 2298, 7764, 26355, 89820, . . .
2 1, 2, 7, 26, 101, 396, 1564, 6203, 24693, 98605, 394853, . . .
3 1, 2, 8, 35, 162, 757, 3558, 16766, 79176, 374579, 1775082, . . .
4 1, 2, 9, 46, 251, 1384, 7668, 42555, 236463, 1315281, 7322967, . . .

Table 4. Sequences ∣PMFk,i
∣ for k = 1,2,3,4.

In Figure 11 we show the setMPF2,3
.

b b b b b b

b b b b b

b b b b b

×2 ×2 ×5 ×2

×2

Figure 11. prefix k-Fibonacci paths of length 3, ∣PMF2,3
∣ = 26.
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Lemma 23. The GF of the automaton FinZ(MBLin), see Figure 12, is

H(z) = EE′

E +E′ −EE′(1 − h0) (1 +
∞
∑
j=1

j−1
∏
k=1

fkEkf0Ej +
∞
∑
j=1

j−1
∏
k=1

g′kE
′
kg
′
0E
′
j)

=
E′(z)G(z) +E(z)G′(z) −E(z)E′(z)
E(z) +E′(z) −E(z)E′(z)(1 − h0(z)) ,

where G(z) is the GF in Lemma 20 and G′(z),E′(z) are the GFs obtained from G(z) and
E(z) changing f(z) to g′(z) and g(z) to f ′(z).

0 1 2−1−2

f0

g0

f1

g1g′
0

g′
1

f ′
1

f ′
0

⋯⋯

h0 h1 h2
h′
1

h′
2

Figure 12. Linear infinite counting automaton FinZ(MBLin).
Moreover, if for all integer i ⩾ 0, fi(z) = f(z) = f ′i(z), gi(z) = g(z) = g′i(z) and hi(z) =
h(z) = h′i(z) in FinZ(MBLin), then the GF is

H(z) = 1

1 − f(z) − g(z) − h(z) .(16)

Theorem 24. The generating function for the prefix grand k-Fibonacci paths according to
the their length is

PT ∗k (z) = ∞∑
i=0
∣PMF ∗

k,i
∣zi = 1 − kz − z2

1 − (k + 3)z − (1 − 2k)z2 + 2z3 .
Proof. The proof is analogous to the proof of Theorem 15 and 19.

�

In Table 5 we show the first terms of the sequence ∣PM∗
Fk,i
∣ for k = 1,2,3,4.

k Sequence
1 1, 3, 10, 35, 124, 441, 1570, 5591, 19912, 70917, 252574, . . .
2 1, 3, 11, 44, 181, 751, 3124, 13005, 54151, 225492, 938997, . . .
3 1, 3, 12, 55, 264, 1285, 6280, 30727, 150392, 736157, 3603528, . . .
4 1, 3, 13, 68, 379, 2151, 12268, 70061, 400249, 2286780, 13065595 . . .

Table 5. Sequences ∣PM∗
Fk,i
∣ for k = 1,2,3,4.
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