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ABSTRACT. We determine the critical groups of the generalized de Bruijn
graphsDB(n, d) and generalized Kautz graphsKautz(n, d), thus extending
and completing earlier results for the classical de Bruijn and Kautz graphs.
Moreover, for a primep the critical groups ofDB(n, p) are shown to be in
close correspondence with groups ofn×n circulant matrices overFp, which
explains numerical data in [11], and suggests the possibility to construct nor-
mal bases inFpn from spanning trees inDB(n, p).

1. INTRODUCTION

Thecritical groupof a directed graphG is an abelian group obtained from the
Laplacian matrix∆ of G; it determines and is determined by the Smith Normal
Form (SNF) of∆. (For precise definitions of these and other terms, we refer to
the next section.) Thesandpile groupS(G, v) of G at a vertexv is an abelian
group obtained from the reduced Laplacian∆v of G; its order is equal to the
complexityκ(G) of G, the number of directed trees rooted atv, a fact that is
related to the Matrix Tree Theorem, see for example [8] and its references. If
G is Eulerian, thenS(G, v) does not depend onv, and is then simply written
asS(G); in that case, it is equal to the critical group ofG. The critical group
has been studied in other contexts under several other names, such as group of
components, Picard or Jacobian group, and Smith group. For more details and
background, see, e.g., [6].

Critical groups have been determined for a large number of graph fami-
lies. For some examples, see the references in [1]. Here, we determine the
critical group of the generalized de Bruijn graphsDB(n, d) and generalized
Kautz graphsKautz(n, d), thus extending and completing the results from [8]
for the binary de Bruijn graphsDB(2ℓ, 2) and Kautz graphs (withp prime)
Kautz((p − 1)pℓ−1, p), and [3] for the classical de Bruijn graphsDB(dℓ, d)
and Kautz graphsKautz((d − 1)dℓ−1, d). Unlike the classical case, the gener-
alized versions are not necessarily iterated line graphs, so to obtain their critical
groups, different techniques have to be applied.
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2 CRITICAL GROUPS OF DE BRUIJN AND KAUTZ GRAPHS AND CIRCULANTS

Our original motivation for studying these groups stems from their relations
to some algebraic objects, such as the groupsC(n, p) of invertible n × n-
circulant matrices overFp (mysterious numerical coincidences were noted in
the OIES entry A027362 [11] by the third author, computed with the help of
[15, 12]), andnormal bases(cf. e.g. [9]) of the finite fieldsFpn . The latter were
noted to be closely related to circulant matrices and tonecklacesby Reutenauer
[13, Sect. 7.6.2], see also [5], and the related numeric datacollected in [2]. In
particular, we show thatC(n, p)/(Zp−1×Zn) is isomorphic to the critical group
of DB(n, p). Although we were not able to construct an explicit bijection be-
tween the former and the latter, we could speculate that potentially one might be
able to design a new deterministic way to construct normal bases ofFpn .

2. PRELIMINARIES

LetM be anm×n integer matrix of rankr. For a ringF , we writeRF (M) =
M⊤Fn, theF -module generated by the rows ofM . TheSmith group[14] of M
is defined asΓ(M) = Zn/RZ(M). The submoduleΓ(M) = Zn/RQ(M) ∩ Zn

ofΓ(M) is a finite abelian group called thefinite partof Γ(M). Indeed, ifM has
rankr, thenΓ(M) = Zn−r ⊕ Γ(M) with Γ(M) = ⊕r

i=1Zdi
, whered1, . . . , dr

are the nonzero invariant factors ofM , so thatdi|di+1 for i = 1, . . . , r − 1.
For invariant factors and the Smith Normal Form, we refer to [10]. See [14] for
further details and proofs.

Let G = (V,E) be a directed graph onn = |V | vertices. The indegree
d−(v) and outdegreed+(v) is the number of edges ending or starting inv ∈ V ,
respectively. Theadjacency matrixof G is then × n matrixA = (Av,w), with
rows and columns indexed byV , whereAv,w is the number of edges fromv
to w. The Laplacianof G is the matrix∆ = D − A, whereD is diagonal
with Dv,v = d−v . Thecritical groupK(G) of G is the finite part of the Smith
group of the Laplacian∆ of G. Thesandpile groupS(G, v) of G at av ∈ V is
the finite part of the Smith group of the(n − 1) × (n − 1) reduced Laplacian
∆v, obtained from∆ by deleting the row and the column of∆ indexed byv.
Note that by the Matrix Tree Theorem for directed graphs, theorder ofS(G, v)
equals the number of directed spanning trees rooted atv. G is calledEulerianif
d+(v) = d−(v) for everyv ∈ V . In that case,S(G, v) does not depend onv and
is equal to the critical groupS(G) of G. For more details on sandpile groups
and critical groups of directed graphs, we refer for exampleto [6] or [16].

2.1. Generalized de Bruijn and Kautz graphs. Generalized de Bruijn graphs
and generalized Kautz graphs [4] are known to have a relatively small diameter
and attractive connectivity properties, and have been studied intensively due to
their applications in interconnection networks. The generalized Kautz graphs
were first investigated in [7], and are also known asImase-Itoh digraphs. Both
classes of graphs are Eulerian.

We will determine the critical group, or, equivalently, thesandpile group, of
a generalized de Bruijn or Kautz graph onn vertices by embedding this group
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as a subgroup of indexn in a group that we will refer to as thesand dunegroup
of the corresponding digraph. Let us now turn to the details.

The generalized de Bruijn graphDB(n, d) has vertex setZn, the set of in-
tegers modulon, and (directed) edgesv → dv + i for i = 0, . . . , d − 1 and
all v ∈ Zn. Thegeneralized Kautz graphKautz(n, d) has vertex setZn and
directed edgesv → −d(v+1)+ i for i = 0, . . . , d−1 and allv ∈ Zn. Note that
bothDB(n, d) andKautz(n, d) are Eulerian. In what follows, we will focus on
the generalized de Bruijn graph; the generalized Kautz graph can be handled in
a similar way, essentially by replacingd by−d in certain places.

Let Zn = {a(x) ∈ Z[x] mod xn − 1 | a(1) = 0}. With each vertexv ∈ Zn,
we associate the polynomialfv(x) = dxv − xdv

∑d−1
i=0 xi ∈ Zn. Sincefv(x) is

the associated polynomial of thevth row of the Laplacian∆(n,d) of the general-
ized de Bruijn graphDB(n, d), the Smith groupΓ(∆(n,d)) of the Laplacian of
DB(n, d) is the quotient ofZ[x] mod xn−1 by theZn-span〈fv(x) | v ∈ Zn〉Zn

of the polynomialsfv(x). Now note thatZ[x] mod xn − 1 ∼= Z⊕ Zn, so since
∑

v∈Zn
fv(x) = 0, we have that

Γ(∆(n,d)) = (Z[x] mod xn − 1)/〈fv(x) | v ∈ Zn〉Zn
(1)

∼= Z⊕Zn/〈fv(x) | v ∈ Z′
n〉Zn

whereZ′
n = Zn \ {0}. It is easily checked that the polynomialsfv(x) with

v ∈ Z′
n are independent overQ, hence they constitute a basis forZn overQ. As

a consequence, each element in the quotient group

(2) S(n, d) = SDB(n, d) = Zn/〈fv(x) | v ∈ Z′
n〉Zn

has finite order, and soS(n, d) is the critical group, or, equivalently, the sandpile
group, of the generalized de Bruijn graphDB(n, d). We define thesand dune
groupΣ(n, d) = ΣDB(n, d) of DB(n, d) asΣ(n, d) = Zn/〈gv(x) | v ∈ Z′

n〉Zn
,

wheregv(x) = (x − 1)fv(x) = dxv(x − 1) − xdv(xd − 1). Now let ev =
xv − 1; we have thate0 = 0, andZn = 〈ev | v ∈ Z′

n〉Z, theZ-span of
the polynomialsev. Furthermore, letǫv = dev − edv. The span inQn =
{a(x) ∈ Q[x] mod xn − 1 | a(1) = 0} of the polynomialsgv(x) with v ∈ Zn

is the set of polynomials of the formdc(x) − c(xd) with c(1) = 0; sinceǫv =
g0(x) + · · · gv−1(x) for all v ∈ Zn, we conclude that

(3) Σ(n, d) = Zn/En,d,

whereZn = 〈ev | v ∈ Z′
n〉Z andEn,d = 〈ǫv | v ∈ Z′

n〉Z is theZ-submodule of
Zn generated by the polynomialsǫv = dev − edv. The next result is crucial: it
identifies the elements of the sand dune groupΣ(n, d) that are actually contained
in the sandpile groupS(n, d). (Due to lack of space, we omit the not too difficult
proofs in the remainder of this section.)

Theorem 2.1. If a ∈ Σ(n, d) with a =
∑

v avev, thena ∈ S(n, d) if and only
if
∑

v vav ≡ 0 mod n.

Corollary 2.2. We haveΣ(n, d)/S(n, d) = Zn and so|Σ(n, d)| = n|S(n, d)|.
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The above descriptions of the sandpile groupS(n, d) and sand dune group
Σ(n, d), and the embedding ofS(n, d) as a subgroup ofΣ(n, d) are very suitable
for the determination of these groups. In the process, repeatedly information is
required about the order of various group elements. The following two results
provide that information.

Lemma 2.3. Leta =
∑

v avǫv ∈ Σ(n, d). Then the order ofa in Σ(n, d) is the
smallest positive integerm for whichmav ∈ Z for eachv.

We say thatv ∈ Zn hasd-type (f, e) in Zn if v, dv, . . . , de+f−1v are all
distinct, withde+fv = dfv. Now, by expressingev in terms of theǫv, we can
determine the order ofev. The result is as follows.

Lemma 2.4. Supposingv has d-type (f, e), then ev =
∑f−1

i=0 d−i−1ǫdiv +
∑e−1

j=0 d
j−f (de − 1)−1ǫdf+jv in Zn, and henceev has orderdf (de − 1) in

Σ(n, d).

2.2. Invertible circulant matrices. Let Qn be then × n permutation matrix
over a fieldF corresponding to the cyclic permutation(1, 2, . . . , n). An n × n
circulant matrixoverF is a matrix that can be written asa1Qn + a2Q

2
n + . . .+

anQ
n
n with ai ∈ F for 1 ≤ i ≤ n. All the invertible circulant matrices form a

commutative group (w.r.t. matrix multiplication), namely, the centralizer ofQn

in GLn(F ). In the caseF = Fp we consider here we denote this commutative
group byC(n, p). Note thatC(n, p) contains a subgroup isomorphic toZp−1 ⊕
Zn, namely the direct product of the group of scalar matricesF ∗

p I := {λI |
λ ∈ F∗

p} and the cyclic subgroup generated byQn. Each circulant matrix has
all-ones vector1 := (1, . . . , 1)⊤ as an eigenvector. ThusC′(n, p) := {g ∈
C(n, p) | g1 = 1} is a subgroup ofC(n, p), and we have the following formula.

(4) C(n, p) = C′(n, p)× F ∗
p I.

3. MAIN RESULTS

Let n, d > 0 be fixed integers. The description of the sandpile groupS(n, d)
and the sand-dune groupΣ(n, d) of the generalized the Bruin graphDB(n, d)
involves a sequence of numbers defined as follows. Putn0 = n, and fori =
1, 2, . . ., definegi = gcd(ni, d) andni+1 = ni/gi. We haven0 > · · · > nk =
nk+1, wherek is the smallest integer for whichgk = 1. We will refer to the
sequencen0 > · · · > nk = nk+1 as thed-sequenceof n. In what follows, we
will write m = nk andg = g0 · · · gk−1. Note thatn = gm with gcd(m, d) = 1.

Sincegcd(m, d) = 1, the mapx → dx partitionsZm into orbits of the form
O(v) = (v, dv, . . . , do(v)−1v). We will refer too(v) = |O(v)| as theorderof v.

For every primep|m, we defineπp(m) to be the largest power ofp dividing
m. Let V be a complete set of representatives of the orbitsO(v) different from
{0}, where we ensure that for every divisorp of m, all integers of the formm/pj

are contained inV .
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Theorem 3.1. With the above definitions and notation, we have that

(5) Σ(n, d) =

[k−1
⊕

i=0

Z
ni−2ni+1+ni+2

di+1

]

⊕

[

⊕

v∈V

Zdo(v)−1

]

,

and

(6) S(n, d) =

[k−1
⊕

i=0

Zdi+1/gi ⊕ Z
ni−2ni+1+ni+2−1

di+1

]

⊕

[

⊕

v∈V

Z(do(v)−1)/c(v)

]

,

wherec(v) = 1 except in the following cases. For anyp|m,

c(m/πp(m)) =

{

πp(m), if p 6= 2 or d ≡ 1 mod 4 or 46 |m;
π2(m)/2, if p = 2 andd ≡ 3 mod 4 and4|m,

and if4|m andd ≡ 3 mod 4, thenc(m/2) = 2.

For the generalized Kautz graph, a similar result holds. Forv ∈ Zm, we let
O′(v) denote the orbit ofv under the mapx → −dv, and we defineo′(v) =
|O′(v)|. Now takeV ′ to be a complete set of representatives of the orbits on
Z′
m. Finally, definec′(v) similar to c(v), except that nowd is replaced by−d

(so the special case now involvesd ≡ 1 mod 4). Then we have the following.

Theorem 3.2. The sandpile groupSKautz(n, d) of the generalized Kautz graph
Kautz(n, d) is obtained fromS(n, d) by replacingV byV ′, o(v) byo′(v), and
c(v) by c′(v) in (6).

The above results can be proved in a number of steps. In what follows, we
outline the method for the generalized de Bruijn graphs; forthe generalized
Kautz graphs, a similar approach can be used. Furthermore, we note that many
of the steps below repeatedly use Theorem 2.1 and Lemma 2.4. First, we inves-
tigate the “multiplication-by-d” mapd : x → dx on the sandpile and sand-dune
group. LetΣ0(n, d) andS0(n, d) denote the kernel of the mapdk onΣ(n, d) and
S(n, d), respectively. It is not difficult to see thatΣ(n, d) ∼= Σ0(n, d)⊕Σ(m, d)
andS(n, d) ∼= S0(n, d) ⊕ S(m, d). Then, we use the mapd to determine
Σ0(n, d) andS0(n, d). It is easy to see that foranyn, we havedΣ(n, d) ∼=
Σ(n/(n, d), d) anddS(n, d) ∼= S(n/(n, d), d). With much more effort, it can
be show that the kernel of the mapd on Σ(n, d) andS(n, d) is isomorphic to

Z
n−n/(n,d)
d andZd/(n,d) ⊕ Z

n−1−n/(n,d)
d , respectively. Then we use induction

over the lengthk+ 1 of thed-sequence ofn to show thatΣ0(n, d) andS0(n, d)
have the form of the left part of the right hand side in (5) and (6), respectively.
This part of the proof, although much more complicated, resembles the method
used by [8] and [3].

Now it remains to handle the partsΣ(m, d) andS(m, d) with gcd(m, d) = 1.
For the “helper” groupΣ(m, d) that embedsS(m, d), this is trivial: it is easily
seen thatΣ(m, d) = ⊕v∈V 〈ev〉, and the order ofev is equal to the sizeo(v)
of its orbitO(v) under the mapd, so (5) follows immediately. Theev are not
contained inS(m, d), but we can try to modify them slightly to obtain a similar
decomposition forS(m, d). The idea is to replaceev by a modified version
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ẽv = ev −
∑

p|m λp(v)eπp(v)m/πp(m), where the numbersλp(v) are chosen
such that̃ev ∈ S(m, d), or by a suitable multiple ofev, in some exceptional
cases (these are cases wherec(v) > 1). It turns out that this is indeed possible,
and in this way the proof of Theorem 3.1 can be completed.

Finally, with the notation from Subsect. 2.2, we have the following isomor-
phisms, connecting critical groups and circulant matrices.

Theorem 3.3. Letd be a prime. Then

S(n, d) ∼= C′(n, d)/〈Qn〉, and Σ(n, d) ∼= C′(n, d).

The proof of Theorem 3.3 is by reducing to the casegcd(n, p) = 1 by an
explicit construction, and then by diagonalizingC(n, p) over an appropriate ex-
tension ofFp. Essentially, as soon asgcd(n, p) = 1, one can read off a de-
composition ofC(n, p) into cyclic factors from the irreducible factors of the
polynomialxn − 1 overFp.
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