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ABSTRACT. We determine the critical groups of the generalized dejBrui
graphsDB(n, d) and generalized Kautz grapKsawutz(n, d), thus extending
and completing earlier results for the classical de Bruijd &autz graphs.
Moreover, for a primep the critical groups oDB(n, p) are shown to be in
close correspondence with groupsok » circulant matrices ovef,, which
explains numerical data ih [11], and suggests the poggildiconstruct nor-
mal bases iff,» from spanning trees iDB(n, p).

1. INTRODUCTION

Thecritical group of a directed graply is an abelian group obtained from the
Laplacian matrixA of G; it determines and is determined by the Smith Normal
Form (SNF) ofA. (For precise definitions of these and other terms, we refer t
the next section.) Theandpile groupS(G,v) of G at a vertexv is an abelian
group obtained from the reduced Laplaciap of G; its order is equal to the
complexity<(G) of G, the number of directed trees rootedvata fact that is
related to the Matrix Tree Theorem, see for example [8] asdeterences. If
G is Eulerian, thenS(G, v) does not depend on, and is then simply written
asS(G); in that case, it is equal to the critical group@f The critical group
has been studied in other contexts under several other naomasas group of
components, Picard or Jacobian group, and Smith group. Bog details and
background, see, e.d.][6].

Critical groups have been determined for a large number aplgifami-
lies. For some examples, see the referenceslin [1]. Here,etesrdine the
critical group of the generalized de Bruijn grapb8(n,d) and generalized
Kautz graph&Kautz(n, d), thus extending and completing the results from [8]
for the binary de Bruijn graph®B(2¢,2) and Kautz graphs (withh prime)
Kautz((p — 1)p*~!,p), and [3] for the classical de Bruijn grapfB(d, d)
and Kautz graphKautz((d — 1)d‘~!,d). Unlike the classical case, the gener-
alized versions are not necessarily iterated line graghi) sbtain their critical
groups, different techniques have to be applied.
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2 CRITICAL GROUPS OF DE BRUIJN AND KAUTZ GRAPHS AND CIRCULANS

Our original motivation for studying these groups stemsrfitheir relations
to some algebraic objects, such as the groQigs, p) of invertible n x n-
circulant matrices ovelf,, (mysterious numerical coincidences were noted in
the OIES entry A027362_[11] by the third author, computechvtite help of
[15,[12]), anchormal basegcf. e.g. [9]) of the finite field¥,~. The latter were
noted to be closely related to circulant matrices andetcklacedy Reutenauer
[13, Sect. 7.6.2], see alsal [5], and the related numeric datacted in [2]. In
particular, we show that'(n, p)/(Z,—1 X Zy,) is isomorphic to the critical group
of DB(n,p). Although we were not able to construct an explicit bijecthe-
tween the former and the latter, we could speculate thahgiatly one might be
able to design a new deterministic way to construct normsedafk,.

2. PRELIMINARIES

Let M be anm xn integer matrix of rank. For aringF, we writeRp (M) =
M T F", the F-module generated by the rowsf. TheSmith grougdd4] of M
is defined ag' (M) = Z"/Ryz(M). The submodul®& (M) = Z" / Ro(M) N Z"
of I'(M) is a finite abelian group called tfiaite partof T'(M). Indeed, ifM has
rankr, thenl'(M) = Z"~" @ T(M) with T (M) = ®_,Zq,, Wheredy, ..., d,
are the nonzero invariant factors df, so thatd;|d;; fori = 1,...,r — 1.
For invariant factors and the Smith Normal Form, we refe/di@][ See([14] for
further details and proofs.

Let G = (V,E) be a directed graph on = |V| vertices. The indegree
d~(v) and outdegred™ (v) is the number of edges ending or startingia V,
respectively. Thadjacency matribof G is then x n matrix A = (A, ), With
rows and columns indexed By, where 4, ,, is the number of edges from
to w. ThelLaplacianof G is the matrixA = D — A, whereD is diagonal
with D, , = d;, . Thecritical group K (G) of G is the finite part of the Smith
group of the Laplaciarh of G. Thesandpile groupS(G,v) of G atav € V' is
the finite part of the Smith group of tHe — 1) x (n — 1) reduced Laplacian
A,, obtained fromA by deleting the row and the column &f indexed byuw.
Note that by the Matrix Tree Theorem for directed graphsgpiiter ofS(G, v)
equals the number of directed spanning trees rooted@ltis calledEulerianif
d*(v) = d~ (v) foreveryv € V. Inthat caseS(G, v) does not depend anand
is equal to the critical grou'(G) of G. For more details on sandpile groups
and critical groups of directed graphs, we refer for exartp[é] or [16].

2.1. Generalized de Bruijn and Kautz graphs. Generalized de Bruijn graphs
and generalized Kautz grapls [4] are known to have a relatbreall diameter
and attractive connectivity properties, and have beeriesfudtensively due to
their applications in interconnection networks. The galieed Kautz graphs
were first investigated in [7], and are also knowrnmase-Itoh digraphsBoth
classes of graphs are Eulerian.

We will determine the critical group, or, equivalently, ts&ndpile group, of
a generalized de Bruijn or Kautz graph arvertices by embedding this group
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as a subgroup of indexin a group that we will refer to as theand duneyroup
of the corresponding digraph. Let us now turn to the details.

The generalized de Bruijn grappB(n, d) has vertex seZ,,, the set of in-
tegers modulo, and (directed) edges — dv + i fori = 0,...,d — 1 and
all v € Z,,. Thegeneralized Kautz grapKautz(n, d) has vertex seZ,, and
directed edges — —d(v+1)+ifori=0,...,d—1andallv € Z,. Note that
bothDB(n, d) andKautz(n, d) are Eulerian. In what follows, we will focus on
the generalized de Bruijn graph; the generalized Kautzlgcap be handled in
a similar way, essentially by replaciaigoy —d in certain places.

Let Z,, = {a(z) € Z[z] mod 2™ — 1| a(1) = 0}. With each vertex € Z,,
we associate the polynomigl(z) = da® — 2 Y% 2 € Z,. Sincef, (x) is
the associated polynomial of thh row of the Laplaciam\ (™% of the general-
ized de Bruijn graptDB(n, d), the Smith groud' (A ) of the Laplacian of
DB(n, d) is the quotient oZ[z] mod =™ —1 by theZ,,-span(f,(z) | v € Z,)z,
of the polynomialsf, (z). Now note tha#Z[z] mod 2™ — 1 * Z @& Z,, S0 since
> vez, fo(z) = 0, we have that

(1) L(AM™Y) = (Z]z] mod 2™ — 1)/ (fu(x) | v € Zp)a,
=78 Z,/{fo(x) | v € L),

whereZ!, = Z, \ {0}. Itis easily checked that the polynomiafs(x) with
v € Z! are independent ové€}, hence they constitute a basis 6 overQ. As
a consequence, each element in the quotient group

(2) S(n,d) = Spp(n,d) = Z,/(f.(z) | v € Zy,)z,

has finite order, and s8(n, d) is the critical group, or, equivalently, the sandpile
group, of the generalized de Bruijn grapiB(n, d). We define thesand dune
groupX(n,d) = Xpg(n,d) of DB(n,d) asX(n,d) = Z,/{(g.(z) | v € Z))z,,,
whereg,(z) = (z — 1)f,(z) = dz¥(z — 1) — 2% (z? — 1). Now lete, =

2V — 1; we have thaky = 0, andZ,, = (e, | v € Z)z, the Z-span of
the polynomialse,. Furthermore, let, = de, — eq,. The span inQ, =
{a(z) € Q[z] mod z™ — 1| a(1) = 0} of the polynomialgy, (z) with v € Z,

is the set of polynomials of the fora(z) — c(x) with ¢(1) = 0; sincee, =
go(x) + -+ gy—1(z) for all v € Z,,, we conclude that

(3) X(n,d) = Z,/End,

whereZ,, = (e, | v € Z])z and&,, 4 = (e, | v € Z),)7 is theZ-submodule of
Z, generated by the polynomials = de, — eq,. The nextresult is crucial: it
identifies the elements of the sand dune griigp, d) that are actually contained
in the sandpile groug(n, d). (Due to lack of space, we omit the not too difficult
proofs in the remainder of this section.)

Theorem 2.1. If a € ¥(n,d) witha =} a,e,, thena € S(n,d) if and only
if >, va, =0 mod n.

Coroallary 2.2. We havei(n,d)/S(n,d) = Z,, and so|X(n, d)| = n|S(n, d)|.
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The above descriptions of the sandpile grdi(m, d) and sand dune group
Y (n, d), and the embedding &f(n, d) as a subgroup df(n, d) are very suitable
for the determination of these groups. In the process, tedeinformation is
required about the order of various group elements. Thewiartlg two results
provide that information.

Lemma23. Leta =), ave, € X(n,d). Then the order of in 3(n, d) is the
smallest positive integen for whichma, € Z for eachw.

We say thaty € Z, hasd-type (f,e) in Z, if v,dv,...,d*Tf~ v are all
distinct, withd*t/v = dfv. Now, by expressing, in terms of thee,, we can
determine the order af,. The result is as follows.

Lemma 2.4. Supposing hasd-type (f,e), thene, = /-1 d~iteg, +
Z;‘T;é d?=7(d® — 1) Leg45, In Z,, and hencee, has orderd”(d* — 1) in
¥(n,d).

2.2. Invertible circulant matrices. Let Q),, be then x n permutation matrix
over a fieldF' corresponding to the cyclic permutatioh 2,...,n). Ann xn
circulant matrixover F is a matrix that can be written as@,, + a2Q? + ... +
an, Q1 with a; € F for 1 < i < n. All the invertible circulant matrices form a
commutative group (w.r.t. matrix multiplication), namgtiye centralizer o€),,

in GL,,(F). In the caseF" = F,, we consider here we denote this commutative
group byC'(n, p). Note thatC'(n, p) contains a subgroup isomorphicZg_; ©

Z,,, namely the direct product of the group of scalar matriggg := {AI |

A € Fy} and the cyclic subgroup generated®y. Each circulant matrix has

all-ones vectorl := (1,...,1)" as an eigenvector. Thus'(n,p) = {g €
C(n,p) | g1 = 1} isasubgroup of’(n, p), and we have the following formula.
4) C(n,p) = C'(n,p) x F;I.

3. MAIN RESULTS

Letn,d > 0 be fixed integers. The description of the sandpile gr6p, d)
and the sand-dune grodj(n, d) of the generalized the Bruin graghB(n, d)
involves a sequence of numbers defined as follows.ngut n, and fori =
1,2,..., defineg; = ged(n;,d) andn; 1 = n;/g;. We haveng > --- > ny =
ni+1, Wherek is the smallest integer for whick, = 1. We will refer to the
sequenceyy > --- > ny = ni41 as thed-sequencef n. In what follows, we
will write m = ny andg = go - - - gr—1. Note that, = gm with gcd(m, d) = 1.

Sinceged(m, d) = 1, the mapr — dx partitionsZ,, into orbits of the form
O() = (v,dv, ...,d°")~1y). We will refer too(v) = |O(v)| as theorder of v.

For every primep|m, we definer, (m) to be the largest power gfdividing
m. LetV be a complete set of representatives of the oits) different from
{0}, where we ensure that for every divigoof m, all integers of the formn /p’
are contained ifv.
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Theorem 3.1. With the above definitions and notation, we have that

k—1
(5) E(TL, d) _ [@ ZZ:H2ni+l+ni+2:| ® |:® Zdo(u)_1:| ,
=0

veV
and

k-1
(6) S(n,d) _ [@ Zdi+1/gi @ZZ;;2n1+l+ni+2—1:|®
i=0

) Z(do@l)/«:(v)} :

veV
wherec(v) = 1 exceptin the following cases. For apyn,

| mp(m), if p£20rd=1mod 4 or4)m;
c(m/mp(m)) = { ma2(m)/2, if p=2andd =3 mod 4 and4|m,

and if4|m andd = 3 mod 4, thenc(m/2) = 2.

For the generalized Kautz graph, a similar result holds.«FerZ,,, we let
O’ (v) denote the orbit ob under the map: — —dv, and we define’(v) =
|O’(v)]. Now takeV’ to be a complete set of representatives of the orbits on
Z!,. Finally, definec’(v) similar toc(v), except that nowd is replaced by-d
(so the special case now involvés= 1 mod 4). Then we have the following.

Theorem 3.2. The sandpile grou®kaus-(n, d) of the generalized Kautz graph
Kautz(n, d) is obtained fromS(n, d) by replacingV’ by V", o(v) by o’(v), and
c(v) by (v) in (@).

The above results can be proved in a number of steps. In whatviy we
outline the method for the generalized de Bruijn graphs;ttier generalized
Kautz graphs, a similar approach can be used. Furthermerapte that many
of the steps below repeatedly use Theokerh 2.1 and Ldmrhaist. \vire inves-
tigate the “multiplication-byd” mapd : + — dx on the sandpile and sand-dune
group. Letxq(n, d) andSy(n, d) denote the kernel of the mali onX(n, d) and
S(n,d), respectively. It is not difficult to see th&{(n, d) = Xq(n,d) ® X(m, d)
and S(n,d) = So(n,d) ® S(m,d). Then, we use the mag to determine
Yo(n,d) and Sy(n,d). Itis easy to see that fanyn, we havedX(n,d) =
¥(n/(n,d),d) anddS(n,d) = S(n/(n,d),d). With much more effort, it can
be show that the kernel of the mé@pon X(n, d) and S(n, d) is isomorphic to
zy Y andZy gy ® 23, respectively. Then we use induction
over the lengthk + 1 of thed-sequence of to show that (n, d) and.Sy(n, d)
have the form of the left part of the right hand sidelih (5) d8)d (espectively.
This part of the proof, although much more complicated,mésles the method
used byl[8] and [83].

Now it remains to handle the pa&i{m, d) andS(m, d) with gcd(m, d) = 1.
For the “helper” grouf(m, d) that embeds(m, d), this is trivial: it is easily
seen that(m, d) = @ev (e,), and the order oé, is equal to the size(v)
of its orbit O(v) under the mapl, so [B) follows immediately. The, are not
contained inS(m, d), but we can try to modify them slightly to obtain a similar
decomposition forS(m, d). The idea is to replace, by a modified version
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€y = €y — Zp‘m Ap(V)er, (v)ym/x,(m), Where the numbers, (v) are chosen
such thate, € S(m,d), or by a suitable multiple of,, in some exceptional
cases (these are cases where > 1). It turns out that this is indeed possible,
and in this way the proof of Theordm 8.1 can be completed.

Finally, with the notation from Subse€f._ 2.2, we have théofeing isomor-
phisms, connecting critical groups and circulant matrices

Theorem 3.3. Letd be a prime. Then
S(n,d) = C'(n,d)/(Qn), and  X(n,d) = C'(n,d).

The proof of Theorerh 33 is by reducing to the casé(n,p) = 1 by an
explicit construction, and then by diagonalizi6gn, p) over an appropriate ex-
tension ofF,. Essentially, as soon agd(n,p) = 1, one can read off a de-
composition ofC(n,p) into cyclic factors from the irreducible factors of the
polynomialz™ — 1 overF,,.
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