Chapter 1

On Landau's Function $g(n)$

Jean-Louis Nicolas
Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan, Mathématiques, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France jlnicola@in2p3.fr
http://math.univ-lyon1.fr/~nicolas/

1.1 Introduction

Let S_{n} be the symmetric group of n letters. Landau considered the function $g(n)$ defined as the maximal order of an element of S_{n}; Landau observed that (cf. [9])

$$
\begin{equation*}
g(n)=\max \operatorname{lcm}\left(m_{1}, \ldots, m_{k}\right) \tag{1.1}
\end{equation*}
$$

where the maximum is taken on all the partitions $n=m_{1}+m_{2}+\ldots+m_{k}$ of n and proved that, when n tends to infinity

$$
\begin{equation*}
\log g(n) \sim \sqrt{n \log n} \tag{1.2}
\end{equation*}
$$

More precise asymptotic estimates have been given in [22, 25, 11]. In 25] and [11] one also can find asymptotic estimates for the number of prime factors of $g(n)$. In [8] and [3], the largest prime factor $P^{+}(g(n))$ of $g(n)$ is investigated. In [10] and [12], effective upper and lower bounds of $g(n)$ are given. In [17], it is proved that $\lim _{n \rightarrow \infty} g(n+1) / g(n)=1$. An algorithm able to calculate $g(n)$ up to 10^{15} is given in [2] (see also [26]). The sequence of distinct values of $g(n)$ is entry A002809 of [24]. A nice survey paper was written by W. Miller in 1987 (cf. [13]).

My very first mathematical paper [15] was about Landau's function, and the main result was that $g(n)$, which is obviously non decreasing, is constant on arbitrarily long intervals (cf. also [16). First time I met A. Schinzel in Paris in May 1967. He told me that he was interested in my results, but that P. Erdős would be more interested than himself. Then I wrote my first letter to Paul
with a copy of my work. I received an answer dated of June 121967 saying " I sometimes thought about $g(n)$ but my results were very much less complete than yours". Afterwards, I met my advisor, the late Professor Pisot, who, in view of this letter, told me that my work was good for a thesis.

The main idea of my work about $g(n)$ was to use the tools introduced by S. Ramanujan to study highly composite numbers (cf. [19, 20]). P. Erdős was very well aware of this paper of Ramanujan (cf. [1, 4, 6, 5]) as well as of the symmetric group and the order of its elements, (cf. [7]) and I think that he enjoyed the connection between these two areas of mathematics. Anyway, since these first letters, we had many occasions to discuss Landau's function.

Let us define $n_{1}=1, n_{2}=2, n_{3}=3, n_{4}=4, n_{5}=5, n_{6}=7$, etc \ldots, n_{k} (see a table of $g(n)$ in [16, p. 187]), such that

$$
\begin{equation*}
g\left(n_{k}\right)>g\left(n_{k}-1\right) \tag{1.3}
\end{equation*}
$$

The above mentioned result can be read:

$$
\begin{equation*}
\overline{\lim }\left(n_{k+1}-n_{k}\right)=+\infty \tag{1.4}
\end{equation*}
$$

Here, I shall prove the following result:
Theorem 1.

$$
\begin{equation*}
\underline{\lim }\left(n_{k+1}-n_{k}\right)<+\infty \tag{1.5}
\end{equation*}
$$

Let us set $p_{1}=2, p_{2}=3, p_{3}=5, \ldots, p_{k}=$ the k-th prime. It is easy to deduce Theorem 1 from the twin prime conjecture (i.e. $\underline{\lim \left(p_{k+1}-p_{k}\right)=2 \text {) or }}$ even from the weaker conjecture $\underline{\lim }\left(p_{k+1}-p_{k}\right)<+\infty$. (cf. $\$ 1.4$ below). But I shall prove Theorem 1 independently of these deep conjectures. Moreover I shall explain below why it is reasonable to conjecture that the mean value of $n_{k+1}-n_{k}$ is 2 ; in other terms one may conjecture that

$$
\begin{equation*}
n_{k} \sim 2 k \tag{1.6}
\end{equation*}
$$

and that $n_{k+1}-n_{k}=2$ has infinitely many solutions. Due to a parity phenomenon, $n_{k+1}-n_{k}$ seems to be much more often even than odd; nevertheless, I conjecture that:

$$
\begin{equation*}
\underline{\lim }\left(n_{k+1}-n_{k}\right)=1 \tag{1.7}
\end{equation*}
$$

The steps of the proof of Theorem 1 are first to construct the set G of values of $g(n)$ corresponding to the so called superior highly composite numbers introduced by S. Ramanujan, and then, when $g(n) \in G$, to build the table of $g(n+d)$ when d is small. This will be done in $\S 1.4$ and $\S 1.5$ Such values of $g(n+d)$ will be linked with the number of distinct differences of the form $P-Q$ where P and Q are primes satisfying $x-x^{\alpha} \leq Q \leq x<P \leq x+x^{\alpha}$, where x goes to infinity and $0<\alpha<1$. Our guess is that these differences $P-Q$ represent almost all even numbers between 0 and $2 x^{\alpha}$, but we shall only prove in $\$ 1.3$ that the number of these differences is of the order of magnitude of x^{α}, under certain strong hypothesis on x and α, and for that a result due to Selberg about the primes between x and $x+x^{\alpha}$ will be needed (cf. $\S 1.2$).

To support conjecture (1.6), I think that what has been done here with $g(n) \in G$ can also be done for many more values of $g(n)$, but, unfortunately, even assuming strong hypotheses, I do not see for the moment how to manage it.

I thank very much E. Fouvry who gave me the proof of Proposition[2

1.1.1 Notation

p will denote a generic prime, p_{k} the k-th prime; P, Q, P_{i}, Q_{j} will also denote primes. As usual $\pi(x)=\sum_{p \leq x} 1$ is the number of primes up to x.
$|S|$ will denote the number of elements of the set S. The sequence n_{k} is defined by (1.3).

1.2 About the distribution of primes

Proposition 1. Let us define $\pi(x)=\sum_{p \leq x} 1$, and let α be such that $\frac{1}{6}<\alpha<1$, and $\varepsilon>0$. When ξ goes to infinity, and $\bar{\xi}^{\prime}=\xi+\xi / \log \xi$, then for all x in the interval $\left[\xi, \xi^{\prime}\right]$ but a subset of measure $O\left(\left(\xi^{\prime}-\xi\right) / \log ^{3} \xi\right)$ we have:

$$
\begin{gather*}
\left|\pi\left(x+x^{\alpha}\right)-\pi(x)-\frac{x^{\alpha}}{\log x}\right| \leq \varepsilon \frac{x^{\alpha}}{\log x} \tag{1.8}\\
\left|\pi(x)-\pi\left(x-x^{\alpha}\right)-\frac{x^{\alpha}}{\log x}\right| \leq \varepsilon \frac{x^{\alpha}}{\log x} \tag{1.9}\\
\left|\frac{x}{\log x}-\frac{Q^{k}-Q^{k-1}}{\log Q}\right| \geq \frac{\sqrt{x}}{\log ^{4} x} \text { for all primes } Q, \text { and } k \geq 2 \tag{1.10}
\end{gather*}
$$

Proof. This proposition is an easy extension of a result of Selberg (cf. [21]) who proved that (1.8) holds for most x in $\left(\xi, \xi^{\prime}\right)$. In [18, I gave a first extension of Selberg's result by proving that (1.8) and (1.9) hold simultaneously for all x in $\left(\xi, \xi^{\prime}\right)$ but for a subset of measure $O\left(\left(\xi^{\prime}-\xi\right) / \log ^{3} \xi\right)$. So, it suffices to prove that the measure of the set of values of x in $\left(\xi, \xi^{\prime}\right)$ for which (1.10) does not hold is $O\left(\left(\xi^{\prime}-\xi\right) / \log ^{3} \xi\right)$.

We first count the number of primes Q such that for one k we have:

$$
\begin{equation*}
\frac{\xi}{\log \xi} \leq \frac{Q^{k}-Q^{k-1}}{\log Q} \leq \frac{\xi^{\prime}}{\log \xi^{\prime}} \tag{1.11}
\end{equation*}
$$

If Q satisfies (1.11), then $k \leq \frac{\log \xi^{\prime}}{\log 2}$ for ξ^{\prime} large enough. Further, for k fixed, (1.11) implies that $Q \leq\left(\xi^{\prime}\right)^{1 / k}$, and the total number of solutions of (1.11) is

$$
\leq \sum_{k=2}^{\log \xi^{\prime} / \log 2}\left(\xi^{\prime}\right)^{1 / k}=O\left(\sqrt{\xi^{\prime}}\right)=O(\sqrt{\xi})
$$

With a more careful estimation, this upper bound could be improved, but this crude result is enough for our purpose. Now, for all values of $y=\frac{Q^{k}-Q^{k-1}}{\log Q}$ satisfying (1.11), we cross out the interval $\left(y-\frac{\sqrt{\xi^{\prime}}}{\log ^{\prime} \xi^{\prime}}, y+\frac{\sqrt{\xi^{\prime}}}{\log ^{4} \xi^{\prime}}\right)$. We also cross out this interval whenever $y=\frac{\xi}{\log \xi}$ and $y=\frac{\xi^{\prime}}{\log \xi^{\prime}}$. The total sum of the lengths of the crossed out intervals is $O\left(\frac{\xi}{\log ^{4} \xi}\right)$, which is smaller than the length of the interval $\left(\frac{\xi}{\log \xi}, \frac{\xi^{\prime}}{\log \xi^{\prime}}\right)$ and if $\frac{x}{\log x}$ does not fall into one of these forbidden intervals, (1.10) will certainly hold. Since the derivative of the function $\varphi(x)=x / \log x$ is $\varphi^{\prime}(x)=\frac{1}{\log _{2}}-\frac{1}{\log ^{2} x}$ and satisfies $\varphi^{\prime}(x) \sim \frac{1}{\log \xi}$ for all $x \in\left(\xi, \xi^{\prime}\right)$, the measure of the set of values of $x \in\left(\xi, \xi^{\prime}\right)$ such that $\varphi(x)$ falls into one of the above forbidden intervals is, by the mean value theorem $O\left(\frac{\xi}{\log ^{3} \xi}\right)$, and the proof of Proposition \rceil is completed.

1.3 About the differences between primes

Proposition 2. Suppose that there exists $\alpha, 0<\alpha<1$, and x large enough such that the inequalities

$$
\begin{align*}
& \pi\left(x+x^{\alpha}\right)-\pi(x) \geq(1-\varepsilon) x^{\alpha} / \log x \tag{1.12}\\
& \pi(x)-\pi\left(x-x^{\alpha}\right) \geq(1-\varepsilon) x^{\alpha} / \log x \tag{1.13}
\end{align*}
$$

hold. Then the set

$$
E=E(x, \alpha)=\left\{P-Q ; P, Q \text { primes, } x-x^{\alpha}<Q \leq x<P \leq x+x^{\alpha}\right\}
$$

satisfies:

$$
|E| \geq C_{2} x^{\alpha}
$$

where $C_{2}=C_{1} \alpha^{4}(1-\varepsilon)^{4}$ and C_{1} is an absolute constant ($C_{1}=0.00164$ works).
Proof. The proof is a classical application of the sieve method that Paul Erdős enjoys very much. Let us set, for $d \leq 2 x^{\alpha}$,

$$
r(d)=\left|\left\{(P, Q) ; x-x^{\alpha}<Q \leq x<P \leq x+x^{\alpha}, P-Q=d\right\}\right| .
$$

Clearly we have

$$
\begin{equation*}
|E|=\sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} 1 \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0<d \leq 2 x^{\alpha}} r(d)=\left(\pi\left(x+x^{\alpha}\right)-\pi(x)\right)\left(\pi(x)-\pi\left(x-x^{\alpha}\right)\right) \geq(1-\varepsilon)^{2} x^{2 \alpha} / \log ^{2} x . \tag{1.15}
\end{equation*}
$$

Now to get an upper bound for $r(d)$, we sift the set

$$
A=\left\{n ; x-x^{\alpha}<n \leq x\right\}
$$

with the primes $p \leq z$. If p divides d, we cross out the $n^{\prime} s$ satisfying $n \equiv 0$ $(\bmod p)$, and if p does not divide d, the $n^{\prime} s$ satisfying

$$
n \equiv 0 \quad(\bmod p) \quad \text { or } \quad n \equiv-d \quad(\bmod p)
$$

so that we set for $p \leq z$:

$$
w(p)= \begin{cases}1 & \text { if } p \text { divides } d \\ 2 & \text { if } p \text { does not divide } d\end{cases}
$$

By applying the large sieve (cf. [14, Corollary 1]), we have

$$
r(d) \leq \frac{|A|}{L(z)}
$$

with

$$
L(z)=\sum_{n \leq z}\left(1+\frac{3}{2} n|A|^{-1} z\right)^{-1} \mu(n)^{2}\left(\prod_{p \mid n} \frac{w(p)}{p-w(p)}\right)
$$

(μ is the Möbius function), and with the choice $z=\left(\frac{2}{3}|A|\right)^{1 / 2}$, it is proved in [23] that

$$
\frac{|A|}{L(z)} \leq 16 \prod_{p \geq 3}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{|A|}{\log ^{2}(|A|)} \prod_{\substack{p \mid d \\ p>2}} \frac{p-1}{p-2}
$$

The value of the above infinite product is $0.6602 \ldots<2 / 3$. We set $f(d)=$ $\prod_{p>2}^{p \mid d} \frac{p-1}{p-2}$, and we observe that $|A| \geq x^{\alpha}-1$, so that for x large enough

$$
\begin{equation*}
r(d) \leq \frac{32}{3 \alpha^{2}} \frac{|A|}{\log ^{2} x} f(d) \tag{1.16}
\end{equation*}
$$

Now, for the next step, we shall need an upper bound for $\sum_{n \leq x} f^{2}(n)$. By using the convolution method and defining

$$
h(n)=\sum_{a \mid n} \mu(a) f^{2}(n / a)
$$

one gets $h(2)=h\left(2^{2}\right)=h\left(2^{3}\right)=\ldots=0$ and, for $p \geq 3, h(p)=\frac{2 p-3}{(p-2)^{2}}$, $h\left(p^{2}\right)=h\left(p^{3}\right)=\ldots=0$, so that

$$
\begin{align*}
\sum_{n \leq x} f^{2}(n) & =\sum_{n \leq x} \sum_{a \mid n} h(a)=\sum_{a \leq x} h(a)\left\lfloor\frac{x}{a}\right\rfloor \\
& \leq x \sum_{a=1}^{\infty} \frac{h(a)}{a}=x \prod_{p \geq 3}\left(1+\frac{2 p-3}{p(p-2)^{2}}\right) \tag{1.17}\\
& =2.63985 \ldots x \leq \frac{8}{3} x
\end{align*}
$$

From (1.15) and (1.16), one can deduce

$$
\frac{(1-\varepsilon)^{2} x^{2 \alpha}}{\log ^{2} x} \leq \sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} r(d) \leq \frac{32}{3 \alpha^{2}} \frac{|A|}{\log ^{2} x} \sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} f(d)
$$

which implies

$$
\sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} f(d) \geq \frac{3 \alpha^{2} x^{2 \alpha}(1-\varepsilon)^{2}}{32|A|}
$$

By Cauchy-Schwarz's inequality, one has

$$
\left(\sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} 1\right)\left(\sum_{\substack{0<d \leq 2 x^{\alpha} \\ r(d) \neq 0}} f^{2}(d)\right) \geq \frac{9 \alpha^{4} x^{4 \alpha}(1-\varepsilon)^{4}}{1024|A|^{2}}
$$

and, by (1.14) and (1.17)

$$
|E| \geq \frac{9 \alpha^{4} x^{4 \alpha}(1-\varepsilon)^{4}}{1024|A|^{2}} / \frac{8}{3}\left(2 x^{\alpha}\right)=\frac{27}{16384} \frac{x^{3 \alpha}(1-\varepsilon)^{4}}{|A|^{2}}
$$

Since $|A| \leq x^{\alpha}+1$, and x has been supposed large enough, proposition 2 is proved.

1.4 Some properties of $g(n)$

Here, we recall some known properties of $g(n)$ which can be found for instance in [16. Let us define the arithmetic function ℓ in the following way: ℓ is additive, and, if p is a prime and $k \geq 1$, then $\ell\left(p^{k}\right)=p^{k}$. It is not difficult to deduce from (1.1) (cf. [13] or [16]) that

$$
\begin{equation*}
g(n)=\max _{\ell(M) \leq n} M \tag{1.18}
\end{equation*}
$$

Now the relation (cf. [16], p. 139)

$$
\begin{equation*}
M \in g(\mathbb{N}) \quad \Longleftrightarrow \quad\left(M^{\prime}>M \quad \Longrightarrow \quad \ell\left(M^{\prime}\right)>\ell(M)\right) \tag{1.19}
\end{equation*}
$$

easily follows from (1.18), and shows that the values of the Landau function g are the "champions" for the small values of ℓ. So the methods introduced by Ramanujan (cf. [19]) to study highly composite numbers can also be used for $g(n)$. Indeed M is highly composite, if it is a "champion" for the divisor function d, that is to say if

$$
M^{\prime}<M \quad \Longrightarrow \quad d\left(M^{\prime}\right)<d(M)
$$

Corresponding to the so-called superior highly composite numbers, one introduces the set $G: N \in G$ if there exists $\rho>0$ such that

$$
\begin{equation*}
\forall M \geq 1, \quad \ell(M)-\rho \log M \geq \ell(N)-\rho \log N \tag{1.20}
\end{equation*}
$$

(1.19) and (1.20) easily imply that $G \subset g(\mathbb{N})$. Moreover, if $\rho>2 / \log 2$, let us define $x>4$ such that $\rho=x / \log x$ and

$$
\begin{equation*}
N_{\rho}=\prod_{p \leq x} p^{\alpha_{p}}=\prod_{p} p^{\alpha_{p}} \tag{1.21}
\end{equation*}
$$

with

$$
\alpha_{p}= \begin{cases}0 & \text { if } \quad p>x \\ 1 & \text { if } \quad \frac{p}{\log p} \leq \rho<\frac{p^{2}-p}{\log p} \\ k \geq 2 & \text { if } \quad \frac{p^{k}-p^{k-1}}{\log p} \leq \rho<\frac{p^{k-1}-p^{k}}{\log p}\end{cases}
$$

then $N_{\rho} \in G$. With the above definition, since $x \geq 4$, it is not difficult to show that (cf. 11, (5)])

$$
\begin{equation*}
p^{\alpha_{p}} \leq x \tag{1.22}
\end{equation*}
$$

holds for $p \leq x$, whence N_{ρ} is a divisor of the l.c.m. of the integers $\leq x$. Here we can prove

Proposition 3. For every prime p, there exists n such that the largest prime factor of $g(n)$ is equal to p.

Proof. We have $g(2)=2, g(3)=3$. If $p \geq 5$, let us choose $\rho=p / \log p>$ $2 / \log 2 . N_{\rho}$ defined by (1.21) belongs to $G \subset g(\mathbb{N})$, and its largest prime factor is p, which proves Proposition (3).

From Proposition3, it is easy to deduce a proof of Theorem1 under the twin prime conjecture. Let $P=p+2$ be twin primes, and n such that the largest prime factor of $g(n)$ is p. The sequence n_{k} being defined by (1.3), we define k in terms of n by $n_{k} \leq n<n_{k+1}$, so that $g\left(n_{k}\right)=g(n)$ has its largest prime factor equal to p. Now, from (1.18) and (1.19),

$$
\ell\left(g\left(n_{k}\right)\right)=n_{k}
$$

and $g\left(n_{k}+2\right)>g\left(n_{k}\right)$ since $M=\frac{P}{p} g\left(n_{k}\right)$ satisfies $M>g\left(n_{k}\right)$ and $\ell(M)=n_{k}+2$. So $n_{k+1} \leq n_{k}+2$, and Theorem 1 is proved under this strong hypothesis.

Let us introduce now the so-called benefit method. For a fixed $\rho>2 / \log 2$, $N=N_{\rho}$ is defined by (1.21), and for any integer M,

$$
M=\prod_{p} p^{\beta_{p}}
$$

one defines the benefit of M :

$$
\begin{equation*}
\operatorname{ben}(M)=\ell(M)-\ell(N)-\rho \log M / N \tag{1.23}
\end{equation*}
$$

Clearly, from (1.20), ben $(M) \geq 0$ holds, and from the additivity of ℓ one has

$$
\begin{equation*}
\operatorname{ben}(M)=\sum_{p}\left(\ell\left(p^{\beta_{p}}\right)-\ell\left(p^{\alpha_{p}}\right)-\rho\left(\beta_{p}-\alpha_{p}\right) \log p\right) \tag{1.24}
\end{equation*}
$$

In the above formula, let us observe that $\ell\left(p^{\beta}\right)=p^{\beta}$ if $\beta \geq 1$, but that $\ell\left(p^{\beta}\right)=$ $0 \neq p^{\beta}=1$ if $\beta=0$, and, due to the choice of α_{p} in (1.21), that, in the sum (1.24), all the terms are non negative: for all p and for $\beta \geq 0$, we have

$$
\begin{equation*}
\ell\left(p^{\beta}\right)-\ell\left(p^{\alpha_{p}}\right)-\rho\left(\beta-\alpha_{p}\right) \log p \geq 0 \tag{1.25}
\end{equation*}
$$

Indeed, let us consider the set of points $(0,0)$ and $\left(\beta, p^{\beta} / \log p\right)$ for β integer ≥ 1. For all p, the piecewise linear curve going through these points is convex, and for a given ρ, α_{p} is chosen so that the straight line L of slope ρ going through $\left(\alpha_{p}, \frac{p^{\alpha_{p}}}{\log p}\right)$ does not cut that curve. The left-hand side of (1.25), (which is $\operatorname{ben}\left(N p^{\beta-\alpha_{p}}\right)$) can be seen as the product of $\log p$ by the vertical distance of the point $\left(\beta, \frac{p^{\beta}}{\log p}\right)$ to the straight line L, and because of convexity, we shall have for all p,

$$
\begin{equation*}
\operatorname{ben}\left(N p^{t}\right) \geq t \operatorname{ben}(N p), \quad t \geq 1 \tag{1.26}
\end{equation*}
$$

and for $p \leq x$,

$$
\begin{equation*}
\operatorname{ben}\left(N p^{-t}\right) \geq t \operatorname{ben}\left(N p^{-1}\right), \quad 1 \leq t \leq \alpha_{p} \tag{1.27}
\end{equation*}
$$

1.5 Proof of Theorem 1

First the following proposition will be proved:
Proposition 4. Let $\alpha<1 / 2$, and x large enough such that (1.10) holds. Let us denote the primes surrounding x by:

$$
\ldots<Q_{j}<\ldots<Q_{2}<Q_{1} \leq x<P_{1}<P_{2}<\ldots<P_{i}<\ldots
$$

Let us define $\rho=x / \log x, N=N_{\rho}$ by (1.21), $n=\ell(N)$. Then for $n \leq m \leq$ $n+2 x^{\alpha}, g(m)$ can be written

$$
\begin{equation*}
g(m)=N \frac{P_{i_{1}} P_{i_{2}} \ldots P_{i_{r}}}{Q_{j_{1}} Q_{j_{2}} \ldots Q_{j_{r}}} \tag{1.28}
\end{equation*}
$$

with $r \geq 0$ and $i_{1}<\ldots<i_{r}, j_{1}<\ldots<j_{r}, P_{i_{r}} \leq x+4 x^{\alpha}, Q_{j_{r}} \geq x-4 x^{\alpha}$.
Proof. First, from (1.18), one has $\ell(g(m)) \leq m$, and from (1.23) and (1.18)

$$
\begin{equation*}
\operatorname{ben}(g(m))=\ell(g(m))-\ell(N)-\rho \log \frac{g(m)}{N} \leq m-n \leq 2 x^{\alpha} \tag{1.29}
\end{equation*}
$$

for $n \leq m \leq 2 x^{\alpha}$.
Further, let $Q \leq x$ be a prime, and $k=\alpha_{Q} \geq 1$ the exponent of Q in the standard factorization of N. Let us suppose that for a fixed m, Q divides $g(m)$
with the exponent $\beta_{Q}=k+t, t>0$. Then, from (1.24), (1.25), and (1.26), one gets

$$
\begin{equation*}
\operatorname{ben}(g(m)) \geq \operatorname{ben}\left(N Q^{t}\right) \geq \operatorname{ben}(N Q) \tag{1.30}
\end{equation*}
$$

and

$$
\begin{aligned}
\operatorname{ben}(N Q) & =Q^{k+1}-Q^{k}-\rho \log Q \\
& =\log Q\left(\frac{Q^{k+1}-Q^{k}}{\log Q}-\rho\right)
\end{aligned}
$$

From (1.21), the above parenthesis is non negative, and from (1.10), one gets:

$$
\begin{equation*}
\operatorname{ben}(N Q) \geq \log 2 \frac{\sqrt{x}}{\log ^{4} x} \tag{1.31}
\end{equation*}
$$

For x large enough, there is a contradiction between (1.29), (1.30) and (1.31), and so, $\beta_{Q} \leq \alpha_{Q}$.

Similarly, let us suppose $Q \leq x, k=\alpha_{Q} \geq 2$ and $\beta_{Q}=k-t, 1 \leq t \leq k$. One has, from (1.24), (1.25) and (1.27),

$$
\operatorname{ben}(g(m)) \geq \operatorname{ben}\left(N Q^{-t}\right) \geq \operatorname{ben}\left(N Q^{-1}\right)
$$

and

$$
\begin{aligned}
\operatorname{ben}\left(N Q^{-1}\right) & =Q^{k-1}-Q^{k}+\rho \log Q \\
& =\log Q\left(\rho-\frac{Q^{k}-Q^{k-1}}{\log Q}\right) \geq \log 2 \frac{\sqrt{x}}{\log ^{4} x}
\end{aligned}
$$

which contradicts (1.29), and so, for such a $Q, \beta_{Q}=\alpha_{Q}$.
Now, let us suppose $Q \leq x, \alpha_{Q}=1$, and $\beta_{Q}=0$ for some $m, n \leq m \leq$ $n+2 x^{\alpha}$. Then

$$
\operatorname{ben}(g(m)) \geq \operatorname{ben}\left(N Q^{-1}\right)=-Q+\rho \log Q=y(Q)
$$

by setting $y(t)=\rho \log t-t$. From the concavity of $y(t)$ for $t>0$, for $x \geq e^{2}$, we get

$$
\begin{aligned}
y(Q) \geq y(x)+(Q-x) y^{\prime}(x) & =(Q-x)\left(\frac{\rho}{x}-1\right) \\
& =(x-Q)\left(1-\frac{1}{\log x}\right) \geq \frac{1}{2}(x-Q)
\end{aligned}
$$

and so,

$$
\operatorname{ben}(g(m)) \geq \frac{1}{2}(x-Q)
$$

which, from (1.29) yields

$$
x-Q \leq 4 x^{\alpha}
$$

In conclusion, the only prime factors allowed in the denominator of $\frac{g(m)}{N}$ are the $Q^{\prime} s$, with $x-4 x^{\alpha} \leq Q \leq x$, and $\alpha_{Q}=1$.

What about the numerator? Let $P>x$ be a prime number and suppose that P^{t} divides $g(m)$ with $t \geq 2$. Then, from (1.26) and (1.23),

$$
\operatorname{ben}\left(N p^{t}\right) \geq \operatorname{ben}\left(N p^{2}\right)=P^{2}-2 \rho \log P
$$

But the function $t \mapsto t^{2}-2 \rho \log t$ is increasing for $t \geq \sqrt{\rho}$, so that,

$$
\operatorname{ben}\left(N P^{t}\right) \geq x^{2}-2 x>2 x^{\alpha}
$$

for x large enough, which contradicts (1.29). The only possibility is that P divides $g(m)$ with exponent 1 . In that case, from the convexity of the function $z(t)=t-\rho \log t$, inequality (1.26) yields

$$
\begin{aligned}
\operatorname{ben}(g(m)) \geq \operatorname{ben}(N P) & =z(P) \geq z(x)+(P-x) z^{\prime}(x) \\
& =(P-x)\left(1-\frac{1}{\log x}\right) \geq \frac{1}{2}(P-x)
\end{aligned}
$$

for $x \geq e^{2}$, which, with (1.29), implies

$$
P-x \leq 4 x^{\alpha}
$$

Up to now, we have shown that

$$
g(m)=N \frac{P_{i_{1}} \ldots P_{i_{r}}}{Q_{j_{1}} \ldots Q_{j_{s}}}
$$

with $P_{i_{r}} \leq x+4 x^{\alpha}, Q_{j_{s}} \geq x-4 x^{\alpha}$. It remains to show that $r=s$. First, since $n \leq m \leq n+2 x^{\alpha}$, and N belongs to G, we have from (1.18) and (1.19)

$$
\begin{equation*}
n \leq \ell(g(m)) \leq n+2 x^{\alpha} \tag{1.32}
\end{equation*}
$$

Further,

$$
\ell(g(m))-n=\sum_{t=1}^{r} P_{i_{t}}-\sum_{t=1}^{s} Q_{j_{t}}
$$

and since $r \leq 4 x^{\alpha}$, and $s \leq 4 x^{\alpha}$,

$$
\begin{aligned}
\ell(g(m))-n & \leq r\left(x+4 x^{\alpha}\right)-s\left(x-4 x^{\alpha}\right) \\
& \leq(r-s) x+32 x^{2 \alpha}
\end{aligned}
$$

From (1.32), $\ell(g(m))-n \geq 0$ holds and as $\alpha<1 / 2$, this implies that $r \geq s$ for x large enough. Similarly,

$$
\ell(g(m))-n \geq(r-s) x
$$

so, from (1.32), $(r-s) x$ must be $\leq 2 x^{\alpha}$, which, for x large enough, implies $r \leq s$; finally $r=s$, and the proof of Proposition 4 is completed.

Lemma 1. Let x be a positive real number, $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}$ be real number such that

$$
b_{k} \leq b_{k-1} \leq \ldots \leq b_{1} \leq x<a_{1} \leq a_{2} \leq \ldots \leq a_{k}
$$

and Δ be defined by $\Delta=\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)$. Then the following inequalities

$$
\frac{x+\Delta}{x} \leq \prod_{i=1}^{k} \frac{a_{i}}{b_{i}} \leq \exp \left(\frac{\Delta}{x}\right)
$$

hold.
Proof. It is easy, and can be found in [16], p. 159.
Now it is time to prove Theorem1. With the notation and hypothesis of Proposition 4 let us denote by B the set of integers M of the form

$$
M=N \frac{P_{i_{1}} P_{i_{2}} \ldots P_{i_{r}}}{Q_{j_{1}} Q_{j_{2}} \ldots Q_{j_{r}}}
$$

satisfying

$$
\ell(M)-\ell(N)=\sum_{t=1}^{r}\left(P_{i_{t}}-Q_{j_{t}}\right) \leq 2 x^{\alpha}
$$

From Proposition4 for $n \leq m \leq 2 x^{\alpha}, g(m) \in B$, and thus, from (1.18),

$$
\begin{equation*}
g(m)=\max _{\ell(M) \leq m}^{M \in B}, \tag{1.33}
\end{equation*}
$$

Further, for $0 \leq d \leq 2 x^{\alpha}$, define

$$
B_{d}=\{M \in B ; \ell(M)-\ell(N)=d\}
$$

I claim that, if $d<d^{\prime}$ (which implies $d \leq d^{\prime}-2$), any element of B_{d} is smaller than any element of $B_{d^{\prime}}$. Indeed, let $M \in B_{d}$, and $M^{\prime} \in B_{d^{\prime}}$. From Lemma 1. one has

$$
\frac{M}{N} \leq \exp \left(\frac{d}{x}\right) \quad \text { and } \quad \frac{M^{\prime}}{N} \geq \frac{x+d^{\prime}}{x} \geq \frac{x+d+2}{x}
$$

Since $d<2 x^{\alpha}<x$, and $e^{t} \leq \frac{1}{1-t}$ for $0 \leq t<1$, one gets

$$
\frac{M}{N} \leq \frac{1}{1-d / x}=\frac{x}{x-d}
$$

This last quantity is smaller than $\frac{x+d+2}{x}$ if $(d+1)^{2}<2 x+1$, which is true for x large enough, because $d \leq 2 x^{\alpha}$ and $\alpha<1 / 2$.

From the preceding claim, and from (1.33), it follows that, if B_{d} is non empty, then

$$
g(n+d)=\max B_{d}
$$

Further, since $N \in G$, we know that $n=\ell(N)$ belongs to the sequence $\left(n_{k}\right)$ where g is increasing, and so, $n=n_{k_{0}}$. If $0<d_{1}<d_{2}<\ldots<d_{s} \leq 2 x^{\alpha}$ denote the values of d for which B_{d} is non empty, then one has

$$
\begin{equation*}
n_{k_{0+i}}=n+d_{i}, 1 \leq i \leq s \tag{1.34}
\end{equation*}
$$

Suppose now that $\alpha<1 / 2$ and x have been chosen in such a way that (1.12) and (1.13) hold. With the notation of Proposition2 the set $E(x, \alpha)$ is certainly included in the set $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$, and from Proposition2,

$$
\begin{equation*}
s \geq C_{2} x^{\alpha} \tag{1.35}
\end{equation*}
$$

which implies that for at least one $i, d_{i+1}-d_{i} \leq \frac{2}{C_{2}}$, and thus

$$
n_{k_{0}+i+1}-n_{k_{0}+i} \leq \frac{2}{C_{2}}
$$

Finally, for $\frac{1}{6}<\alpha<\frac{1}{2}$, Proposition 1 allows us to choose x as wished, and thus, the proof of Theorem 1 is completed. With ε very small, and α close to $1 / 2$, the values of C_{1} and C_{2} given in Proposition 2 yield that for infinitely many $k^{\prime} s$,

$$
n_{k+1}-n_{k} \leq 20000
$$

To count how many such differences we get, we define

$$
\gamma(n)=\operatorname{Card}\{m \leq n ; g(m)>g(m-1)\}
$$

Therefore, with the notation (1.3), we have $n_{\gamma_{(n)}}=n$.
In [16, 162-164], it is proved that

$$
n^{1-\tau / 2} \ll \gamma(n) \leq n-c \frac{n^{3 / 4}}{\sqrt{\log n}}
$$

where τ is such that the sequence of consecutive primes satisfies $p_{i+1}-p_{i} \ll p_{i}^{\tau}$. Without any hypothesis, the best known τ is $>1 / 2$.
Proposition 5. We have $\gamma(n) \geq n^{3 / 4-\varepsilon}$ for all $\varepsilon>0$, and n large enough.
Proof. With the definition of $\gamma(n)$, (1.34) and (1.35) give

$$
\begin{equation*}
\gamma\left(n+2 x^{\alpha}\right)-\gamma(n) \geq s \gg x^{\alpha} \tag{1.36}
\end{equation*}
$$

whenever $n=\ell(N), N=N_{\rho}, \rho=x / \log x$, and x satisfies Proposition 1 But, from (1.21), two close enough distinct values of x can yield the same N.

I now claim that, with the notation of Proposition 1, the number of primes p_{i} between ξ and ξ^{\prime} such that there is at least one $x \in\left[p_{i}, p_{i+1}\right)$ satisfying (1.8), (1.9) and (1.10) is bigger than $\frac{1}{2}\left(\pi\left(\xi^{\prime}\right)-\pi(\xi)\right)$. Indeed, for each i for which [p_{i}, p_{i+1}) does not contain any such x, we get a measure $p_{i+1}-p_{i} \geq 2$, and if there are more than $\frac{1}{2}\left(\pi\left(\xi^{\prime}\right)-\pi(\xi)\right)$ such $i^{\prime} s$, the total measure will be greater than $\pi\left(\xi^{\prime}\right)-\pi(\xi) \sim \xi / \log ^{2} \xi$, which contradicts Proposition 1 .

From the above claim, there will be at least $\frac{1}{2}\left(\pi\left(\xi^{\prime}\right)-\pi(\xi)\right)$ distinct $N^{\prime} s$, with $N=N_{\rho}, \rho=x / \log x$, and $\xi \leq x \leq \xi^{\prime}$. Moreover, for two such distinct N, say $N^{\prime}<N^{\prime \prime}$, we have from (1.21), $\ell\left(N^{\prime \prime}\right)-\ell\left(N^{\prime}\right) \geq \xi$.

Let $N^{(1)}$ and $N^{(0)}$ the biggest and the smallest of these $N^{\prime} s$, and $n^{(1)}=$ $\ell\left(N^{(1)}\right), n^{(0)}=\ell\left(N^{(0)}\right)$, then from (1.36),

$$
\begin{equation*}
\gamma\left(n^{(1)}\right) \geq \gamma\left(n^{(1)}\right)-\gamma\left(n^{(0)}\right) \geq \frac{1}{2}\left(\pi\left(\xi^{\prime}\right)-\pi(\xi)\right) \xi^{\alpha} \gg \frac{\xi^{1+\alpha}}{\log ^{2} \xi} \tag{1.37}
\end{equation*}
$$

But from (1.21) and (1.22), $x \sim \log N_{\rho}$, and from (1.2),

$$
x \sim \log N_{\rho} \sim \sqrt{n \log n} \quad \text { with } \quad n=\ell\left(N_{p}\right)
$$

so

$$
\xi \sim \sqrt{n^{(1)} \log n^{(1)}}
$$

and since α can be choosen in (1.37) as close as wished of $1 / 2$, this completes the proof of Proposition5

Bibliography

[1] L. Alaoglu, P. Erdős, "On highly composite and similar numbers", Trans. Amer. Math. Soc. 56, 1944, 448-469.
[2] M. Deléglise, J.-L. Nicolas, P. Zimmermann, "Landau's function for one million billions", J. de Théorie des Nombres de Bordeaux, 20, 2008, 625671.
[3] M. Deléglise, J.-L. Nicolas, "Le plus grand facteur premier de la fonction de Landau", Ramanujan J., 27, 2012, 109-145.
[4] P. Erdős, "On highly composited numbers", J. London Math. Soc., 19, 1944, 130-133.
[5] P. Erdős, "Ramanujan and I", Number Theory, Madras 1987, Editor : K. Alladi, Lecture Notes in Mathematics n ${ }^{\circ}$ 1395, Springer-Verlag, 1989.
[6] P. Erdős, J.-L. Nicolas, "Répartition des nombres superabondants", Bull. Soc. Math. France, 103, 1975, 65-90.
[7] P. Erdős, P. Turan, "On some problems of a statistical group theory", I to VII, Zeitschr. fur Wahrschenlichkeitstheorie und verw. Gebiete, 4, 1965, 175-186; Acta Math. Hung., 18, 1967, 151-163; Acta Math. Hung., 18, 1967, 309-320; Acta Math. Hung., 19, 1968, 413-435; Periodica Math. Hung., 1, 1971, 5-13; J. Indian Math. Soc., 34, 1970, 175-192; Periodica Math. Hung., 2, 1972, 149-163.
[8] J. Grantham, "The largest prime dividing the maximal order of an element of $S_{n} "$, Math. Comp., 64, 1995, 407-410.
[9] E. Landau, "Uber die Maximalordung der Permutation gegebenen Grades", Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, 2nd edition, Chelsea, New-York, 1953, 222-229.
[10] J. P. Massias, "Majoration explicite de l'ordre maximum d'un élément du groupe symétrique", Ann. Fac. Sci. Toulouse Math., 6, 1984, 269-281.
[11] J. P. Massias, J.-L. Nicolas, G. Robin, "Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique", Acta Arithmetica, 50, 1988, 221-242.
[12] J. P. Massias, J.-L. Nicolas, G. Robin, "Effective bounds for the Maximal Order of an Element in the Symmetric Group", Math. Comp., 53, 1989, 665-678.
[13] W. Miller, "The Maximum Order of an Element of a Finite Symmetric Group", Amer. Math. Monthly, 94, 1987, 497-506.
[14] H. L. Montgomery, R. C. Vaughan, "The large sieve", Mathematika, 20, 1973, 119-134.
[15] J.-L. Nicolas, "Sur l'ordre maximum d'un élément dans le groupe S_{n} des permutations", Acta Arithmetica, 14, 1968, 315-332.
[16] J.-L. Nicolas, "Ordre maximum d'un élément du groupe de permutations et highly composite numbers", Bull. Soc. Math. France, 97, 1969, 129-191.
[17] J.-L. Nicolas, "Ordre maximal d'un élément d'un groupe de permutations", C.R. Acad. Sci. Paris, 270, 1970, 1473-1476.
[18] J.-L. Nicolas, "Répartition des nombres largement composés", Acta Arithmetica, 34, 1979, 379-390.
[19] S. Ramanujan, "Highly composite numbers", Proc. London Math. Soc., Series 2, 14, 1915, 347-400; and "Collected papers", Cambridge at the University Press, 1927, 78-128.
[20] S. Ramanujan, "Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin", Ramanujan J., 1, 1997, 119-153.
[21] A. Selberg, "On the normal density of primes in small intervals and the difference between consecutive primes", Arch. Math. Naturvid, 47, 1943, 87-105.
[22] S. Shah, "An Inequality for the Arithmetical Function $g(x)$ ", J. Indian Math. Soc., 3, 1939, 316-318.
[23] H. Siebert, "Montgomery's weighted sieve for dimension two", Monatsch., Math., 82, 1976, 327-336.
[24] N. J. A. Sloane, "The On-Line Encyclopedia of Integer Sequences", http://oeis.org. Accessed 12 December 2012.
[25] M. Szalay, "On the maximal order in S_{n} and $S_{n}^{* *}$, Acta Arithmetica, 37, 1980, 321-331.
[26] http://math.univ-lyon1.fr/~nicolas/landaug.html.

