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43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
jlnicola@in2p3.fr

http://math.univ-lyon1.fr/∼nicolas/

1.1 Introduction

Let Sn be the symmetric group of n letters. Landau considered the function
g(n) defined as the maximal order of an element of Sn; Landau observed that
(cf. [9])

g(n) = max lcm(m1, . . . ,mk) (1.1)

where the maximum is taken on all the partitions n = m1 +m2 + . . .+mk of n
and proved that, when n tends to infinity

log g(n) ∼
√

n logn. (1.2)

More precise asymptotic estimates have been given in [22, 25, 11]. In [25] and
[11] one also can find asymptotic estimates for the number of prime factors of
g(n). In [8] and [3], the largest prime factor P+(g(n)) of g(n) is investigated.
In [10] and [12], effective upper and lower bounds of g(n) are given. In [17], it
is proved that limn→∞ g(n+ 1)/g(n) = 1. An algorithm able to calculate g(n)
up to 1015 is given in [2] (see also [26]). The sequence of distinct values of g(n)
is entry A002809 of [24]. A nice survey paper was written by W. Miller in 1987
(cf. [13]).

My very first mathematical paper [15] was about Landau’s function, and
the main result was that g(n), which is obviously non decreasing, is constant on
arbitrarily long intervals (cf. also [16]). First time I met A. Schinzel in Paris in
May 1967. He told me that he was interested in my results, but that P. Erdős
would be more interested than himself. Then I wrote my first letter to Paul
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with a copy of my work. I received an answer dated of June 12 1967 saying ”
I sometimes thought about g(n) but my results were very much less complete
than yours”. Afterwards, I met my advisor, the late Professor Pisot, who, in
view of this letter, told me that my work was good for a thesis.

The main idea of my work about g(n) was to use the tools introduced by
S. Ramanujan to study highly composite numbers (cf. [19, 20]). P. Erdős was
very well aware of this paper of Ramanujan (cf. [1, 4, 6, 5]) as well as of the
symmetric group and the order of its elements, (cf. [7]) and I think that he
enjoyed the connection between these two areas of mathematics. Anyway, since
these first letters, we had many occasions to discuss Landau’s function.

Let us define n1 = 1, n2 = 2, n3 = 3, n4 = 4, n5 = 5, n6 = 7, etc . . . , nk (see
a table of g(n) in [16, p. 187]), such that

g(nk) > g(nk − 1). (1.3)

The above mentioned result can be read:

lim (nk+1 − nk) = +∞. (1.4)

Here, I shall prove the following result:

Theorem 1.

lim (nk+1 − nk) < +∞. (1.5)

Let us set p1 = 2, p2 = 3, p3 = 5, . . ., pk = the k-th prime. It is easy to
deduce Theorem1 from the twin prime conjecture (i.e. lim (pk+1 − pk) = 2) or
even from the weaker conjecture lim (pk+1 − pk) < +∞. (cf. §1.4 below). But
I shall prove Theorem1 independently of these deep conjectures. Moreover I
shall explain below why it is reasonable to conjecture that the mean value of
nk+1 − nk is 2; in other terms one may conjecture that

nk ∼ 2k (1.6)

and that nk+1 − nk = 2 has infinitely many solutions. Due to a parity phe-
nomenon, nk+1 − nk seems to be much more often even than odd; nevertheless,
I conjecture that:

lim (nk+1 − nk) = 1. (1.7)

The steps of the proof of Theorem1 are first to construct the set G of val-
ues of g(n) corresponding to the so called superior highly composite numbers
introduced by S. Ramanujan, and then, when g(n) ∈ G, to build the table of
g(n + d) when d is small. This will be done in §1.4 and §1.5. Such values of
g(n+d) will be linked with the number of distinct differences of the form P −Q
where P and Q are primes satisfying x − xα ≤ Q ≤ x < P ≤ x + xα, where
x goes to infinity and 0 < α < 1. Our guess is that these differences P − Q
represent almost all even numbers between 0 and 2xα, but we shall only prove
in §1.3 that the number of these differences is of the order of magnitude of xα,
under certain strong hypothesis on x and α, and for that a result due to Selberg
about the primes between x and x+ xα will be needed (cf. §1.2).
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To support conjecture (1.6), I think that what has been done here with
g(n) ∈ G can also be done for many more values of g(n), but, unfortunately,
even assuming strong hypotheses, I do not see for the moment how to manage
it.

I thank very much E. Fouvry who gave me the proof of Proposition 2.

1.1.1 Notation

p will denote a generic prime, pk the k-th prime; P,Q, Pi, Qj will also denote
primes. As usual π(x) =

∑

p≤x 1 is the number of primes up to x.
|S| will denote the number of elements of the set S. The sequence nk is

defined by (1.3).

1.2 About the distribution of primes

Proposition 1. Let us define π(x) =
∑

p≤x 1, and let α be such that 1
6 < α < 1,

and ε > 0. When ξ goes to infinity, and ξ′ = ξ + ξ/ log ξ, then for all x in the
interval [ξ, ξ′] but a subset of measure O((ξ′ − ξ)/ log3 ξ) we have:

∣

∣

∣

∣

π(x+ xα)− π(x)− xα

log x

∣

∣

∣

∣

≤ ε
xα

log x
(1.8)

∣

∣

∣

∣

π(x)− π(x − xα)− xα

log x

∣

∣

∣

∣

≤ ε
xα

log x
(1.9)

∣

∣

∣

∣

x

log x
− Qk −Qk−1

logQ

∣

∣

∣

∣

≥
√
x

log4 x
for all primes Q, and k ≥ 2. (1.10)

Proof. This proposition is an easy extension of a result of Selberg (cf. [21])
who proved that (1.8) holds for most x in (ξ, ξ′). In [18], I gave a first extension
of Selberg’s result by proving that (1.8) and (1.9) hold simultaneously for all x
in (ξ, ξ′) but for a subset of measure O((ξ′ − ξ)/ log3 ξ). So, it suffices to prove
that the measure of the set of values of x in (ξ, ξ′) for which (1.10) does not
hold is O((ξ′ − ξ)/ log3 ξ).

We first count the number of primes Q such that for one k we have:

ξ

log ξ
≤ Qk −Qk−1

logQ
≤ ξ′

log ξ′
. (1.11)

If Q satisfies (1.11), then k ≤ log ξ′

log 2 for ξ′ large enough. Further, for k fixed,

(1.11) implies that Q ≤ (ξ′)1/k, and the total number of solutions of (1.11) is

≤
log ξ′/ log 2

∑

k=2

(ξ′)1/k = O(
√

ξ′) = O(
√

ξ).
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With a more careful estimation, this upper bound could be improved, but this

crude result is enough for our purpose. Now, for all values of y = Qk−Qk−1

logQ

satisfying (1.11), we cross out the interval
(

y −
√
ξ′

log4 ξ′
, y +

√
ξ′

log4 ξ′

)

. We also

cross out this interval whenever y = ξ
log ξ and y = ξ′

log ξ′ . The total sum of

the lengths of the crossed out intervals is O
(

ξ
log4 ξ

)

, which is smaller than

the length of the interval
(

ξ
log ξ ,

ξ′

log ξ′

)

and if x
log x does not fall into one of

these forbidden intervals, (1.10) will certainly hold. Since the derivative of the
function ϕ(x) = x/ log x is ϕ′(x) = 1

log x − 1
log2 x

and satisfies ϕ′(x) ∼ 1
log ξ for all

x ∈ (ξ, ξ′), the measure of the set of values of x ∈ (ξ, ξ′) such that ϕ(x) falls into

one of the above forbidden intervals is, by the mean value theorem O
(

ξ
log3 ξ

)

,

and the proof of Proposition1 is completed.

1.3 About the differences between primes

Proposition 2. Suppose that there exists α, 0 < α < 1, and x large enough
such that the inequalities

π(x + xα)− π(x) ≥ (1− ε)xα/ log x (1.12)

π(x) − π(x− xα) ≥ (1− ε)xα/ log x (1.13)

hold. Then the set

E = E(x, α) = {P −Q;P,Q primes, x− xα < Q ≤ x < P ≤ x+ xα}

satisfies:

|E| ≥ C2x
α

where C2 = C1α
4(1−ε)4 and C1 is an absolute constant (C1 = 0.00164 works).

Proof. The proof is a classical application of the sieve method that Paul
Erdős enjoys very much. Let us set, for d ≤ 2xα,

r(d) = |{(P,Q);x− xα < Q ≤ x < P ≤ x+ xα, P −Q = d}|.

Clearly we have

|E| =
∑

0<d≤2xα

r(d) 6=0

1 (1.14)

and

∑

0<d≤2xα

r(d) = (π(x+xα)−π(x))(π(x)−π(x−xα )) ≥ (1−ε)2x2α/ log2 x. (1.15)
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Now to get an upper bound for r(d), we sift the set

A = {n;x− xα < n ≤ x}

with the primes p ≤ z. If p divides d, we cross out the n′s satisfying n ≡ 0
(mod p), and if p does not divide d, the n′s satisfying

n ≡ 0 (mod p) or n ≡ −d (mod p)

so that we set for p ≤ z:

w(p) =

{

1 if p divides d

2 if p does not divide d.

By applying the large sieve (cf. [14, Corollary 1]), we have

r(d) ≤ |A|
L(z)

with

L(z) =
∑

n≤z

(

1 +
3

2
n|A|−1z

)−1

µ(n)2





∏

p|n

w(p)

p− w(p)





(µ is the Möbius function), and with the choice z = (23 |A|)1/2, it is proved in
[23] that

|A|
L(z)

≤ 16
∏

p≥3

(

1− 1

(p− 1)2

) |A|
log2(|A|)

∏

p|d
p>2

p− 1

p− 2
.

The value of the above infinite product is 0.6602 . . . < 2/3. We set f(d) =
∏

p|d
p>2

p−1
p−2 , and we observe that |A| ≥ xα − 1, so that for x large enough

r(d) ≤ 32

3α2

|A|
log2 x

f(d). (1.16)

Now, for the next step, we shall need an upper bound for
∑

n≤x f
2(n). By using

the convolution method and defining

h(n) =
∑

a|n
µ(a)f2(n/a)

one gets h(2) = h(22) = h(23) = . . . = 0 and, for p ≥ 3, h(p) = 2p−3
(p−2)2 ,

h(p2) = h(p3) = . . . = 0, so that

∑

n≤x
f2(n) =

∑

n≤x

∑

a|n
h(a) =

∑

a≤x
h(a)

⌊x

a

⌋

≤ x
∑∞

a=1

h(a)

a
= x

∏

p≥3

(

1 +
2p− 3

p(p− 2)2

)

(1.17)

= 2.63985 . . .x ≤ 8

3
x.
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From (1.15) and (1.16), one can deduce

(1− ε)2x2α

log2 x
≤

∑

0<d≤2xα

r(d) 6=0

r(d) ≤ 32

3α2

|A|
log2 x

∑

0<d≤2xα

r(d) 6=0

f(d).

which implies
∑

0<d≤2xα

r(d) 6=0

f(d) ≥ 3α2x2α(1− ε)2

32|A| ·

By Cauchy-Schwarz’s inequality, one has









∑

0<d≤2xα

r(d) 6=0

1

















∑

0<d≤2xα

r(d) 6=0

f2(d)









≥ 9α4x4α(1− ε)4

1024|A|2

and, by (1.14) and (1.17)

|E| ≥ 9α4x4α(1− ε)4

1024|A|2
/

8

3
(2xα) =

27

16384

x3α(1 − ε)4

|A|2 ·

Since |A| ≤ xα + 1, and x has been supposed large enough, proposition 2 is
proved.

1.4 Some properties of g(n)

Here, we recall some known properties of g(n) which can be found for instance in
[16]. Let us define the arithmetic function ℓ in the following way: ℓ is additive,
and, if p is a prime and k ≥ 1, then ℓ(pk) = pk. It is not difficult to deduce
from (1.1) (cf. [13] or [16]) that

g(n) = max
ℓ(M)≤n

M. (1.18)

Now the relation (cf. [16], p. 139)

M ∈ g(N) ⇐⇒ (M ′ > M =⇒ ℓ(M ′) > ℓ(M)) (1.19)

easily follows from (1.18), and shows that the values of the Landau function
g are the ”champions” for the small values of ℓ. So the methods introduced
by Ramanujan (cf. [19]) to study highly composite numbers can also be used
for g(n). Indeed M is highly composite, if it is a ”champion” for the divisor
function d, that is to say if

M ′ < M =⇒ d(M ′) < d(M).
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Corresponding to the so-called superior highly composite numbers, one intro-
duces the set G : N ∈ G if there exists ρ > 0 such that

∀M ≥ 1, ℓ(M)− ρ logM ≥ ℓ(N)− ρ logN. (1.20)

(1.19) and (1.20) easily imply that G ⊂ g(N). Moreover, if ρ > 2/ log 2, let us
define x > 4 such that ρ = x/ logx and

Nρ =
∏

p≤x

pαp =
∏

p

pαp (1.21)

with

αp =











0 if p > x

1 if p
log p ≤ ρ < p2−p

log p

k ≥ 2 if pk−pk−1

log p ≤ ρ < pk−1−pk

log p

then Nρ ∈ G. With the above definition, since x ≥ 4, it is not difficult to show
that (cf. [11, (5)])

pαp ≤ x (1.22)

holds for p ≤ x, whence Nρ is a divisor of the l.c.m. of the integers ≤ x. Here
we can prove

Proposition 3. For every prime p, there exists n such that the largest prime
factor of g(n) is equal to p.

Proof. We have g(2) = 2, g(3) = 3. If p ≥ 5, let us choose ρ = p/ log p >
2/ log 2. Nρ defined by (1.21) belongs to G ⊂ g(N), and its largest prime factor
is p, which proves Proposition (3).

From Proposition3, it is easy to deduce a proof of Theorem1, under the twin
prime conjecture. Let P = p + 2 be twin primes, and n such that the largest
prime factor of g(n) is p. The sequence nk being defined by (1.3), we define k in
terms of n by nk ≤ n < nk+1, so that g(nk) = g(n) has its largest prime factor
equal to p. Now, from (1.18) and (1.19),

ℓ(g(nk)) = nk

and g(nk+2) > g(nk) sinceM = P
p g(nk) satisfiesM > g(nk) and ℓ(M) = nk+2.

So nk+1 ≤ nk + 2, and Theorem1 is proved under this strong hypothesis.

Let us introduce now the so-called benefit method. For a fixed ρ > 2/ log 2,
N = Nρ is defined by (1.21), and for any integer M ,

M =
∏

p

pβp ,

one defines the benefit of M :

ben(M) = ℓ(M)− ℓ(N)− ρ logM/N. (1.23)
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Clearly, from (1.20), ben(M) ≥ 0 holds, and from the additivity of ℓ one has

ben(M) =
∑

p

(

ℓ(pβp)− ℓ(pαp)− ρ(βp − αp) log p
)

. (1.24)

In the above formula, let us observe that ℓ(pβ) = pβ if β ≥ 1, but that ℓ(pβ) =
0 6= pβ = 1 if β = 0, and, due to the choice of αp in (1.21), that, in the sum
(1.24), all the terms are non negative: for all p and for β ≥ 0, we have

ℓ(pβ)− ℓ(pαp)− ρ(β − αp) log p ≥ 0 (1.25)

Indeed, let us consider the set of points (0,0) and (β, pβ/ log p) for β integer
≥ 1. For all p, the piecewise linear curve going through these points is convex,
and for a given ρ, αp is chosen so that the straight line L of slope ρ going

through
(

αp,
pαp

log p

)

does not cut that curve. The left-hand side of (1.25), (which

is ben(Npβ−αp)) can be seen as the product of log p by the vertical distance

of the point
(

β, pβ

log p

)

to the straight line L, and because of convexity, we shall

have for all p,
ben(Npt) ≥ t ben(Np), t ≥ 1 (1.26)

and for p ≤ x,
ben(Np−t) ≥ t ben(Np−1), 1 ≤ t ≤ αp. (1.27)

1.5 Proof of Theorem1

First the following proposition will be proved:

Proposition 4. Let α < 1/2, and x large enough such that (1.10) holds. Let
us denote the primes surrounding x by:

. . . < Qj < . . . < Q2 < Q1 ≤ x < P1 < P2 < . . . < Pi < . . .

Let us define ρ = x/ log x,N = Nρ by (1.21), n = ℓ(N). Then for n ≤ m ≤
n+ 2xα, g(m) can be written

g(m) = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . . Qjr

(1.28)

with r ≥ 0 and i1 < . . . < ir, j1 < . . . < jr, Pir ≤ x+ 4xα, Qjr ≥ x− 4xα.

Proof. First, from (1.18), one has ℓ(g(m)) ≤ m, and from (1.23) and (1.18)

ben(g(m)) = ℓ(g(m))− ℓ(N)− ρ log
g(m)

N
≤ m− n ≤ 2xα (1.29)

for n ≤ m ≤ 2xα.

Further, let Q ≤ x be a prime, and k = αQ ≥ 1 the exponent of Q in the
standard factorization of N . Let us suppose that for a fixed m,Q divides g(m)



1.5. PROOF OF THEOREM?? 9

with the exponent βQ = k + t, t > 0. Then, from (1.24), (1.25), and (1.26), one
gets

ben(g(m)) ≥ ben(NQt) ≥ ben(NQ) (1.30)

and

ben(NQ) = Qk+1 −Qk − ρ logQ

= logQ

(

Qk+1 −Qk

logQ
− ρ

)

.

From (1.21), the above parenthesis is non negative, and from (1.10), one gets:

ben(NQ) ≥ log 2

√
x

log4 x
· (1.31)

For x large enough, there is a contradiction between (1.29), (1.30) and (1.31),
and so, βQ ≤ αQ.

Similarly, let us suppose Q ≤ x, k = αQ ≥ 2 and βQ = k− t, 1 ≤ t ≤ k. One
has, from (1.24), (1.25) and (1.27),

ben(g(m)) ≥ ben(NQ−t) ≥ ben(NQ−1)

and

ben(NQ−1) = Qk−1 −Qk + ρ logQ

= logQ

(

ρ− Qk −Qk−1

logQ

)

≥ log 2

√
x

log4 x

which contradicts (1.29), and so, for such a Q, βQ = αQ.

Now, let us suppose Q ≤ x, αQ = 1, and βQ = 0 for some m,n ≤ m ≤
n+ 2xα. Then

ben(g(m)) ≥ ben(NQ−1) = −Q+ ρ logQ = y(Q)

by setting y(t) = ρ log t− t. From the concavity of y(t) for t > 0, for x ≥ e2, we
get

y(Q) ≥ y(x) + (Q − x)y′(x) = (Q− x)
( ρ

x
− 1

)

= (x−Q)

(

1− 1

log x

)

≥ 1

2
(x−Q)

and so,

ben(g(m)) ≥ 1

2
(x−Q)

which, from (1.29) yields
x−Q ≤ 4xα.
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In conclusion, the only prime factors allowed in the denominator of g(m)
N are the

Q′s, with x− 4xα ≤ Q ≤ x , and αQ = 1.

What about the numerator? Let P > x be a prime number and suppose
that P t divides g(m) with t ≥ 2. Then, from (1.26) and (1.23),

ben(Npt) ≥ ben(Np2) = P 2 − 2ρ logP.

But the function t 7→ t2 − 2ρ log t is increasing for t ≥ √
ρ, so that,

ben(NP t) ≥ x2 − 2x > 2xα

for x large enough, which contradicts (1.29). The only possibility is that P
divides g(m) with exponent 1. In that case, from the convexity of the function
z(t) = t− ρ log t, inequality (1.26) yields

ben(g(m)) ≥ ben(NP ) = z(P ) ≥ z(x) + (P − x)z′(x)

= (P − x)

(

1− 1

log x

)

≥ 1

2
(P − x)

for x ≥ e2, which, with (1.29), implies

P − x ≤ 4xα.

Up to now, we have shown that

g(m) = N
Pi1 . . . Pir

Qj1 . . . Qjs

with Pir ≤ x+ 4xα, Qjs ≥ x− 4xα. It remains to show that r = s. First, since
n ≤ m ≤ n+ 2xα, and N belongs to G, we have from (1.18) and (1.19)

n ≤ ℓ(g(m)) ≤ n+ 2xα. (1.32)

Further,

ℓ(g(m))− n =

r
∑

t=1

Pit −
s

∑

t=1

Qjt

and since r ≤ 4xα, and s ≤ 4xα,

ℓ(g(m))− n ≤ r(x + 4xα)− s(x− 4xα)

≤ (r − s)x+ 32x2α.

From (1.32), ℓ(g(m))− n ≥ 0 holds and as α < 1/2, this implies that r ≥ s for
x large enough. Similarly,

ℓ(g(m))− n ≥ (r − s)x,

so, from (1.32), (r − s)x must be ≤ 2xα, which, for x large enough, implies
r ≤ s; finally r = s, and the proof of Proposition 4 is completed.



1.5. PROOF OF THEOREM?? 11

Lemma 1. Let x be a positive real number, a1, a2, . . . , ak, b1, b2, . . . , bk be real
number such that

bk ≤ bk−1 ≤ . . . ≤ b1 ≤ x < a1 ≤ a2 ≤ . . . ≤ ak

and ∆ be defined by ∆ =
∑k

i=1(ai − bi). Then the following inequalities

x+∆

x
≤

k
∏

i=1

ai
bi

≤ exp

(

∆

x

)

hold.

Proof. It is easy, and can be found in [16], p. 159.

Now it is time to prove Theorem1. With the notation and hypothesis of
Proposition4, let us denote by B the set of integers M of the form

M = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . .Qjr

satisfying

ℓ(M)− ℓ(N) =

r
∑

t=1

(Pit −Qjt) ≤ 2xα.

From Proposition4, for n ≤ m ≤ 2xα, g(m) ∈ B, and thus, from (1.18),

g(m) = maxℓ(M)≤m M.
M∈B

(1.33)

Further, for 0 ≤ d ≤ 2xα, define

Bd = {M ∈ B; ℓ(M)− ℓ(N) = d}.

I claim that, if d < d′ (which implies d ≤ d′ − 2), any element of Bd is smaller
than any element of Bd′ . Indeed, let M ∈ Bd, and M ′ ∈ Bd′ . From Lemma 1,
one has

M

N
≤ exp

(

d

x

)

and
M ′

N
≥ x+ d′

x
≥ x+ d+ 2

x
·

Since d < 2xα < x, and et ≤ 1
1−t for 0 ≤ t < 1, one gets

M

N
≤ 1

1− d/x
=

x

x− d
·

This last quantity is smaller than x+d+2
x if (d + 1)2 < 2x+ 1, which is true for

x large enough, because d ≤ 2xα and α < 1/2.
From the preceding claim, and from (1.33), it follows that, if Bd is non

empty, then
g(n+ d) = maxBd.
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Further, since N ∈ G, we know that n = ℓ(N) belongs to the sequence (nk)
where g is increasing, and so, n = nk0 . If 0 < d1 < d2 < . . . < ds ≤ 2xα denote
the values of d for which Bd is non empty, then one has

nk0+i
= n+ di, 1 ≤ i ≤ s. (1.34)

Suppose now that α < 1/2 and x have been chosen in such a way that (1.12)
and (1.13) hold. With the notation of Proposition2, the set E(x, α) is certainly
included in the set {d1, d2, . . . , ds}, and from Proposition2,

s ≥ C2x
α (1.35)

which implies that for at least one i, di+1 − di ≤ 2
C2

, and thus

nk0+i+1 − nk0+i ≤
2

C2
.

Finally, for 1
6 < α < 1

2 , Proposition1 allows us to choose x as wished, and thus,
the proof of Theorem1 is completed. With ε very small, and α close to 1/2, the
values of C1 and C2 given in Proposition2 yield that for infinitely many k′s,

nk+1 − nk ≤ 20000.

To count how many such differences we get, we define

γ(n) = Card{m ≤ n; g(m) > g(m− 1)}.

Therefore, with the notation (1.3), we have nγ(n)
= n.

In [16, 162–164], it is proved that

n1−τ/2 ≪ γ(n) ≤ n− c
n3/4

√
logn

where τ is such that the sequence of consecutive primes satisfies pi+1−pi ≪ pτi .
Without any hypothesis, the best known τ is > 1/2.

Proposition 5. We have γ(n) ≥ n3/4−ε for all ε > 0, and n large enough.

Proof. With the definition of γ(n), (1.34) and (1.35) give

γ(n+ 2xα)− γ(n) ≥ s ≫ xα (1.36)

whenever n = ℓ(N), N = Nρ, ρ = x/ log x, and x satisfies Proposition1. But,
from (1.21), two close enough distinct values of x can yield the same N .

I now claim that, with the notation of Proposition 1, the number of primes
pi between ξ and ξ′ such that there is at least one x ∈ [pi, pi+1) satisfying (1.8),
(1.9) and (1.10) is bigger than 1

2 (π(ξ
′) − π(ξ)). Indeed, for each i for which

[pi, pi+1) does not contain any such x, we get a measure pi+1 − pi ≥ 2, and if
there are more than 1

2 (π(ξ
′)− π(ξ)) such i′s, the total measure will be greater

than π(ξ′)− π(ξ) ∼ ξ/ log2 ξ, which contradicts Proposition1.
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From the above claim, there will be at least 1
2 (π(ξ

′) − π(ξ)) distinct N ′s,
with N = Nρ, ρ = x/ log x, and ξ ≤ x ≤ ξ′. Moreover, for two such distinct N ,
say N ′ < N”, we have from (1.21), ℓ(N ′′)− ℓ(N ′) ≥ ξ.

Let N (1) and N (0) the biggest and the smallest of these N ′s, and n(1) =
ℓ(N (1)), n(0) = ℓ(N (0)), then from (1.36),

γ(n(1)) ≥ γ(n(1))− γ(n(0)) ≥ 1

2
(π(ξ′)− π(ξ)) ξα ≫ ξ1+α

log2 ξ
. (1.37)

But from (1.21) and (1.22), x ∼ logNρ, and from (1.2),

x ∼ logNρ ∼
√

n logn with n = ℓ(Np)

so
ξ ∼

√

n(1) logn(1)

and since α can be choosen in (1.37) as close as wished of 1/2, this completes
the proof of Proposition5.
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