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Abstract

We present a set of 26 finite quandles that distinguish (up to reversal and mirror image) by

number of colorings, all of the 2977 prime oriented knots with up to 12 crossings. We also show

that 1058 of these knots can be distinguished from their mirror images by the number of color-

ings by quandles from a certain set of 23 finite quandles. We study the colorings of these 2977

knots by all of the 431 connected quandles of order at most 35 found by L. Vendramin. Among

other things, we collect information about quandles that have the same number of colorings

for all of the 2977 knots. For example, we prove that if Q is a simple quandle of prime power

order then Q and the dual quandle Q∗ of Q have the same number of colorings for all knots

and conjecture that this holds for all Alexander quandles Q. We study a knot invariant based

on a quandle homomorphism f : Q1 → Q0. We also apply the quandle colorings we have com-

puted to obtain some new results for the bridge index, the Nakanishi index, the tunnel number,

and the unknotting number. In an appendix we discuss various properties of the quandles in

Vendramin’s list. Links to the data computed and various programs in C, GAP and Maple are

provided.

Key words: Quandles, knot colorings, mirror images of knots, knot invariants.

1 Introduction

Sets with certain self-distributive operations called quandles have been studied since the 1940s in

various areas with different names. They have been studied, for example, as algebraic systems

for symmetries [45], as quasi-groups [18], and in relation to modules [21, 37]. Typical examples

of quandles arise from conjugacy classes of groups and from modules over the integral Laurent

polynomial ring Z[t, t−1], called Alexander quandles. The fundamental quandle of a knot was

defined in a manner similar to the fundamental group [25, 32] of a knot, which made quandles

an important tool in knot theory. The number of homomorphisms from the fundamental quandle

to a fixed finite quandle has an interpretation as colorings of knot diagrams by quandle elements,

and has been widely used as a knot invariant. Algebraic homology theories for quandles were

defined [6, 17], and investigated in [29, 34, 38, 39, 40]. Extensions of quandles by cocycles have

been studied [1, 5, 14], and invariants derived thereof are applied to various properties of knots and

knotted surfaces (see [7] and references therein).

Tables of small quandles have been made previously (e.g., [7, 15, 37]). Computations using

GAP by L. Vendramin [47] significantly expanded the list for connected quandles. He found all

connected quandles of order up to 35. There are 431 of them. These quandles may be found in the
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GAP package RIG [46]. We refer to these quandles as RIG quandles, and use the notation C[n, i]

for the i-th quandle of order n in his list. As a matrix C[n, i] is the transpose of the quandle matrix

SmallQuandle(n, i) in [46].

In this paper, we investigate to what extent the number of quandle colorings of a knot by a

finite quandle can distinguish the oriented knots with at most 12 crossings from the knot table at

KnotInfo [8].

In Section 2, we provide definitions and conventions. The coloring of knots by quandles and the

relationship to symmetry of knots are discussed in Section 3 and Section 4. It turns out that RIG

quandles do not suffice to distinguish all of the prime, oriented knots with at most 12 crossings. To

distinguish all of these knots we generated several thousand conjugation quandles and generalized

Alexander quandles. Eventually we found a set of 26 quandles that distinguish, up to orientation

and mirror image, all knots with up to 12 crossings. These computations extend the results by

Dionisio and Lopes [12] for 10 Alexander quandles and 249 prime knots with at most 10 crossings.

We write m(K) for the mirror image of knot K and r(K) for K with the orientation reversed.

The 2977 knots given at KnotInfo [8] are representatives up to mirrors and reverses of the prime,

oriented knots with at most 12 crossings (see [9]). It is known [30, 32] that quandle colorings do not

distinguish K from rm(K) for any knot K. Thus it is of interest which finite quandles, if any, can

distinguish K from m(K). This is only possible for a knot which is chiral or negative amphicheiral.

There are 1366 chiral or negative amphicheiral knots among the 2977 knots with up to 12 crossings

at KnotInfo [8]. We have found a set of 23 quandles that distinguish K from m(K) for 1058 knots

out of these 1366 knots. It remains an open question whether the remaining 308 of these knots can

be so distinguished.

Many sets of RIG quandles share the same number of colorings for all knots in the KnotInfo

table. We explore this phenomenon in Section 5. For example, we conjecture that a connected

Alexander quandle and its dual quandle always give the same number of colorings for any knot,

and we prove this for a special class of Alexander quandles. In Section 6, we introduce an invariant of

knots based on quandle homomorphisms and mention a relation to the quandle cocycle invariant.

The computational results are applied to other knot invariants in Section 7, such as the bridge

index, the Nakanishi index, the tunnel number and the unknotting number. Various properties of

quandles are further discussed in Appendix A, and a summary of computational results is given as

to these properties for RIG quandles. Descriptions of quandles used for distinguishing knots and

their mirror images can be found in Appendix B. Files containing the quandle matrices, programs

and the results of computations can be found at [48, 49]. Appendix C contains the list of 12

crossing knots discussed in Section 7. Appendix D contains some information on programs used

for colorings.

2 Preliminaries

We briefly review some definitions and examples of quandles. More details can be found, for

example, in [1, 7, 17].
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A quandle X is a set with a binary operation (a, b) 7→ a ∗ b satisfying the following conditions.

(1) For any a ∈ X, a ∗ a = a.

(2) For any b, c ∈ X, there is a unique a ∈ X such that a ∗ b = c.

(3) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A quandle homomorphism between two quandles X,Y is a map f : X → Y such that f(a ∗X b) =

f(a) ∗Y f(b), where ∗X and ∗Y denote the quandle operations of X and Y , respectively. A quandle

isomorphism is a bijective quandle homomorphism, and two quandles are isomorphic if there is a

quandle isomorphism between them.

Typical examples of quandles include the following.

• Any non-empty set X with the operation a ∗ b = a for any a, b ∈ X is a quandle called a

trivial quandle.

• A conjugacy class X of a group G with the quandle operation a ∗ b = b−1ab. We call this a

conjugation quandle.

• A generalized Alexander quandle is defined by a pair (G, f) where G is a group and f ∈

Aut(G), and the quandle operation is defined by x ∗ y = f(xy−1)y. If G is abelian, this is

called an Alexander quandle.

• A Galkin quandle is defined as follows. Let A be an abelian group, also regarded naturally as

a Z-module. Let µ : Z3 → Z , τ : Z3 → A be functions. These functions µ and τ need not be

homomorphisms. Define a binary operation on Z3 ×A by

(x, a) ∗ (y, b) = (2y − x,−a+ µ(x− y)b+ τ(x− y)) x, y ∈ Z3, a, b ∈ A.

Then for any abelian group A, the above operation ∗ defines a quandle structure on Z3 × A

if µ(0) = 2, µ(1) = µ(2) = −1, and τ(0) = 0. Galkin gave this definition in [18], page 950, for

A = Zp, and this definition was given in [10].

• A function φ : X×X → A for an abelian group A is called a quandle 2-cocycle [6] if it satisfies

φ(x, y)− φ(x, z) + φ(x ∗ y, z)− φ(x ∗ z, y ∗ z) = 0

and φ(x, x) = 0 for any x, y, z ∈ X. For a quandle 2-cocycle φ, X ×A becomes a quandle by

(x, a) ∗ (y, b) = (x ∗ y, a+ φ(x, y)) for x, y ∈ X, a, b ∈ A, and it is called an abelian extension

of X by A, see [5].

Let X be a quandle. The right translation Ra : X → X, by a ∈ X, is defined by Ra(x) = x ∗ a

for x ∈ X. Similarly the left translation La is defined by La(x) = a ∗ x. Then Ra is a permutation

of X by Axiom (2). The subgroup of Sym(X) generated by the permutations Ra, a ∈ X, is called

the inner automorphism group of X, and is denoted by Inn(X). A quandle is connected if Inn(X)

acts transitively on X. The operation ∗̄ on X defined by a ∗̄ b = R−1
b (a) is a quandle operation,

and (X, ∗̄) is called the dual quandle of (X, ∗). We also denote the dual of X by X∗. If X∗ is

isomorphic to X, then X is called self-dual.

We write K = K ′ to denote that there is an orientation preserving homeomorphism of S3 that

takes K to K ′ preserving the orientations of K and K ′. A coloring of an oriented knot diagram by
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a quandle X is a map C : A → X from the set of arcs A of the diagram to X such that the image

of the map satisfies the relation depicted in Figure 1 at each crossing. More details can be found in

[7, 13], for example. A coloring that assigns the same element of X to all the arcs is called trivial,

otherwise non-trivial. The number of colorings of a knot diagram by a finite quandle is known to

be independent of the choice of a diagram, and hence is a knot invariant. In Figure 2, a coloring

of a figure-eight knot is indicated. In the figure, the elements x, y, z of a quandle are assigned at

the top arcs. The coloring conditions are applied to color other arcs as depicted. Since the bottom

arcs are connected to the top arcs, we need the conditions

x = z ∗ (x ∗ y),

y = (x ∗ y) ∗ (y ∗ (z ∗ (x ∗ y))),

z = y ∗ (z ∗ (x ∗ y)).

to obtain a coloring. Each crossing corresponds to a standard generator σi of the 3-strand braid

group or its inverse, and the closure of σ1σ
−1
2 σ1σ

−1
2 represents the figure-eight knot. The dotted

lines indicate the closure, see [44] for more details on braids. We give the orientation downward for

braids, see the figure. For the rest of this paper all knots will be prime and oriented.

y

* yx * yx

x y x

Figure 1: The coloring rule at crossings

z

yx

* * yxz ( )y* ( )

* yx * * * yxz ( )y* ( )( ) ( )

* * yxz ( )

x y

*

Figure 2: Figure-eight knot as the closure of the

braid σ1σ
−1
2 σ1σ

−1
2

The fundamental quandle is defined in a manner similar to the fundamental group [25, 32]. A

presentation of a quandle is defined in a manner similar to groups as well, and a presentation of

the fundamental quandle is obtained from a knot diagram (see, for example, [16]), by assigning

generators to arcs of a knot diagram, and relations corresponding to crossings. The set of colorings

of a knot diagram K by a quandle X, then, is in one-to-one correspondence with the set of quandle

homomorphisms from the fundamental quandle of K to X.

If Q is a quandle and K is a knot we denote by ColNQ (K) the number of non-trivial colorings of

K by Q. The number of colorings including trivial colorings is ColQ(K) = ColNQ (K)+|Q|, where |Q|

is the order of Q. It is well known that for each quandle Q, ColQ(K) is an invariant of knots ([43],

for example). We say that the quandle Q distinguishes knots K and K ′ if ColQ(K) 6= ColQ(K
′).

Let m : S3 → S
3 be an orientation reversing homeomorphism. For a knot K, m(K) is the

mirror image of K. Let r(K) denote the same knot K with its orientation reversed. We regard m
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and r as maps on equivalence classes of knots. We consider the group G = {1, r,m, rm} acting on

the set of all oriented knots. For each knot K let G(K) = {K, r(K),m(K), rm(K)} be the orbit of

K under the action of G.

By a symmetry we mean that a knot (type) K remains unchanged under one of r, m, rm. As

in the definition of symmetry type in [8] we say that a knot K is

• reversible if the only symmetry it has is K = r(K),

• negative amphicheiral if the only symmetry it has is K = rm(K) ,

• positive amphicheiral if the only symmetry it has is K = m(K),

• chiral if it has none of these symmetries,

• fully amphicheiral if it has all three symmetries, that is, K = r(K) = m(K) = rm(K).

The symmetry type of each knot on at most 12 crossings is given at [8]. Thus each of the 2977

knots K given there represents as many as four knots K,m(K), r(K) and rm(K).

It is known [30, 32] that the fundamental quandles of K and K ′ are isomorphic if and only if

K = K ′ or K = rm(K ′).

3 Distinguishing the knots K,m(K), r(K), rm(K)

For the problem of distinguishing knots by quandle coloring it suffices to consider only connected

quandles by the following lemma (see Ohtsuki [41], Section 5.2).

Lemma 3.1 The image of a quandle homomorphism of the fundamental quandle of any knot in

another quandle is connected. In particular, given two knots K1 and K2, a quandle Q of smallest

order satisfying ColQ(K1) 6= ColQ(K2) is connected.

Lemma 3.2 The following equations hold for all quandles Q and all knots K:

(1) ColQ(K) = ColQ(rm(K)),

(2) ColQ(r(K))) = ColQ(m(K))),

(3) ColQ(m(K)) = ColQ∗(K),

where Q∗ in (3) denotes the dual quandle of Q.

Proof: For (1) and (2) see Kamada [26]. Item (3) follows easily from the definitions.

Corollary 3.3 For all quandles Q and for knots K of any symmetry type except chiral or negative

amphicheiral,

ColQ(rm(K)) = ColQ(m(K)) = ColQ(r(K)) = ColQ(K).

Conjecture 3.4 If K is any finite set of knots closed under the action of G, there exists a finite

sequence of finite quandles S = (Q1, Q2, . . . , Qn) such that the invariant

C(K) := (ColQ1
(K),ColQ2

(K), . . . ,ColQn
(K))

satisfies for all K,K ′ ∈ K:

C(K ′) = C(K) if and only if K ′ = K or K ′ = mr(K).
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Our computations verify the truth of the following weaker conjecture where K is the set of all

knots with at most 12 crossings. We also verify the truth of Conjecture 3.4 for smaller sets of knots

(see Section 4).

Conjecture 3.5 If K is any finite set of knots closed under the action of G, there exists a finite

sequence of finite quandles S = (Q1, Q2, . . . , Qn) such that the invariant

C(K) := (ColQ1
(K),ColQ2

(K), . . . ,ColQn
(K))

satisfies for all K,K ′ ∈ K:

C(K ′) = C(K) implies G(K ′) = G(K)

It is clear that if Conjecture 3.4 is true then the following conjecture is true.

Conjecture 3.6 There exists a sequence of finite quandles S = (Q1, Q2, . . . , Qn, . . .) such that the

invariant

C(K) := (ColQ1
(K),ColQ2

(K), . . . ,ColQn
(K), . . .)

satisfies for all knots K,K ′,

C(K ′) = C(K) if and only if K ′ = K or K ′ = mr(K).

This conjecture is similar to a conjecture made by Fenn and Rourke [16], page 385, for racks.

Let K be a finite set of knots closed under the action of the group G. Let R = {k1, k2, . . . , kn}

be a set of representatives of the orbits of G acting on K. Let S = (Q1, Q2, . . . , Qn) be a list of

finite quandles and for any knot K let

C(K) := (ColQ1
(K),ColQ2

(K), . . . ,ColQn
(K)).

To simplify the following proof, for knots K and K ′ we write

K ∼ K ′ if and only if C(K) = C(K ′).

Thus K ≁ K ′ if and only if there exist Qi ∈ S such that ColQi
(K) 6= ColQi

(K ′). The analysis of

our computations is based on the following.

Proposition 3.7 Staying with the notation above, suppose for all pairs of knots k, k′ ∈ R the list

S satisfies

(A) if k 6= k′ then k ≁ k′,

(B) if k 6= k′ then k ≁ m(k′), and

(C) if k 6= k′ then m(k) ≁ m(k′).

Then if K,K ′ ∈ K and K ∼ K ′ we have G(K) = G(K ′). If in addition S satisfies

(D) m(k) ≁ k when k is chiral or negative amphicheiral,

then if K,K ′ ∈ K and K ∼ K ′ we have K ′ = K or K ′ = rm(K).
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Proof: Assume first that (A), (B), (C) hold and that K,K ′ ∈ K and K ∼ K ′. We must prove that

G(K) = G(K ′). Let k, k′ be elements of R such that

K ∈ G(k) and K ′ ∈ G(k′).

Note that G(k) = {k, rm(k)} ∪ {r(k),m(k)} and G(k′) = {k′, rm(k′)} ∪ {r(k′),m(k′)}. By Lemma

3.2 (1) and (2) we have k ∼ rm(k) and r(k) ∼ m(k), and similarly for k replaced by k′. We consider

four cases and show that each case leads to G(k) = G(k′).

Case(i) K ∈ {k, rm(k)} and K ′ ∈ {k′, rm(k′)}. Then we have k ∼ K ∼ K ′ ∼ k′. This implies by

(A) that k = k′, and hence G(k) = G(k′).

Case(ii) K ∈ {k, rm(k)} and K ′ ∈ {m(k′), r(k′)}. Then k ∼ K ∼ K ′ ∼ m(k′) which implies by

(B) that k = k′, hence G(k) = G(k′).

Case(iii) K ∈ {m(k), r(k)} and K ′ ∈ {k′, rm(k′)}. This is similar to Case(ii).

Case(iv) K ∈ {m(k), r(k)} and K ′ ∈ {m(k′), r(k′)}. Then m(k) ∼ K ∼ K ′ ∼ m(k′), and by (C)

we have k = k′, hence G(k) = G(k′).

This proves the first part of the proposition. Now assume that (A), (B), (C), (D) hold and

K ∼ K ′. Let k and k′ be as above. By what we just proved we have G(k) = G(k′) and so we have

K,K ′ ∈ G(k). If K = K ′ there is nothing to prove so we can assume that one of the following 4

cases holds and that K 6= K ′.

Case(1) k is reversible or positive amphicheiral. Hence G(k) = {k, rm(k)}. In this case we may

take K = k and K ′ = rm(k) so K ′ = rm(K).

Case(2) k is negative amphicheiral. Hence G(k) = {k,m(k)}. In this case by (D) we have that

k ≁ m(k) so K 6= K ′, K ∼ K ′ and K,K ′ ∈ G(k) is impossible.

Case(3) k is chiral. Hence G(k) = {k, r(k),m(k), rm(k)}. Of the four elements of G(k) there

are 6 possible pairs that might be {K,K ′}. Note that the pair {k,m(k)} is ruled out by

(D). Since we always have k ∼ rm(k) and r(k) ∼ m(k), the pairs {k, r(k)}, {rm(k),m(k)},

{rm(k), r(k)}, are also ruled out. This leaves the only possibilities to be {k, rm(k)} and

{r(k), rm(k)}. If r(k) ∼ rm(k) then m(k) ∼ r(k) ∼ rm(k) ∼ k which is a contradiction to

(D), so we are left with {k, rm(k)} as the only possibility for {K,K ′}, as desired.

Case(4) k is fully amphicheiral. Hence G(k) = {k}. This is impossible since there is only a single

knot in G(k).

This completes the proof.

4 Computational support for Conjectures 3.4 and 3.5

Let Q26 = (Q1, . . . , Q26) be the list of 26 quandles in Table B.1 in Appendix B. Matrices for these

26 quandles may be found at [48], where they are denoted by Q[i], i = 1, . . . , 26. The list Q26 is

closed under taking dual quandles. This is to simplify computing the number of colorings of the

mirror image of a knot. Included in the file is the list dual satisfying dual[i] = j if and only if Q∗
i

is isomorphic to Qj.
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If i 6= 15 each quandle Qi is faithful and hence isomorphic to a conjugation quandle on some

conjugacy class in its inner automorphism group Inn(Qi). The quandle Q15 is not faithful and is

not a conjugation quandle [Vendramin, personal communication]. We note that some non-faithful

quandles are conjugation quandles, so this is not trivial. However, Q15 is a generalized Alexander

quandle on GAP’s SmallGroup(32, 50) = (C2×Q8) : C2. The quandles in Q26 of order less than

36 are RIG quandles and the remaining 11 were found by searching for conjugation quandles on

conjugacy classes of finite groups using GAP. In retrospect all of these 26 quandles could have been

found by searching for conjugation quandles and generalized Alexander quandles.

We denote the knots in KnotInfo up to 12 crossings by

R12 = {K[i] : i = 1, . . . , 2977}.

In our notation, the knot K[i] represents the knot with name rank = i + 1 in [8]. In particular,

K[1] is the trefoil, which has name rank 2 in [8].

The 26× 2977 matrix M found at [48] has the property that

Mi,j = ColNQi
(K[j]).

See Appendix D for comments on the computation of ColNQ (K).

Since R12 is a set of representatives of the set K12 of (isotopy classes of prime, oriented) knots

with at most 12 crossings, including all symmetry types, to verify that Conjecture 3.4 holds when

K = K12 and the list of quandles S = Q26, it suffices, by Proposition 3.7, to verify that the matrix

M and the list dual has the following properties for i, j ∈ {1, 2, . . . , 2977} and k ∈ {1, 2, . . . , 26}.

(1) For all i 6= j there exists k such that Mk,i 6=Mk,j.

(2) For all i 6= j there exists k such that Mk,i 6=Ms,j, where s = dual[k].

(3) For all i 6= j there exists k such that Ms,i 6=Ms,j, where s = dual[k].

These conditions are easy to verify directly from the matrix M and the list dual. This shows

that the set Q26 distinguishes the knots in K12 up to mirror images and orientation.

Remark 4.1 Note that the unknot is not included among the knots K[i], i = 1, . . . , 2977. Since

the unknot has only trivial colorings, to show that we can distinguish it from all of the 2977 knots

it suffices to note that for every knot K[j] there is a quandle Qi such that ColNQi
(K[j]) 6= 0, that

is, no column of the matrix M contains only 0s. This is confirmed from the matrix M .

As pointed out above the only knots we can hope to distinguish from their mirror images

(equivalently from their reversals) are chiral knots and negative amphicheiral knots. Among 2977

knots in KnotInfo [8] up to 12 crossings, 1319 knots are chiral and 47 are negative amphicheiral.

Denote this set of 1366 knots byKc. We were not able to find quandles to distinguish all of these 1366

knots from their mirror images. Thus we cannot verify Conjecture 3.5 when K = K12. However,

were able to find quandles that distinguish 1058 of the knots in Kc from their mirror images. The

quandles that distinguish these 1058 knots are the quandles T1, T2, . . . , T23 in Table B.2. Matrices

for the quandles can be found in [48]. A list of 1058 pairs (i, n) where K[n] is one of 1058 knots in

Kc and Ti is a quandle that distinguished knot K[n] from m(K[n]) can be found in [48].
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With the exception of quandles T2 and T3 the quandles Ti are conjugation quandles on conju-

gation classes in the group Inn(Ti). T2 and T3 are generalized Alexander quandles, both on the

group PSL(2, 8). We note that Q17 = T22 and Q24 = T23. Otherwise the quandles in Table B.2

are different from those in Table B.1

In Table B.1 and Table B.2 the structure descriptions are given by GAP’s StructureDescription

function. In particular, A × B is the direct product, N : H is a semidirect product and A.B is

a non-split extension. The group ID, SmallGroup(n, i) is the ith group of order n in the GAP

Small Groups library for n at most 2000. If a group has order n > 2000 we write SmallGroup(n, 0).

Nevertheless for all of the inner automorphism groups we have computed, GAP does give a Structure

Description.

5 Similarity of quandles over knot colorings

For two quandles Q1 and Q2, and a set K of knots, we write Q1 ≈K Q2 if ColQ1
(K) = ColQ2

(K)

for all K ∈ K.

This equivalence relation was considered in [10]. We omit the subscript K when it is the set

of all knots. The following is immediate from the definitions and a property of the number of

colorings.

Lemma 5.1 If Q1 ≈ Q′
1 and Q2 ≈ Q′

2 then (Q1 ×Q2) ≈ (Q′
1 ×Q′

2).

Let K be the set of all 2977 knots in the table in KnotInfo [8] up to 12 crossings. We observe

the following for ≈K and for the 431 RIG quandles.

• There are 151 classes of ≈K consisting of more than one quandle.

• Among these classes, 145 classes consist of two quandles.

• Among 145 classes of pairs, all but 35 classes consist of a pair of dual Alexander quandles.

• Among 35 classes of pairs, one class is a pair of self-dual Alexander quandles, some are

non-Alexander dual quandles, and some are non-Alexander self-dual quandles.

Conjecture 5.2 For every connected Alexander quandle Q, Q ≈ Q∗.

We prove the above conjecture for simple Alexander quandles of prime power order. (Following

[1] we say that a quandle Q is simple if it is not trivial and whenever f : Q→ Q′ is an epimorphism

then f is an isomorphism or |Q′| = 1. This implies that |Q| > 2 since the quandles of orders 1 and

2 are trivial.) The following proposition gives alternative characterizations of these quandles.

Proposition 5.3 The following statements are equivalent for a quandle Q and a prime p.

(1) Q is a simple quandle with pk elements.

(2) Q is isomorphic to an Alexander quandle on Zp[t, t
−1]/(h(t)) where h(t) ∈ Zp[t] is irre-

ducible, of degree k and different from t and t − 1 and the quandle operation is defined by

x ∗ y = tx+ (1− t)y where t is the coset t+ (h(t)).

(3) Q is isomorphic to an Alexander quandle on the vector space (Fp)
k where T is the com-

panion matrix of a monic irreducible polynomial h(t) ∈ Zp[t] of degree k, different from t and

t− 1 and the quandle operation is given by x ∗ y = Tx+ (1− T )y.
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(4) Q is isomorphic to a quandle defined on the finite field Fq where q = pk, a ∈ Fq, a 6= 1, a

generates Fq, and the quandle operation is given by x ∗ y = ax+ (1− a)y for x, y ∈ Fq.

Proof. The equivalence of (1), (3) and (4) is proved in [1] Section 3. The equivalence of (2) and (4)

is proved in [2]. �

Proposition 5.4 If Q is a simple quandle of prime power order, then Q ≈ Q∗.

Proof. By Proposition 5.3, the quandle Q is equal to (Fq, ∗) where Fq = Zp[t, t
−1]/(h(t)), q = pk,

h(t) ∈ Zp[t] is irreducible of degree k. The quandle operation is defined by x ∗ y = tx + (1 − t)y

where t is the coset t+ (h(t)). Let S ∈ Mn(Fq) denote the reduction modulo (p, h(t)) of a Seifert

matrix of K, and let N = tS−ST , which is denoted by N(1, p, h(t)) in [2]. Although p is restricted

to odd primes in [2], we claim that their results hold for p = 2 also. The authors of [2] agree

(personal communication).

Let ϕ : Fnq → F
n
q be the linear map that N represents. Then in [2] it was shown that the set of

colorings SColQ(K) is in one-to-one correspondence with the module Fq ⊕ ker(ϕ).

The dual quandle Q∗ is equal to (Fq, ∗) where a ∗ b = t
−1
a+ (1− t

−1
)b. Let N∗ = t

−1
S − ST ,

and ϕ∗ : Fnq → F
n
q be the corresponding linear map. Then the number of colorings by Q∗ is the

cardinality of Fq ⊕ ker(ϕ∗). It remains to show that the dimensions of ker(ϕ) and ker(ϕ∗) are the

same. One computes

(−t
−1

)NT = −t
−1

(tST − S) = −ST + t
−1
S = N∗.

Since rank(NT ) = rank(N), we have rank(N) = rank(N∗) and hence the dimension of the kernel

of ϕ∗ is equal to the dimension of the kernel of ϕ, so the number of colorings is the same for Q and

Q∗. �

This proof is similar to the proof of the fact that the Alexander polynomial is symmetric,

∆(t−1) = ∆(t) modulo a power of t.

From Proposition 5.4 and Lemma 5.1 we obtain the following corollary.

Corollary 5.5 If a quandle Q is isomorphic to a product of simple quandles of prime power order

then Q ≈ Q∗.

There are 273 connected Alexander quandles of order at most 35. Only 45 of these quandles

are not a product of simple quandles of prime power order.

Remark 5.6 All connected quandles of prime order clearly satisfy the conditions of Proposition

5.3. Among RIG quandles, other than quandles of prime orders, the following quandles fall into

this family.

C[4, 1], C[8, 2], C[8, 3], C[9, 3], C[9, 7], C[9, 8], C[16, 3], C[16, 8], C[16, 9], C[25, 3],

C[25, 11], C[25, 12], C[25, 13], C[25, 19], C[25, 20], C[25, 31], C[25, 32], C[25, 33], C[25, 34],

C[27, 31], C[27, 32], C[27, 33], C[27, 34], C[27, 62], C[27, 63], C[27, 64], C[27, 65], C[32, 10],

C[32, 11], C[32, 12], C[32, 13], C[32, 14], C[32, 15].
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We now explain to the extent possible the 6 non-trivial classes of ≈K that have more than two

elements. Among these 6 classes, the first three classes listed below form equivalence classes under

≈ by Lemma 5.1 and Proposition 5.4. In all cases unless otherwise stated we have no explanation

for an equivalence class.

• {C[25, 6], C[25, 7], C[25, 8]}: This situation is explained as follows: C[25, 6] = C[5, 2]×C[5, 2],

C[25, 7] = C[5, 3] × C[5, 3], C[25, 6] = C[5, 2] × C[5, 3], where C[5, 2] = Z5[t]/(t + 2) is dual to

C[5, 3] = Z5[t]/(t+ 3).

• {C[35, 8], C[35, 9], C[35, 10], C[35, 11]}: This situation is explained as follows: C[35, 8] =

C[5, 2]×C[7, 4], C[35, 9] = C[5, 2]×C[7, 5], C[35, 10] = C[5, 3]×C[7, 4], C[35, 11] = C[5, 3]×C[7, 5],

where C[7, 4] = Z7[t]/(t + 2) is dual to C[7, 5] = Z7[t]/(t+ 4).

• {C[35, 12], C[35, 13], C[35, 14], C[35, 15]}: This situation is explained as follows: C[35, 12] =

C[5, 3]×C[7, 3], C[35, 13] = C[5, 3]×C[7, 2], C[35, 14] = C[5, 2]×C[7, 3], C[35, 15] = C[5, 2]×C[7, 2],

where C[7, 2] = Z7[t]/(t + 3) is dual to C[7, 3] = Z7[t]/(t+ 5).

• {C[30, 7], C[30, 8], C[30, 9], C[30, 10]}: This situations is explained as follows: C[30, 7] =

C[5, 2]×C[6, 1], C[30, 8] = C[5, 3]×C[6, 1], C[30, 9] = C[5, 2]×C[6, 2], C[30, 10] = C[5, 3]×C[6, 2],

where C[5, 2] = Z5[t]/(t+2) is dual to C[5, 3] = Z5[t]/(t+3). As mentioned before it is conjectured

[10] that C[6, 1] ≈ C[6, 2]. So we conjecture that this forms a class for ≈.

• {C[24, 5], C[24, 6], C[24, 16], C[24, 17]}: These quandles are abelian extensions of C[12, 8],

C[12, 9], C[12, 8], C[12, 8], respectively, and none is Alexander. The quandles C[12, 8], C[12, 9]

have C[6, 1], C[6, 2] as subquandles, respectively, and have C[6, 1] as an epimorphic image. These

facts alone, however, do not seem to imply that they constitute a class for ≈. We conjecture that

this forms a class for ≈

• {C[24, 29], C[24, 30], C[24, 31]}: These three quandles are self-dual Galkin quandles. This

class was reported in [10].

The remaining classes consist of pairs, that are not dual Alexander quandles, and we categorize

them as follows. We conjecture that they form equivalence classes under ≈.

There is one class with a pair of Alexander self-dual quandles: C[27, 17] and C[27, 22], both of

which are Alexander quandles on the abelian group Z3 × Z9.

Each of the following classes is a pair of non-Alexander quandles that are duals of each other:

{C[27, 35], C[27, 36]}, {C[27, 37], C[27, 38]}, {C[27, 41], C[27, 42]},

{C[27, 43], C[27, 46]}, {C[27, 44], C[27, 45]}, {C[27, 56], C[27, 57]},

{C[27, 58], C[27, 59]}, {C[28, 11], C[28, 12]}, {C[30, 17], C[30, 18]},

{C[32, 7], C[32, 8]}.

The remaining classes are pairs of self-dual non-Alexander quandles. In [10], the relation ≈ was

studied for a family called Galkin quandles. Galkin quandles are known to be self-dual.

The following are two element ≈K-equivalence classes of (non-Alexander) Galkin quandles that
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were reported in [10]:

{C[6, 1], C[6, 2]}, {C[12, 5], C[12, 6]}, {C[12, 8], C[12, 9]},

{C[18, 1], C[18, 4]}, {C[18, 5], C[18, 8]}, {C[24, 27], C[24, 28]},

{C[24, 38], C[24, 39]}, {C[30, 12], C[30, 14]}, {C[30, 13], C[30, 15]}.

The following classes are pairs of self-dual non-Alexander, non-Galkin quandles:

{C[18, 2], C[18, 3]}, {C[18, 6], C[18, 10]}, {C[18, 7], C[18, 9]}, {C[20, 5], C[20, 6]},

{C[20, 9], C[20, 10]}, {C[24, 3], C[24, 4]}, {C[24, 15], C[24, 18]}, {C[24, 22], C[24, 23]},

{C[24, 34], C[24, 36]}, {C[24, 35], C[24, 37]}, {C[24, 41], C[24, 42]},

{C[30, 2], C[30, 6]}, {C[30, 23], C[30, 24]}, {C[32, 5], C[32, 6]}.

6 Quandle homomorphisms and knot colorings

We write SColQ(K) to denote the set of all colorings of the knot K by the quandle Q.

Let f : Q1 → Q0 be a quandle homomorphism, and K be a knot. Note that for any coloring

y ∈ SColQ1
(K) regarded as a quandle homomorphism Q(K) → Q1, the composition x = f ◦ y :

Q(K) → Q0 is a coloring in SColQ0
(K). In this case we say that x lifts to y. This correspondence

defines a map f♯ : SColQ1
(K) → SColQ0

(K).

For x ∈ SColQ0
(K), denote by f−1

♯ (x) ⊂ SColQ1
(K) the set of colorings y ∈ SColQ1

(K) such

that f♯(y) = x. (This set may be empty.) A pair of colorings x ∈ SColQ0
(K) and y ∈ SColQ1

(K)

such that x = f ◦ y for a knot diagram determines another such a pair after each Reidemeister

move, and hence for each x ∈ SColQ0
(K), the cardinality |f−1

♯ (x)| does not depend on the choice

of diagrams. Thus we obtain the following knot invariant.

Definition 6.1 For a given quandle homomorphism f : Q1 → Q0, we denote by Colf (K) the

multiset {|f−1
♯ (x)| | x ∈ SColQ0

(K)}, that does not depend on the choice of a diagram of a knot.

We use the notation [a, k] for k copies of the element a. For example, {[0, 3], [2, 4]} represents

{0, 0, 0, 2, 2, 2, 2}. We observe the following.

• If Colf (K) = {[h1, k1], . . . , [hn, kn]}, then ColQ0
(K) = k1 + · · · + kn and ColQ1

(K) = h1k1 +

· · · + hnkn.

• Suppose Q1 is connected. If ColNQ0
(K) = 0 (i.e. K is only trivially colored by Q0) and f is an

epimorphism, then Colf (K) = {[h, k]}, where k = |Q0| and h = ColQ1
(K)/|Q0|.

• Suppose Q1 is connected. If ColNQ1
(K) = 0, then Colf (K) = {[0, ℓ], [h, k]}, where ℓ =

ColNQ0
(K), k = |Q0|, and h = |Q1|/|Q0|.

• If f : Q1 → Q0 has image Q′
0, let f

′ : Q1 → Q′
0 be the same map with the codomain Q′

0,

then Colf (K) = Colf ′(K)∪ {[0, h]} where h is the number of colorings by Q0 such that some

colors are not from Q′
0.
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• If f : Q1 = Q0×Q
′
0 → Q0 is the projection from a product quandle, then Colf (K) = {[h, k]},

where k = ColQ0
(K) and h = ColQ′

0
(K).

Example 6.2 We computed the invariant Colf (K) for i = 1, 2 and for 2977 knots up to 12 cross-

ings, where f is the unique (up to isomorphisms of C[6, i] and C[3, 1]) epimorphism from C[6, i] to

C[3, 1]. The values of the invariants for i = 1, 2 are the same for each K up to 12 crossings.

For 2977 knots, the types of multisets are

{[2, 3]}, {[2, 3], [4, 6]}, {[2, 3], [4, 24]}, {[2, 3], [8, 6]}, {[2, 3], [8, 24]},

{[2, 3], [4, 6], [8, 18]}, {[2, 3], [4, 12], [8, 12]}, {[2, 3], [4, 18], [8, 6]},

{[2, 3], [8, 18], [16, 6]}, {[2, 3], [4, 36], [8, 24], [16, 18]}.

Example 6.3 There is an epimorphism f : C[8, 1] → C[4, 1] such that there are 12 non-trivial

colorings of the trefoil K = 31 by C[4, 1], none of which lifts to a coloring by C[8, 1]. Hence for this

f : C[8, 1] → C[4, 1] and for K = 31, the invariant Colf :Q1→Q0
(K) contains 12 copies of 0s. There

are 4 and 8 trivial colorings of K by C[4, 1] and C[8, 1], respectively, and every trivial coloring by

C[4, 1] has two lifts. Therefore we have Colf (K) = {[0, 12], [2, 4]}.

We note that C[8, 1] is not Alexander but is an abelian extension of C[4, 1] = Z2[t]/(t
2 + t+1).

Hence this computation is equivalent to quandle cocycle invariant. All possible patterns over all of

the first 1000 knots are

{[2, 4]}, {[2, 16]}, {[2, 64]}, {[0, 12], [2, 4]}, {[0, 24], [2, 40]}, {[0, 48], [2, 16]}.

Example 6.4 For f : C[9, 1] = R9 → C[3, 1] = R3, the patterns over all of the first 1000 knots are

{[3, 3]}, {[9, 9]}, {[27, 27]}, {[0, 6], [9, 3]}, {[0, 18], [27, 9]}, {[0, 24], [27, 3]}.

Example 6.5 There is an epimorphism f : C[18, 5] → C[6, 2]. The quandle C[18, 5] is not Alexan-

der, not a Kei, not Latin, self-dual, and faithful. It is not an abelian extension of C[6, 2]. It has 3

subquandles, C[3, 1], a trivial quandle of 2 elements, a 6-element non-connected quandle, and does

not have C[6, 1] nor C[6, 2] as subquandles. The RIG quandles onto which it has epimorphisms are

C[3, 1], C[6, 2], and C[9, 6].

For this f : C[18, 5] → C[6, 2] based on the first 100 knots, the patterns of the invariant are

{[3, 6]}, {[9, 30]}, {[9, 54]}, {[27, 102]}, {[0, 96], [27, 6]}, {[0, 120], [27, 6]}.

Remark 6.6 For all examples of epimorphisms f : Q1 → Q0 we computed, the invariant Colf (K)

is determined by (ColQ1
(K),ColQ0

(K)). Specifically, for these epimorphisms and all pairs of knots

K and K ′ with at most 12 crossings, if (ColQ1
(K),ColQ0

(K)) = (ColQ1
(K ′),ColQ0

(K ′)) then

Colf (K) = Colf (K
′). This holds for epimorphisms C[6, 1] → C[3, 1], C[8, 1] → C[4, 1], and

C[9, 1] → C[3, 1]. It also holds for C[18, 5] → C[6, 2], for many knots (not necessarily all 2977

knots) we computed.

Furthermore, for C[6, 1] → C[3, 1], the invariant is determined by ColC[6,1](K) alone for many

knots, while for C[8, 1] → C[4, 1] and C[9, 1] → C[3, 1], both ColQ1
(K) and ColQ0

(K) are needed

to determine the invariant.
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Remark 6.7 From the considerations in the preceding remark, it is of interest whether the number

of colorings of a quandle determines that of another. There are many such pairs among RIG

quandles over all 2977 knots. We note that many of the pairs do not have epimorphisms between

them, and more studies on this phenomenon may be desirable.

Remark 6.8 The quandle 2-cocycle invariant was defined in [6] as follows. Let φ : X ×X → A

be a quandle 2-cocycle, for a finite quandle X and an abelian group A. For a knot diagram K

and a coloring x ∈ SColX(K), the weight at a crossing τ as depicted in Figure 1 is defined by

Bφ(τ, x) = ǫφ(x, y), where ǫ = ±1 is the sign of τ , defined as +1 if the under-arc points right in the

figure, otherwise −1. The 2-cocycle invariant Φφ(K) is defined as the multiset {
∑

τ Bφ(τ, x) | x ∈

SColX(K)}.

The cocycle invariant and the invariant Colf (K), which we defined for an epimorphism f :

Q1 → Q0 for quandles Qi, i = 0, 1, can be naturally combined as follows. Let A be an abelian

group, and φi, i = 0, 1, be 2-cocycles of Qi. Then define Φf ;φ1,φ0(K) to be a multiset

{ (
∑

τ

Bφ0(τ, x), {
∑

τ

Bφ1(τ, y) | y ∈ f−1
♯ (x)} ) | x ∈ SColQ0

(K)}.

7 Applications to other knot invariants

In this section we give applications of the number of quandle colorings to a few invariants for the

2977 knots in [8]. In particular, we determine the tunnel number for some of the knots with 11 and

12 crossings in [8]. For definitions of knot invariants, we refer to [8, 44].

Recall that ColX(K) denotes the number of colorings of a knot K by a finite quandle X. Let

LqX(K) denote ⌈log|X|(ColX(K))⌉, where |X| denotes the order of X.

We computed LqQ(K) for the 2977 knots over a set QL of 439 quandles consisting of all 431

RIG quandles and the 8 quandles Qi, i = 16, 18, 19, 20, 22, 23, 25 from the 26 quandles Qi in Table

B.1. The additional 8 quandles are not Alexander. Let MLq(K) be the maximum of LqQ(K) over

all of the 439 quandles in QL. Among 2977 knots with 12 crossings or less, there are 1473 knots

K with MLq(K) = 2, 1441 knots with MLq = 3, and 63 (15 11-crossing and 48 12-crossing) knots

with MLq = 4. Let MLqF (K) denote the maximum of LqX(K) over all Alexander RIG quandles of

the form Λp/(h(t)) where h(t) is irreducible in Zp[t] for prime p and different from t and t−1. Note

that MLq and MLqF are defined over all quandles in the particular set QL. The computational

results on these are listed in [49].

Bridge index

Let Bg(K) denote the bridge index of a knot K. In [43], a lower bound of the bridge index

is given in terms of the number of quandle colorings: Let X be a finite quandle. For an n-

bridge presentation of a knot, an assignment of colors at the n maxima determines the colors of

the remaining arcs of the diagram, if it extends to the entire diagram and gives a well-defined

coloring. Hence we have |ColX(K)| ≤ |X|n, where |X| denotes the order of X. Thus we obtain

LqX(K) ≤ Bg(K), and therefore, MLq(K) ≤ Bg(K).

It is proved in [3] that a Motesinos knot K with r rational tangle summands has Bg(K) = r. In

[35], Montesinos knots were used for determining the bridge indices of knots with 11 crossings. In
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particular, the set of 4-bridge 11 crossing knots identified in [35] agreed with the list of 11 crossing

knots with MLq = 4. These are:

11a 43, 11a 44, 11a 47, 11a 57, 11a 231, 11a 263,

11n 71, 11n 72, 11n 73, 11n 74, 11n 75, 11n 76, 11n 77, 11n 78, 11n 81.

At the time of writing, KnotInfo [8] did not have informalion on the bridge index for 12 crossing

knots. The set of 12 crossing Montesinos knots with 4 rational tangle summands were computed

by Slavik Jablan using LinKnot [24], and the list was provided to us by Chad Musick. There are

48 knots in their table. Our computation showed that there are 48 knots with 12 crossings with

MLq = 4, and the list can be found in [49]. These two lists coincide.

Nakanishi index

We use the notations Λ = Z[t, t−1] and Λp = Zp[t, t
−1]. The Nakanishi index NI(K) of a knot

K is the minimum size of square presentation matrices of the Alexander module (H1(Ỹ ) as a Λ-

module, where Ỹ is the infinite cyclic covering of the complement Y ) of K [36]. The Nakanishi

index for 11 and 12 crossing knots was blank in [8] when this project was started (June, 2012).

We examine how much of the Nakanishi index can be determined for these knots using quandle

colorings.

Lemma 7.1 For any knot K and Alexander quandle Q of the form Λp/(h(t)) where h(t) is irre-

ducible in Zp[t] for prime p and different from t and t− 1, it holds that

LqQ(K) ≤ NI(K) + 1 ≤ Bg(K).

Proof. As in the proof of Proposition 5.4, Λp/(h(t)) is a finite field Fq of order q denoted by

F(p, h(t)) in [2], where q = pk for a prime p and k = deg(h(t)).

It is shown in [2] that if A is a presentation matrix of the Alexander module, then the same

matrix reduced modulo p, A(p), is a presentation matrix of H1(Ỹ ;Zp) as a Λp-module. Let A(p) be

the matrix A(p) with entries reduced modulo h(t).

Let ψ : Λnp → Λnp denote the map corresponding to A(p), and ψ : Fnq → F
n
q denote the map

on the vector space F
n
q corresponding to A(p). Then in [2] it was shown that the set of colorings

SColQ(K) is in one-to-one correspondence with the vector space Fq ⊕ ker(ψ).

If NI(K) = n, then there is an n × n presentation matrix A for the Alexander module. Then

ker(ψ) has dimension at most n. Hence

ColQ(K) = |Fq ⊕ ker(ψ)| = q1+dimker(ψ) ≤ q1+n,

so that we obtain LqQ(K) ≤ 1 + n. It is well known that NI(K) + 1 ≤ Bg(K). �

Corollary 7.2 For any knot K, MLqF (K) ≤ NI(K) + 1 ≤ Bg(K).

For 10 crossing knots, in KnotInfo [8] as of October 2013, the following knots are listed as

having NI = 2: 10 k for

k = 61, 63, 65, 69, 74, 75, 98, 99, 101, 103, 122, 123, 140, 142, 144, 155, 157, 160.
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The list of 10 crossing knots such that Corollary 7.2 determines that NI = 2 consists of 10 ℓ for

ℓ = 61, 63, 65, 74, 75, 98, 99, 103, 115, 122, 123, 140, 142, 144, 155, 157, 163.

Thus Corollary 7.2 determines knots with NI = 2 for all but k =69, 101, and 160. We point out

that Corollary 7.2 implies NI = 2 for k =115 and 163, these values of NI are posted in [8] incorrectly

as having NI = 1. This error was corrected in [28] (the knot 10163 is denoted as 10164 in [28]).

The 11 and 12 crossing knots with MLqF (K) = 3, and therefore, NI(K) ≥ 2 by Corollary 7.2,

are listed in [49]. Among these, knots with Bg(K) = 3 are determined to have NI(K) = 2 by

Corollary 7.2. In particular, 11 crossing knots in this list (46 knots) have bridge index 3 by [35],

and therefore, have NI = 2.

Tunnel number

Let τ(K) denote the tunnel number of a knot K. At the writing of this article (October 2013),

KnotInfo [8] did not contain the tunnel number for knots with 11 or more crossings.

Let Q be a quandle of the form Λp/(h(t)) for a prime p and an irreducible polynomial h(t) as

before. It was shown in [23] (see also [2]) that LqQ(K) ≤ τ(K)+1 for any knot K. It is well known

that τ(K) + 1 ≤ Bg(K) holds for any knot K. Hence we obtain the following lemma.

Lemma 7.3 If LqQ(K) = Bg(K) for some quandle Q of the form Λp/(h(t)) where h(t) is irre-

ducible in Zp[t] for prime p and different from t and t− 1, then τ(K) = Bg(K)− 1.

As we mentioned earlier the bridge index was determined for all 11 crossing knots in [35].

For RIG Alexander quandles Q of the form Λp/(h(t)), the following 11 crossing knots satisfy the

condition LqQ(K) = Bg(K) = 3, and therefore they have tunnel number 2: 11a k and 11n ℓ where

k = 87, 97, 107, 123, 132, 133, 135, 143, 155, 157, 165, 173, 181, 196, 239, 249,

277, 291, 293, 297, 314, 317, 321, 322, 329, 332, 340, 347, 352, 354, 366.

ℓ = 49, 83, 90, 91, 126, 133, 148, 157, 162, 164, 165, 167, 175, 184, 185.

These are 46 knots among 552 total of 11 crossing knots.

Unknotting number

It is known [36] that the unknotting number u(K) of a knot K is bounded below by NI(K):

NI(K) ≤ u(K). We use this fact to examine the unknotting number of knots in the KnotInfo table.

We consider the knots with MLqF (K) = 3. The knots in the table with MLqF (K) = 3 are posted

at [49], together with the first simple prime power Alexander quandle X that gives LqX(K) = 3.

A file containing knots with MLqF (K) = 3 and their unknotting numbers is also found at [48]. In

the list, the notation [2, 3] means u(K) = 2 or 3, which we also denote by u(K) = [2, 3] below for

shorthand. By Corollary 7.2 and the inequality NI(K) ≤ u(K), for these knots with MLqF (K) = 3

we obtain 2 = MLqF (K)− 1 ≤ NI(K) ≤ u(K). Hence we obtain the following information on the

Nakanishi index and the unknotting number for these knots with MLqF (K) = 3 and with crossings

11 or 12:

(U1) If u(K) = 2, then it is determined that NI(K) = 2. The knots that satisfy this condition are

listed below.
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11a : 87, 97, 107, 132, 133, 135, 143, 155, 157, 165, 173, 181, 196, 239, 249, 277, 293, 297,

314, 317, 321, 322, 332, 347, 352.

11n : 90, 164, 175, 185.

12a : 216, 253, 408, 444, 466, 679, 701, 987, 1183, 1206.

12n : 273, 332, 403, 436, 508, 510, 526, 549, 565, 570, 592, 604, 617, 643, 666, 839, 887.

(U2) If u(K) = [1, 2], then it is determined that NI(K) = 2 and u(K) = 2. The knots that satisfy

this condition are listed below.

11a : None.

11n : 49, 83, 91, 157, 162, 165, 167.

12a : There are 63 knots in this category. See Appendix C for the list.

12n : There are 74 knots in this category. See Appendix C for the list.

(U3) If u(K) = 3, then we obtain the information that NI(K) = [2, 3]. The knots that satisfy this

condition are listed below.

11a : 123.

11n : 126, 133, 148, 183.

12a : 295, 311, 327, 386, 433, 561, 563, 569, 576, 615, 664, 683, 725, 780, 907, 921, 1194.

12n : 147, 276, 387, 402, 494, 496, 581, 626, 654, 660.

(U4) If u(K) = [2, 3], then NI(K) = [2, 3] and no new information is obtained for u(K). The knots

that satisfy this condition are listed below.

11a : 329.

11n : None.

12a : 297, 970, 1286.

12n : 294, 509, 881.

(U5) If u(K) = [1, 2, 3], then NI(K) = [2, 3] and the possibility for the unknotting number is

narrowed to u(K) = [2, 3]. The knots that satisfy this condition are listed below.

11a : None.

11n : None.

12a : 244, 291, 376, 381, 481, 493, 494, 634, 886, 1124, 1142, 1202, 1205, 1269, 1288.

12n : 270, 601, 602, 630, 701, 844, 873.

(U6) If u(K) = [2, 3, 4] ; [3, 4] ; 4, respectively, then NI(K) = [2, 3, 4] and no new information is

obtained for u(K). The knots that satisfy these conditions are listed below.

11a : 354, 366 ; 291, 340 ; None, respectively.

11n : None ; None ; None.

12a : 1097, 1164 ; 973 ; 574, 647.

12n : None ; 600, 764, 806 ; 386, 518.
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We observed no other cases in the list. In particular, in our list of knots with MLqF = 3, there

is no knot K with u(K) containing 5, nor u(K) = [1, 2, 3, 4]. All the other positive integer intervals

containing less than 5 are listed above.

Remark 7.4 Among 12 crossing knots K with MLq(K) = 4 (recall that there are 48 of them),

the following 7 knots have MLqF (K) = 4, and for each of the 7 knots, the only RIG quandle Q of

type F (p, h(t)) such that LqQ(K) = 4 is Q = C[3, 1]:

12a : 554, 750.

12n : 553, 554, 555, 556, and 642.

These knots have the Nakanishi index at least 3 from Corollary 7.2. The bridge indices of these

knots were determined to be 4. Hence by Corollary 7.2, we obtain that NI(K) = 3 for these knots.

The unknotting number for all of these knots except 12n 642 is listed in [8] as [1, 2, 3], and it is

posted as [2, 3, 4] for 12n 642. Since NI = 3, the unknotting number of these knots except 12n 642

is determined to be 3, and it is [3, 4] for 12n 642.
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Appendix

A Enumeration of quandles and properties of RIG quandles

Sequences enumerating quandles of order n with various properties may be found in the Online

Encyclopedia of Integer Sequences [42]. We list the OEIS identification numbers of some of these

sequences below. We also list below some properties and characterizations of RIG quandles that

may be found in files at [48].

• http://oeis.org/A193024. The number of isomorphism classes of Alexander quandles of

order n.

• http://oeis.org/A193067. The number of isomorphism classes of connected Alexander

quandles of order n.

• http://oeis.org/A225744. The number of isomorphism classes of connected Generalized

Alexander quandles of order n.

• http://oeis.org/A196111 The number of isomorphism classes of simple quandles of order

n. A quandle is simple if it has more than one element, and if it has no homomorphic images

other than itself or the singleton quandle. However, in [1], it is further assumed that simple

quandles are not trivial. This also rules out the quandles of order 2.

• http://oeis.org/A177886 The number of isomorphism classes of latin quandles of order n.

A Latin quandle is a quandle such that for each a ∈ X, the left translation La is a bijection.

That is, the multiplication table of the quandle is a Latin square.

• https://oeis.org/A226172 The number of isomorphism classes of faithful connected quan-

dles of order n. A quandle is faithful if the mapping a 7→ Ra from X to Inn(X) is an

injection.

• https://oeis.org/A226173The number of isomorphism classes of connected keis (involutory

quandles) of order n. A quandle X is involutory, or a kei, if the right translations are

involutions: R2
a = id for all a ∈ X.

• https://oeis.org/A226174The number of isomorphism classes of self-dual connected quan-

dles of order n.

We also obtained the following information about RIG quandles. This is available at [48]:

• Subquandles of RIG quandles that are RIG quandles and trivial quandles. We also identified

the orders of subquandles that are neither connected nor trivial.

• The connected RIG Alexander quandles are presented as Z[t]/J where J = (f(t)) or J =

(f(t), g(t)) except for one Alexander RIG quandle, namely C[27, 17], which is not a cyclic

Z[t, t−1]-module.

• We identified RIG quandles that are products of other RIG quandles.
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• We identified dual quandles of RIG quandles. In particular, if the dual is itself, then it is

self-dual.

• A function φ : X ×X → A for an abelian group A is called a quandle 2-cocycle if it satisfies

φ(x, y)− φ(x, z) + φ(x ∗ y, z)− φ(x ∗ z, y ∗ z) = 0

and φ(x, x) = 0 for any x, y, z ∈ X. For a quandle 2-cocycle φ, X ×A becomes a quandle by

(x, a) ∗ (y, b) = (x ∗ y, a+ φ(x, y)) for x, y ∈ X, a, b ∈ A, and it is called an abelian extension

of X by A. See [5], for example, for more details of extensions. A list of RIG quandles that

are abelian extensions of RIG quandles is found in [48].

• For each RIG quandle C[n, i] we identified a set Gen[n, i] which is a smallest set of generators

for C[n, i]. We also produced the set of all [n, i] such that any two elements of C[n, i] will

generate C[n, i]. Note that if [n, i] is in this set then there are no non-trivial subquandles of

C[n, i].

Remark A.1 It is known that connected quandles of prime order p and those of order p2 are

Alexander quandles. By examining characterizations and properties of RIG quandles, listed above,

one might wonder if these results might generalize. For example, RIG quandles of order 2n for some

n, and those with order pq for primes p, q > 3 are Alexander. However, inspections of higher order

conjugation quandles reveal that there are quandles with order 64 and 55 that are not Alexander.

The former is a size 64 conjugacy class of GAP’s SmallGroup(1344, 11699). Two of the latter are

a conjugacy class of PSL(2, 11) and a conjugacy class of SmallGroup(1210, 7).

Remark A.2 As in [20] and [46], for computational purposes we represent quandles by matrices.

The entries of the matrix A of a quandle of order n are integers 1, . . . , n and the quandle operation

is given by i ∗ j = Ai,j . We note that the quandles in the RIG package are left distributive whereas

for knot colorings we prefer right distributive quandles. Hence we have reversed the order of the

product in the RIG quandle by taking the transposes of the matrices representing the RIG quandles.

In the RIG package the i-th quandle of order n is denoted by SmallQuandle(n, i), for which we use

the notation C[n, i].
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B Tables of quandles used to distinguish knots and their mirrors

Table B.1 List of 26 quandles that distinguish 2977 knots up to orientation and mirror image.

The quandle matrices can be found at [48].

Quandle order GAP ID for Inn(Q) StructureDescription(Inn(Q))

Q1 12 SmallGroup(60, 5) A5

Q2 13 SmallGroup(52, 3) C13 : C4

Q3 13 SmallGroup(52, 3) C13 : C4

Q4 13 SmallGroup(156, 7) (C13 : C4) : C3

Q5 13 SmallGroup(156, 7) (C13 : C4) : C3

Q6 15 SmallGroup(60, 5) A5

Q7 17 SmallGroup(136, 12) C17 : C8

Q8 17 SmallGroup(136, 12) C17 : C8

Q9 20 SmallGroup(120, 34) S5
Q10 24 SmallGroup(168, 42) PSL(3, 2)

Q11 25 SmallGroup(75, 2) (C5 ×C5) : C3

Q12 27 SmallGroup(702, 47) ((C3 × C3 × C3) : C13) : C2

Q13 27 SmallGroup(702, 47) ((C3 × C3 × C3) : C13) : C2

Q14 30 SmallGroup(120, 34) S5
Q15 32 SmallGroup(160, 199) ((C2 ×Q8) : C2) : C5

Q16 40 SmallGroup(320, 1635) ((C2 × C2 × C2 × C2) : C5) : C4

Q17 40 SmallGroup(320, 1635) ((C2 × C2 × C2 × C2) : C5) : C4

Q18 42 SmallGroup(168, 42) PSL(3, 2)

Q19 48 SmallGroup(288, 1025) (A4 ×A4) : C2

Q20 60 SmallGroup(660, 13) PSL(2, 11)

Q21 72 SmallGroup(576, 8652) (A4 ×A4) : C4

Q22 72 SmallGroup(504, 156) PSL(2, 8)

Q23 84 SmallGroup(1512, 779) PSL(2, 8) : C3

Q24 84 SmallGroup(1512, 779) PSL(2, 8) : C3

Q25 90 SmallGroup(720, 765) A6.C2

Q26 182 SmallGroup(1092, 25) PSL(2, 13)
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Table B.2 List of 23 quandles that distinguish 1058 knots from their mirror images. The quandle

matrices can be found at [48].

Quandle order GAP ID for Inn(Q) StructureDescription(Inn(Q))

T1 351 SmallGroup(2106, 0) (((C3 × C3 × C3) : C13) : C3) : C2

T2 504 SmallGroup(3024, 0) C2 × (PSL(2, 8) : C3)

T3 504 SmallGroup(4536, 0) PSL(2, 8) : C9

T4 18 SmallGroup(216, 90) (((C2 × C2) : C9) : C3) : C2

T5 27 SmallGroup(216, 86) ((C3 × C3) : C3) : C8

T6 27 SmallGroup(486, 41) ((C3.((C3 × C3) : C3) = (C3 × C3).(C3 × C3)) : C3) : C2

T7 28 SmallGroup(168, 43) ((C2 × C2 × C2) : C7) : C3

T8 720 SmallGroup(7920, 0) M11

T9 112 SmallGroup(1344, 816) (((C2 × C2 × C2).(C2 × C2 × C2)) : C7) : C3

T10 112 SmallGroup(1344, 816) (((C2 × C2 × C2).(C2 × C2 × C2)) : C7) : C3

T11 117 SmallGroup(1053, 51) ((C3 × C3 × C3) : C13) : C3

T12 162 SmallGroup(1296, 2890) (C3.(((C3 × C3) : Q8) : C3) = (((C3 × C3) : C3) : Q8).C3) : C2

T13 162 SmallGroup(1296, 2891) ((((C3 × C3) : C3) : Q8) : C3) : C2

T14 192 SmallGroup(1344, 814) (C2 × C2 ×C2).PSL(3, 2)

T15 125 SmallGroup(1500, 36) (((C5 × C5) : C5) : C4) : C3

T16 135 SmallGroup(1620, 421) ((C3 × C3 × C3 × C3) : C5) : C4

T17 135 SmallGroup(1620, 421) ((C3 × C3 × C3 × C3) : C5) : C4

T18 168 SmallGroup(1512, 779) PSL(2, 8) : C3

T19 64 SmallGroup(448, 179) ((C2 × C2 × C2).(C2 × C2 × C2)) : C7

T20 64 SmallGroup(768, 1083508) ((((C8 × C4) : C2) : C2) : C2) : C3

T21 64 SmallGroup(768, 1083509) ((((C8 × C4) : C2) : C2) : C2) : C3

T22 40 SmallGroup(320, 1635) ((C2 × C2 × C2 × C2) : C5) : C4

T23 84 SmallGroup(1512, 779) PSL(2, 8) : C3
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C Knots with unknotting number 2

In this section we list knots with 12 crossings such that their unknotting number is listed as 1 or 2

in KnotInfo [8], and our computation that MLqF = 3 determines that their unknotting number is

in fact 2.

The list of alternating knots is 12a k for k =

100, 177, 215, 218, 245, 248, 249, 265, 270, 279, 298, 312, 332, 347, 348, 396, 413, 427, 429, 435,

448, 465, 475, 503, 594, 703, 712, 742, 769, 787, 806, 808, 810, 868, 873, 895, 904, 905, 906, 941,

949, 960, 975, 990, 1019, 1022, 1026, 1053, 1079, 1092, 1093, 1102, 1105, 1123, 1152, 1167, 1181,

1225, 1229, 1251, 1260, 1280, 1283.

The list of non-alternating knots is 12n ℓ for ℓ =

144, 145, 257, 268, 269, 274, 297, 333, 334, 355, 356, 357, 379, 380, 388, 389, 393, 394, 397, 414,

420, 440, 442, 460, 462, 480, 495, 498, 505, 533, 546, 567, 571, 582, 583, 598, 605, 611, 622, 636,

637, 651, 652, 669, 706, 714, 717, 737, 742, 745, 746, 752, 756, 757, 760, 779, 781, 798, 813, 817,

837, 838, 840, 843, 846, 847, 869, 874, 876, 877, 878, 879, 883.
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D Remarks on the computation of ColQ(K)

We used several techniques to compute ColQ(K) for quandles Q and knots K. We take for each

knot the braid representation given at KnotInfo [8]. We take the braids to be oriented from top to

bottom. This induces an orientation of the knots. The two parameters that are most important

for computing the number of colorings are the braid index, b(K) (the number of strands) and the

order |Q| of the quandle. A straightforward computation requires |Q|b(K) steps. Using the fact that

our quandles are connected, i.e., the group Inn(Q) acts transitively on Q we may assume that one

of the arcs has a fixed color. This allowed us to reduce the number of steps to |Q|b(K)−1, which

reduces the time by a factor of 1/|Q|. In the case of quandles of large order this makes a noticeable

difference in program running times (hours vs months).

We initially used Mace4 [33] to find the number of colorings. Later on, we wrote a program in

C to verify that the results we obtained using Mace4 were correct. The C program uses the same

braid representations as those used for the Mace4 computations.

Let K be a knot with a braid index b(K). Let Q be a quandle of order n. Let ai, i = 1, . . . , b,

represent the element of a given quandle assigned to the top of the i-th strand of a braid, where

b = b(K) is the braid index. To count the number of knot colorings, we find the colorings at

the bottom strands of the braid, and check assignments such that the top and bottom colors are

the same for each strand, compare Figure 2. The following pseudo code demonstrates that our

algorithm runs in O(nb−1) time, n = |Q|.

/∗ f i x s t rand a1 to be 0 . This a l l ows us to ge t away ∗

∗ wi th co l o r i n g b−1 s t rands i n s t e ad o f b s t rands . ∗/

a1=0;

for ( a2=0; a2 < n ; a2++) {

for ( a3 . . . ) {

for ( a4 . . . ) {

for ( a5 . . . ) {

. . . up to the bra id index ’b ’

/∗ cons tant time quandle c o l o r i n g o f knot s t rands ∗/

}

}

}

}

We implemented a multithreaded version of the program using POSIX threads to further im-

prove performance. Combined with fixing a color of one strand, we found that multithreading re-

duces the computation time considerably on multicore processors. The unexpectedly large speedup

of multithreading over trivial parallelization may be due to operating system characteristics and

prevention of CPU cache swapping to the slower RAM when the operating system is switching

tasks.

The computations were performed on a GNU/Linux computer equipped with 24 Gigabytes of

RAM and an Intel Core i7 processor with 4 cores. The kernel was compiled with a task switching

latency of 100hz.
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quandle order serial seconds multithread seconds speedup factor

Q1 12 1 4 0.25 × (slower)

Q2 13 2 4 0.5 × (slower)

Q3 13 2 4 0.5 × (slower)

Q4 13 2 4 0.5 × (slower)

Q5 13 2 4 0.5 × (slower)

Q6 15 3 4 0.75 × (slower)

Q7 17 6 4 1.5 × (faster)

Q8 17 6 4 1.5 × (faster)

Q9 20 12 5 2.4 × (faster)

Q10 24 31 5 6.2 × (faster)

Q11 25 38 5 7.6 × (faster)

Q12 27 60 5 12 × (faster)

Q13 27 60 5 12 × (faster)

Q14 30 105 7 15 × (faster)

Q15 32 125 7 17.86 × (faster)

Q16 40 455 9 50.56 × (faster)

Q17 40 455 9 50.56 × (faster)

Q18 42 542 10 54.2 × (faster)

Q19 48 1215 14 86.79 × (faster)

Q20 60 (hours) 28 ?

Q21 72 (days) 56 ?

Q22 72 (days) 56 ?

Q23 84 (days) 112 ?

Q24 84 (days) 112 ?

Q25 90 (weeks) 155 ?

Q26 182 (months) 5602 (a lot faster)

Table 1: Computational time comparison

In Table 1, the first column indicates 26 quandles in Table B.1, the second column gives the

order of the quandle, the third column is the computation time for all 2977 knots with at most

12 crossings using a single thread, the fourth column is time using multiple threads, and the last

column is the ratio of column 3 and column 4. A log plot of timings of three different coloring

programs is given in Figure 3.
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Figure 3: Log plot of timings

Multithreading was used to perform computations in parallel for the outermost loop of our

knot coloring program. We set the number of threads to be the order of the quandle. None of the

child threads communicate with each other. The parent thread waits for all of the child threads to

return the number of colorings from its search. The parent sums each of the results from the child

threads. The number of colorings of the knot is the sum of the counts from the child threads. The

multithreaded version of the program is required to compute the colorings by the quandle of order

182.

/∗ f i x s t rand a1 to be 0 . This a l l ows us to ge t away ∗

∗ wi th co l o r i n g b−1 s t rands i n s t e ad o f b s t rands . ∗/

a1=0;

/∗ when mu l t i t h read ing , we compute b−2 s t rands s ince a2 i s f i x e d ∗/

a2=thr ead id ;

/∗ f o r each thread ∗/

for ( a3=0; a3 < n ; a3++) {

for ( a4 . . . ) {

for ( a5 . . . ) {

. . . up to the bra id index ’b ’

/∗ cons tant time quandle c o l o r i n g o f knot s t rands ∗/
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}

}

}

The output of our program is the number ColQ(K)0 of colorings with the color of the first

strand fixed. The result is then converted to the number of non-trivial colorings ColNQ (K) using

the formula ColNQ (K) = |Q|(ColQ(K)0 − 1).

All of the programs we used are provided on-line at [48] with source and data sets available. We

made numerous checks, but would be pleased if our computations can be independently confirmed.
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