
Counting words with vector spaces

Carlos Segovia ∗

December 17, 2013

Abstract

The sequence 2, 5, 15, 51, 187, . . . with the form (2n+1)(2n−1+1)/3 has
two interpretations in terms of the dimension of the universal embedding
of the symplectic polar space and the density of a language with four
letters. This article presents a way to relate this two approaches.

Introduction

It is interesting that the sequence 2, 5, 15, 51, 187, 715, . . . which writes as g(n) :=
(2n + 1)(2n−1 + 1)/3 follows different approaches. To my knowledge, see the
page [5] sequence A007581, this number represents:

1. the dimension of the universal embedding of the symplectic polar space,
denoted by udim, see [1]; or

2. the number of isomorphic classes of regular four folding coverings of a
graph with respect to the identity automorphism, see [2]; or

3. the density of a language with four letters, see [4]; or

4. the rank of the Zn
2 -cobordism category in dimension 1 + 1, see [6].

The approach (1) was called the Brower’s conjecture. First, A. E. Brower has
shown that udim ≥ g(n) = (2n + 1)(2n−1 + 1)/3. Later, P. Lee in [3], introduce
a set Nn and he prove that |Nn| = g(n). Subsequently, he shows that udim ≤
|Nn| which gives the Brower’s conjecture. The proof of the last inequality uses
a stratification of the set Nn in 7 cases. We use this idea in this article in order
to give a new proof of the Brower’s ex-conjecture using the approach (3).

The author proves in [7], the equivalence between (3) and (4). This article
provides a form to relate (1) and (3). It rest to give the relation with approach
(2). The study of this problem comes from personal interests of the author,
in order to find the graphs associated to the universal embedding of the sym-
plectic polar space, for example for n = 2 this gives the Cremona-Richmond
configuration of figure 1.1.
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1 The binary dual polar space

The dimension of the universal embedding of the symplectic polar space takes
into account a Z2-vector space of dimension 2n with a symplectic form ω. Con-
sider the geometry with lines of three elements defined as follows. The points
are the maximal totally isotropic subspaces of dimension n, i.e. ω(V ) = 0 for V
a subspace. The lines are given by the totally isotropic subspaces of dimension
n − 1. Denote X and L the sets of points and lines respectively. We consider
the linear map σ : Z2L −→ Z2X sending each line to the sum of its three ele-
ments. The dimension of the universal embedding of the symplectic polar space
is the dimension of the module Z2X/σ (Z2L). For example for n = 1 we have
X = {(0, 1), (1, 0), (1, 1)} with only one line. For n = 2 the geometry gives the
Cremona-Richmond configuration as follows

(1.1)

A
0001
0010

B
0001
1000

C
0001
1010

D
0010
0100

E
0010
0101

F
0100
1000

G
0100
1010

H
0101
1000

I
0101
1010

J
0110
1001

K
0011
1100

L
0011
1101

M
0110
1011

N
0111
1011

O
0111
1001

You can verify that the dimension of the universal embedding of the symplectic
polar space with n = 2 is 5. For this find 5 points and fill the circles of the
last figure where the lines are given by ABC, AKL, DAE, DGF , EIH, JDM ,
EON , BHF , JBO, CGI, CMN , FNK, MHL, GOL and JIK. You need 5
points to realize yourself how to fill the crossword.

Now we resume some work of P. Li from [3]. Let n be a fixed integer with
n ≥ 3 and let Γ be the graph associated to the geometry of points of lines (X,L).
Fix a point x0 ∈ X, and let Γk (0 ≤ k ≤ n) denote the set of points at distance
k from x0. Then y ∈ Γk if and only if dim(y ∩ x0) = n− k. We have that every
line in L contains two elements from Γk and one from Γk−1, for some 1 ≤ k ≤ n.
Moreover, for two points p, q ∈ Γk, p and q lie in the same connected component
of Γk if and only of p∩x0 = q∩x0. Thus the connected components of Γk are in
one-to-one correspondence with the n − k-subspaces of x0. We write x1, ..., xn
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for the standart basis of Zn
2 . For any vector v = a1x1 + · · ·+ anxn ∈ Zn

2 , define
its support supp(v) = {i : ai 6= 0} and its weight wt(v) = | supp(v)| and for
any nonzero vector v ∈ Zn

2 , set α(v) = min supp(v) and β(v) = max supp(v).
We define a total ordering on the vectors of Zn

2 as follows: a1x1 + ...+ anxn �
b1x1 + ...+ bnxn if there is some i ∈ {1, ..., n} such that aj = bj for all j < i and
(ai, bi) = (1, 0). For counting the subspaces P. Li introduce the set Nn given by
the collection of all subspaces of Zn

2 whose reduced echelon basis v1 � · · · � vk
(where k the dimension of the subspace) satisfies all of the following conditions:

(N1) wt(vi) ≤ 2 for every i ∈ {1, · · · , k};

(N2) if vi � vj (i.e., i < j) and wt(vi) = wt(vj) = 2, then β(vi) ≤ β(vj);

(N3) if vi � vj � vk, wt(vi) = wt(vj) = wt(vk) = 2, and β(vi) = β(vj) < β(vk),
then α(vk) > β(vi);

(N4) there do not exist vi � vj � vk � vl such that wt(vi) = wt(vj) = wt(vk) =
wt(vl) = 2 and β(vi) = β(vj) = β(vk) < β(vl).

The importance of the set Nn is the following, see [3] for the proof.

Theorem 1.1. The dimension of universal embedding of the symplectic polar
space does not exceed the cardinality of Nn.

The proof of the Brower’s conjecture is done with the following result (we
give a new proof in section 3).

Proposition 1.2. We have the identity |Nn| = g(n) = (2n + 1)(2n−1 + 1)/3.

2 The density of a language with four letters

The density of a language with four letters is defined as follows: take the number
of words of length n made with letters 1,2,3,4 with the property that numbered
from left to right each letter satisfies 0 < ai ≤ maxj≤i{aj} + 1. Thus we can
dismiss the first letter which is always 1. For example, for n = 2 there are two
words 1 and 2, for n = 3 the words are 11, 12, 21, 22, 23, while for n = 4 we
have 15 words

111 112 121 122 123
211 212 213 221 222
223 231 232 233 234 .

We can construct the next stage n = 4 by considering 7 cases as follows:
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
1111 1112 2112 2122 2132 2342 1122
1121 1123 2312 2322 2332 2343 1233
1211 1213 1212 1222 1232 2133
1221 1223 2212 2222 2232 2233
1231 1234 2313 2323 2333
2111 2113
2121 2123
2131 2134
2211 2213
2221 2223
2231 2234
2311 2314
2321 2324
2331 2334
2341 2344

Let Ln denote the set of words of length n with the hypothesis defined before.
We have operations

Ei : Ln −→ Ln−1 ,

which are given by erasing the i-letter from left to right. We can define the
cases recursively starting with the following values

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
111 112 212 222 232 ∅ 122
121 123 233
211 213
221 223
231 234

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
11 12 ∅ ∅ ∅ ∅ 22
21 23

We define by Ln(i) the set of words of length n of the case i. For a word
a = a1a2 · · · an−1an the cases are totally characterized by the following descrip-
tion:

Case 1. an = 1;

Case 2. an = maxj<n(aj) + 1 or an = 4;

Case 3. an−1 = 1 and En−1(a) 6∈ Ln−1(1), Ln−1(2);

Case 4. an−1 = 2 and En−1(a) 6∈ Ln−1(1), Ln−1(2);

Case 5. an−1 = 3 and En−1(a) 6∈ Ln−1(1), Ln−1(2);

Case 6. an−1 = 4 and En−1(a) 6∈ Ln−1(1), Ln−1(2); and

4



Case 7. a 6∈ Ln(1), Ln(2), Ln(3), Ln(4), Ln(5), Ln(6) .

These descriptions imply automatically the following two results.

Proposition 2.1. |Ln(1)| = g(n− 1) and |Ln(2)| = g(n− 1)

Proposition 2.2. |Ln(3)| = g(n−1)−2g(n−2), |Ln(4)| = g(n−1)−2g(n−2),
|Ln(5)| = g(n− 1)− 2g(n− 2)

We give a more detail treatment for the cases 6 and 7.

Proposition 2.3. |Ln(6)| + |Ln(7)| = |Ln−1(3)| + |Ln−1(4)| + |Ln−1(5)| +
|Ln−1(6)|+ |Ln−1(7)|+ 1

Proof. We fix an integer n > 3. For a ∈ Ln(6) by definition En−1(a) 6∈
Ln−1(1), Ln−1(2). Thus a has at least a letter 3 between the position 1 to
n − 2. Therefore, by the assignment En−1(a) we recover all the elements of
Ln−1(5) ∪ Ln−1(6) ∪ Ln−1(3) ∪ Ln−1(4) ∪ Ln−1(7) which has a letter 3 in the
position from 1 to n− 2. Now we take a ∈ Ln(7). Since a 6∈ Ln(1), Ln(2), then
the last letter of a is not 1 or 4, and consequently En−1(a) ∈ Ln−1(2). As a con-
sequence, if the last letter of a is 2, then there are only letters 1 in the position 1
to n−2. Moreover, the position n−1 is a 2 since a 6∈ Ln(2). Thus the element is
of the form 11..122. Now, we take that the last letter of a is 3, since En−1(a) ∈
Ln−1(2), then there are only 1 or 2 between the positions 1 to n − 2 and the
position n−1 is a 3 since a 6∈ Ln(2). Thus with the assignment En−1En(a)2 we
recover every word in Ln−1(5) ∪ Ln−1(6) ∪ Ln−1(3) ∪ Ln−1(4) ∪ Ln−1(7) which
does not have a letter 3 in the position from 1 to n − 2. The sum of all the
elements ends the proof of this proposition.

Consequently, by induction we can conclude the following result.

Theorem 2.4. There is the identity

|Ln| = 2g(n− 1) + 4 (g(n− 1)− 2g(n− 2)) + 1 = g(n) . (2.1)

3 Main constructions

In this section we define a bijection between the set Nn from section 1 and
the set Ln from section 2. We write x1, ..., xn for the standard basis of Zn

2 .
For any vector v = a1x1 + · · · + anxn ∈ Zn

2 , we recall that its support is
supp(v) = {i : ai 6= 0} and its weight wt(v) = | supp(v)| and for any nonzero
vector v ∈ Zn

2 , α(v) = min supp(v) and β(v) = max supp(v). For any subspace
V ≤ Zn

2 , we define supp(V ) =
⋃

v∈V supp(v). We can stratified the element of
Nn in 7 cases which we described below. In addition, for each case we give an
example of the inductive step.

Case 1. n 6∈ supp(V ).

1 0 0 1 0 0
1 0 0 1 0

1 0 1 0
−→

1 0 0 1 0 0
1 0 0 1 0

1 0 1 0
=

1 0 0 1 0
1 0 0 1

1 0 1
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Case 2. xn ∈ V .

1 0 0 1 0 0
1 0 0 1 0

1 0 0 0
1

−→

1 0 0 1 0 0
1 0 0 1 0

1 0 0 0
1

=
1 0 0 1 0

1 0 0 1
1 0 0

Case 3. There is some vi of weight 2 such that β(vi) = n, and n− 1 6∈ supp(V ).

1 0 0 0 1
1 0 0 1

1 0 0
−→

1 0 0 0 1
1 0 0 1

1 0 0
=

1 0 0 1
1 0 1

1 0

Case 4. There is some vi of weight 2 such that β(vi) = n, and xn−1 6∈ V .

1 1 0 0 0
1 0 1

1 0
−→

1 1 0 0 0
1 0 1

1 0
=

1 1 0 0
1 1

Case 5. vk = xn−1 + xn, and there is at least one vj other than vk such that
wt(vj) = 2 and β(vj) = n.

1 0 0 0 1 0 0
1 0 0 0 0 1

1 0 0 0 1
1 0 0 0

1 1

−→

1 0 0 0 1 0 0
1 0 0 0 0 1

1 0 0 0 1
1 0 0 0

1 1

=

1 0 0 0 1 0
1 0 0 0 1

1 0 0 1
1 0 0

Case 6. There are vi and vj of weight 2 such that β(vi) = n and β(vj) = n− 1.

1 0 0 0 0 1 0
1 0 0 0 0 1

1 0 0 0 0
1 0 0 1

1 0 1

−→

1 0 0 0 0 1 0
1 0 0 0 1 0

1 0 0 0 0
1 0 1 0

1 1 0

=

1 0 0 0 0 1
1 0 0 0 1

1 0 0 0
1 0 1

1 1

Case 7. vk = xn−1 + xn, and supp(vj) ∩ {n − 1, n} = ∅ for all j 6= k. Let t
denote the largest index in {1, · · · , n − 2} which lies in supp(V ). There
are three possibilities:

(a) xt ∈ V .

1 0 1 0 0 0 0
1 1 0 0 0 0

1 0 0 0 0
1 1

−→
1 0 1 0 0 0

1 1 0 0 0
1 0 1
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(b) wt(vj) = 2 and β(vj) = t for t unique j.

1 0 1 0 0 0 0
1 0 0 1 0 0

1 0 0 0
1 1

−→

1 0 1 0 0 0
1 0 0 0 1

1 0 0
1 0

(c) wt(vs) = 2 and β(vs) = t for (exactly) two different values of s.

1 0 0 1 0 0 0
1 0 1 0 0 0

1 0 0 0 0
1 1

−→
1 0 0 1 0 0

1 0 0 0 1
1 0 0 0

We note that we have described some operations, which correspond exactly to
the erase operations Ei for words introduced in section 2. The bijection from
Ln to Nn is defined only in the initial values. The use of the operations Ei

and the ones, for vector spaces exemplified before, constructs inductively the
bijection. For n = 1 the assignments are

1 7−→ 0
2 7−→ 1

and for n = 2, they are

11 7−→ 0 0
12 7−→ 0 1
21 7−→ 1 0
22 7−→ 1 1

23 7−→ 1 1
0 1

Finally, for n = 3 we divide the assignments for each case

Case 1
111 7−→ 0 0 0 7−→ 00
121 7−→ 0 1 0 7−→ 10
211 7−→ 1 0 0 7−→ 01
221 7−→ 1 1 0 7−→ 11

231 7−→ 1 1 0
0 1 0

7−→ 1 1
0 1
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Case 2
112 7−→ 0 0 1 7−→ 00

123 7−→ 0 1 1
1

7−→ 01

213 7−→ 1 0 1
1

7−→ 10

223 7−→ 1 1 1
1
↔ 1 1 0

1
7−→ 11

234 7−→
1 1 0
0 1 0

1
7−→ 1 1

0 1

,

where we note that the case
1 1 1

1
has to be chance to

1 1 0
1

in order

to have a subspace inside Nn.

Case 3 212 7−→ 1 0 1 7−→ 11

Case 4 222 7−→ 1 0 1
1 0

7−→ 11

Case 5 232 7−→ 1 0 1
1 0

7−→ 11

Case 6 ∅

Case 7 122 7−→ 0 1 1 7−→ 11

233 7−→ 1 1 1
1 1

↔ 1 0 0
1 1

7−→ 11

.
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