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Abstract

The higher fusion level logarithmic minimal models LM(P,P ′;n) have recently been constructed

as the diagonal GKO cosets (A
(1)
1 )k ⊕ (A

(1)
1 )n/(A

(1)
1 )k+n where n ≥ 1 is an integer fusion level and

k = nP
P ′−P − 2 is a fractional level. For n = 1, these are the well-studied logarithmic minimal models

LM(P,P ′) ≡ LM(P,P ′; 1). For n ≥ 2, we argue that these critical theories are realized on the lattice
by n× n fusion of the n = 1 models. We study the critical fused lattice models LM(p, p′)n×n within a
lattice approach and focus our study on the n = 2 models. We call these logarithmic superconformal
minimal models LSM(p, p′) ≡ LM(P,P ′; 2) where P = |2p − p′|, P ′ = p′ and p, p′ are coprime. These

models share the central charges c = cP,P
′;2 = 3

2

(
1 − 2(P ′−P )2

PP ′

)
of the rational superconformal mini-

mal models SM(P,P ′). Lattice realizations of these theories are constructed by fusing 2 × 2 blocks
of the elementary face operators of the n = 1 logarithmic minimal models LM(p, p′). Algebraically,
this entails the fused planar Temperley-Lieb algebra which is a spin-1 Birman-Murakami-Wenzl tangle

algebra with loop fugacity β2 = [x]3 = x2 + 1 + x−2 and twist ω = x4 where x = eiλ and λ = (p′−p)π
p′ .

The first two members of this n = 2 series are superconformal dense polymers LSM(2, 3) with c = −5
2 ,

β2 = 0 and superconformal percolation LSM(3, 4) with c = 0, β2 = 1. We calculate the bulk and
boundary free energies analytically. By numerically studying finite-size conformal spectra on the strip
with appropriate boundary conditions we argue that, in the continuum scaling limit, these lattice
models are associated with the logarithmic superconformal models LM(P,P ′; 2). For system size N ,

we propose finitized Kac character formulas of the form q−
cP,P ′;2

24
+∆P,P ′;2

r,s,ℓ χ̂
(N)
r,s;ℓ(q) for s-type boundary

conditions with r = 1, s = 1, 2, 3, . . ., ℓ = 0, 1, 2. The P,P ′ dependence enters only in the fractional
power of q in the prefactor and ℓ = 0, 2 labels the Neveu-Schwarz sectors (r + s even) and ℓ = 1
labels the Ramond sectors (r + s odd). Combinatorially, the finitized characters involve Motzkin and
Riordan polynomials defined in terms of q-trinomial coefficients. Using the Hamiltonian limit and the
finitized characters we argue, from examples of finite lattice calculations, that there exist reducible
yet indecomposable representations for which the Virasoro dilatation operator L0 exhibits rank-2 Jor-
dan cells confirming that these theories are indeed logarithmic. We relate these results to the N = 1
superconformal representation theory.
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1 Introduction

The simplest logarithmic Conformal Field Theories (CFTs) [1, 2] are by now well studied from an
algebraic and a lattice perspective. The current status can be seen in the special issue [3]. Some of
the articles more relevant to this work include [4–6]. In the Virasoro picture, that is assuming that the
conformal algebra is the Virasoro algebra and not an extended symmetry algebra, it has recently been
argued [7] that general logarithmic minimal models LM(P,P ′;n) at arbitrary integer fusion level n are
constructed as diagonal su(2) GKO cosets [8–10]. For n = 1, these logarithmic CFTs are realized on
the square lattice by the logarithmic minimal models LM(p, p′) [11] where p, p′ are coprime integers.
As loop models, these coincide with special “rational” points on the critical line of O(n) models [12].
The first members of this series include critical dense polymers LM(1, 2) [13–16] and critical (bond)
percolation LM(2, 3) [17]. For n = 2, the coset theories are logarithmic superconformal field theories.
Such theories have been considered, from within the algebraic approach, by several authors [18–23].

In this paper, we adopt a lattice approach and study exactly solvable two-dimensional lattice
models [26] associated with the n > 1 logarithmic minimal models LM(P,P ′;n). On the square
lattice, the Boltzmann face weights of the fused models LM(p, p′)n×n [27] are obtained by using a
process of fusion [28] to form n×n fused blocks of elementary face operators of the LM(p, p′) models.
For integrable boundary conditions on a strip, commuting double row transfer matrices for the fused
models can be constructed analogously to the associated rational theories [29]. In this way, we obtain
families of Yang-Baxter integrable loop models which realize the complete family of higher fusion level
logarithmic minimal models LM(P,P ′;n) in the continuum scaling limit.

We develop a general framework but focus our study here on the logarithmic superconformal
minimal models as 2× 2 fusions of the logarithmic minimal models LM(p, p′)

LSM(p, p′) := LM(p, p′)2×2 ≡ LM(P,P ′; 2), P = |2p− p′|, P ′ = p′ (1.1)

The explicit identification of these theories with n = 2 logarithmic minimal cosets is consistent with the
duality relation p↔ p′− p of Section 4.4 and is confirmed by direct numerics in Section 5.2. For p ≥ 2,
the central charges of these logarithmic theories are shared with the associated nonunitary minimal
models so the identifications SM(p, p′) ≡ M(P,P ′; 2) also apply naturally to these rational minimal
models. For the unitary minimal models with p = p′ − 1, this is in accord with the analytic results of
Klümper and Pearce [30]. The first members of the superconformal series (1.1) include superconformal
dense polymers LSM(2, 3) and superconformal percolation LSM(3, 4) which are lattice models that
are expected to be of independent interest in statistical mechanics.

Mathematically, the Yang-Baxter algebras underlying the general LM(P,P ′;n) models are planar
braid-monoid algebras [31] in the form of n× n fused Temperley-Lieb algebras [32–38]. For the n = 2
superconformal models, this algebra is a one-parameter specialization of the two-parameter Birman-
Wenzl-Murakami (BMW) [39,40] tangle algebra.

The layout of the paper is as follows. In Section 2, we recall the coset construction [7] of the
logarithmic minimal models LM(P,P ′;n) and summarize their conformal data including their central
charges, conformal dimensions and Kac characters.

In Section 3, we describe the n × n fused Temperley-Lieb algebra, its generators in the form of
braids and generalized monoids and the construction of the n× n face operators. The standard fusion
procedure described in the existing literature [34–38] uses Wenzl-Jones projectors [41, 42] which only
exist for n < p′. To generalize fusion to all n ∈ N, we develop a new and general diagrammatic
fusion procedure and explicitly implement it in the 2 × 2 and n × n cases. The standard procedure
is reviewed in Sections 3.1 and 3.2 for the purpose of establishing that the new diagrammatic fusion
procedure agrees with the standard procedure when n < p′. Specializing to the n = 2 logarithmic
superconformal models, we also discuss the matrix representations of the generators through their
action on link states in the Neveu-Schwarz (r + s even) and Ramond (r + s odd) sectors labelled by
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the quantum numbers (r, s, ℓ). The form of these link states, their relation to the quantum numbers
(r, s, ℓ) and their combinatorial counting in terms of trinomial coefficients are all new.

In Section 4, we address Yang-Baxter integrability in the presence of suitable boundaries. The
various subsections build on familiar constructs and concepts such as bulk and boundary Yang-Baxter
equations, transfer matrices and their quantum Hamiltonian limits, duality, inversion relations and
finitized characters, but we generalize them to the new context in which a number of new features and
subtleties arise. More explicitly, restricting to the case n = 2 with r = 1, we construct the commuting
families of double row transfer matrices and their Hamiltonian limits and observe that they exhibit a
duality under the involution p ↔ p′ − p. One new feature that arises is the appearance, in Ramond
sectors, of a new boundary field η which has not been seen previously. We calculate analytically the
bulk and boundary free energies in the r = 1 sectors. Also, for n = 2, we use combinatorial arguments
to conjecture general expressions for the r = 1 finitized Kac characters. These involve polynomial
generalizations of Motzkin and Riordan numbers [43–45] defined in terms of q-trinomial coefficients.

In Section 5, we confirm numerically that the logarithmic superconformal models arising from the
2×2 fusion of the elementary LM(p, p′) lattice models indeed are to be identified with the LM(P,P ′; 2)
CFT coset models where P = |2p − p′| and P ′ = p′. The relation between the parameters p, p′ of the
lattice model and the parameters P,P ′ of the CFT coset is not predicted by theory and is far from
obvious. Specifically, employing this identification and using estimates based on finite-size corrections,

we confirm the predicted values of the central charges c and the first few conformal dimensions ∆P,P ′;2
1,s;ℓ

in the r = 1 column of the Kac tables (2.18). The numerics also confirms that we have correctly
constructed explicit boundary conditions conjugate to the Kac operators, at positions (1, s, ℓ), in the
r = 1 column of the infinitely extended Kac tables.

In Section 6, using the Hamiltonian limit, we argue that there exist reducible yet indecomposable
representations for which the Virasoro dilatation operator L0 exhibits rank-2 Jordan cells confirming
that these theories are indeed logarithmic. We also relate these results to the N = 1 superconformal
representation theory. We conclude with some general comments in Section 7.

2 Logarithmic Minimal CFTs LM(P, P ′;n)

2.1 Coset construction and central charges of LM(P, P ′;n)

Algebraically, the logarithmic minimal models are constructed [7] as cosets

LM(P,P ′;n) ≃ COSET
( nP

P ′−P − 2, n
)
, gcd

[
P,

P ′−P
n

]
= 1, 1 ≤ P < P ′, n, P, P ′ ∈ N (2.1)

where n = 1, 2, . . . is an integer fusion level and N denotes the set of positive integers. The diagonal
GKO coset [8–10] takes the form

COSET(k, n) :
(A

(1)
1 )k ⊕ (A

(1)
1 )n

(A
(1)
1 )k+n

, k =
p̂

p̂′
− 2, gcd[p̂, p̂′] = 1, n, p̂, p̂′ ∈ N (2.2)

where k is a fractional fusion level and the subscripts on the affine su(2) current algebra A
(1)
1 denote

the respective levels k, n and k + n. The central charge of the coset Virasoro algebra is thus given by

c = ck + cn − ck+n =
3kn(k + n+ 4)

(k + 2)(n+ 2)(k + n+ 2)
, ck =

3k

k + 2
(2.3)

where ck is the central charge of the affine current algebra (A
(1)
1 )k. The central charges of the logarithmic

minimal models LM(P,P ′;n) are thus

cP,P
′;n =

3n

n+ 2

(
1− 2(n + 2)(P ′ − P )2

n2PP ′

)
, gcd

[
P,

P ′−P
n

]
= 1, 0 < P < P ′ (2.4)
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The usual logarithmic minimal models [11] are given by n = 1. The logarithmic superconformal
minimal models are given by the specialization n = 2 with central charges

cP,P
′;2 =

3

2

(
1− 2(P ′ − P )2

PP ′

)
, gcd

[
P,

P ′−P
2

]
= 1, 0 < P < P ′ (2.5)

2.2 Branching functions and logarithmic minimal Kac characters

The Kac characters of the logarithmic minimal models LM(P,P ′;n) are given by the branching
functions [7, 10, 46] of the logarithmic coset (2.1). These are expressible in terms of the string
functions [47–51] of Zn parafermions with central charge c = 2n−2

n+2 . For the fundamental domain

0 ≤ m ≤ ℓ ≤ n, ℓ−m ∈ 2Z, m, ℓ = 0, 1, . . . , n, n ∈ N (2.6)

the string functions are given by

cℓm(q) =
q
− 1

24
2n−2
n+2

+ ℓ(ℓ+2)
4(n+2)

−m2

4n

(q)3∞

∞∑

i,j=0

(−1)i+jqij(n+1)+ 1
2
i(i+1)+ 1

2
j(j+1)

×
[
q

i
2
(ℓ+m)+ j

2
(ℓ−m) − qn−ℓ+1+ i

2
(2n+2−ℓ−m)+ j

2
(2n+2−ℓ+m)

]
(2.7)

where the dependence on n has been suppressed and we use the q-factorials

(q)n =
n∏

k=1

(1− qk), (q)∞ =
∞∏

k=1

(1− qk) (2.8)

The notation for the string functions should not be confused with the notation for the central charges.
The fundamental domain of definition (2.6) of the string functions is extended to the domain

ℓ = 0, 1, . . . , n, m ∈ Z, n ∈ N (2.9)

by setting cℓm(q) = 0 for ℓ−m /∈ 2Z and using the symmetries

cℓm(q) = cℓ−m(q) = cn−ℓ
n−m(q) = cℓm+2n(q) (2.10)

so that cℓm(q) is even and periodic in m with period 2n.
Explicitly, the Kac characters of the logarithmic minimal models are given [7] by the branching

functions of the GKO coset (2.1)

χP,P ′;n
r,s;ℓ (q)=q

∆P,P ′;n
r,s −cP,P ′;n

24
+ n−1

12(n+2)
[
cℓr−s(q)− q

rs
n cℓr+s(q)

]
, r+s = ℓ mod 2, r, s ∈ N, 0 ≤ ℓ ≤ n (2.11)

where the conformal weights ∆P,P ′;n
r,s are defined in the next section. These branching functions satisfy

the logarithmic branching rules (see [7] for notations)

χ̂ p̂,p̂′

r,s (q, z) ĉh
n+2,1

ρ,0 (q, z) =
∑

σ ∈ N

σ = r+ℓ mod 2

χ p̂,p̂+np̂′;n
r,σ;ℓ (q) χ̂

p̂+np̂′,p̂′

σ,s (q, z), ℓ =

{
n+1−ρ, s odd
ρ−1, s even

(2.12)

For n = 1, we recover the quasi-rational Kac characters of the logarithmic minimal models

χP,P ′;1
r,s;0 (q) = q−

cP,P ′;1

24
+∆P,P ′;1

r,s
(1− qrs)

(q)∞
(2.13)
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For n = 2, the branching functions simplify to

NS : ℓ = 0, 2; r ± s even: χP,P ′,2
r,s,ℓ (q) =




q−

cP,P ′;2

24
+ 1

48
+∆P,P ′;2

r,s (1− q
rs
2 ) cℓm−

, m− = m+

q−
cP,P ′;2

24
+ 1

48
+∆P,P ′;2

r,s [cℓm−
(q)−q rs

2 cℓm+
(q)], m+ = 2−m−

R : ℓ = 1; r ± s odd: χP,P ′;2
r,s,1 (q) = q−

cP,P ′;2

24
+ 1

48
+∆P,P ′,2

r,s (1− q
rs
2 ) c11(q)

(2.14)

where m− = 0, 2 = r− s mod 4 and m+ = 0, 2 = r+ s mod 4. In this case, there are three independent
string functions which are related to the three irreducible Virasoro characters ch∆(q), ∆ ∈ {0, 1

16 ,
1
2},

of the rational Ising model with central charge c = c3,4;1 = 1
2 by

c00(q) = c22(q) =
ch0(q)

(q)∞
=

q−
1
48

2(q)∞

[ ∞∏

k=1

(1 + qk−
1
2 ) +

∞∏

k=1

(1− qk−
1
2 )
]
=

q−
1
48

(q)∞

∞∑

j=0
j even

q
j2

2

(q)j

c20(q) = c02(q) =
ch 1

2
(q)

(q)∞
=

q−
1
48

2(q)∞

[ ∞∏

k=1

(1 + qk−
1
2 )−

∞∏

k=1

(1− qk−
1
2 )
]
=

q−
1
48

(q)∞

∞∑

j=1
j odd

q
j2

2

(q)j

c11(q) =
ch 1

16
(q)

(q)∞
=

q
1
24

(q)∞

∞∏

k=1

(1 + qk) =
q

1
24

(q)∞

∞∑

j=0
j even

q
j2−j

2

(q)j
=

q
1
24

(q)∞

∞∑

j=1
j odd

q
j2−j

2

(q)j

(2.15)

For later use, we have recalled the fermionic forms (positive coefficient q-series) of these string functions.
It is to be stressed that, in this paper, we work throughout with the Virasoro algebra as the chiral

conformal algebra and not the superconformal or W-extended chiral algebra. In the superconformal
picture, the sectors ℓ and n− ℓ are combined into symmetric and anti-symmetric super-characters. For
n = 2 in the NS sector, this gives the superconformal characters

NS : χP,P ′;2
r,s,0 (q)± χP,P ′;2

r,s;2 (q) =




q−

cP,P ′;2

24
+ 1

48
+∆P,P ′;2

r,s (±1)
m

−

2 (1− q
rs
2 )[c00(q)± c02(q)], m− = m+

q−
cP,P ′;2

24
+ 1

48
+∆P,P ′;2

r,s (±1)
m

−

2 (1∓ q
rs
2 )[c00(q)± c02(q)], m+ = 2−m−

(2.16)

where the combinations of string functions are related through the irreducible Virasoro Ising characters
to simple infinite products

c00(q)± c02(q) =
ch0(q)± ch 1

2
(q)

(q)∞
=

q−
1
48

(q)∞

∞∏

n=1

(1± qn−
1
2 ), (2.17)

We call our models superconformal minimal models because the underlying lattice models are the same
with or without an extended symmetry. The only difference is that, with a superconformal or W-
extended symmetry, different boundary conditions must be constructed on the lattice to respect the
enlarged symmetry [52–55].

2.3 Conformal weights of LM(P, P ′;n)

The conformal weights of the logarithmic minimal models LM(P,P ′;n) are given explicitly [7] by

∆P,P ′;n
r,s;ℓ = ∆P,P ′;n

r,s +∆ℓ;n
r−s +Max[12(ℓ+2−r−s), 0], r + s = ℓ mod 2, r, s = 1, 2, . . . (2.18)

The first term on the right side is

∆P,P ′;n
r,s =

(rP ′ − sP )2 − (P ′ − P )2

4nPP ′
, r, s = 1, 2, . . . (2.19)
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Table 1: The infinitely extended Kac tables of conformal weights (2.18) for superconformal dense
polymers LSM(2, 3) ≡ LM(1, 3; 2) with c = −5

2 and β2 = 0 and superconformal percolation
LSM(3, 4) ≡ LM(2, 4; 2) with c = 0 and β2 = 1. The Neveu-Schwarz (NS) sectors with r + s

even correspond to ℓ = 0, 2 and are shown as ∆P,P ′;2
r,s;0 ,∆P,P ′;2

r,s;2 . The conformal weights in these two
sectors differ by half-odd integers reflecting the presence of supersymmetry. The Ramond (R) sectors
with r + s odd correspond to ℓ = 1.

Setting m′ = m mod 2n, the second term is the conformal weight of the string function cℓm(q)

∆ℓ;n
m = Max[∆(m′, ℓ, n),∆(2n−m′, ℓ, n),∆(n−m′, n−ℓ, n)], ∆(m, ℓ, n) =

ℓ(ℓ+ 2)

4(n + 2)
− m2

4n
(2.20)

folded into the fundamental domain (2.6). The third term only gives a nonzero contribution for
r + s ≤ ℓ ≤ n. These conformal weights are thus organized into n+ 1 layered and infinitely extended
Kac tables each displaying the checkerboard pattern r + s = ℓ mod 2. In accord with the fact that
these theories are nonunitary, the minimal conformal weight is

∆P,P ′;n
min =




∆P,P ′;n

nP,nP ′;0, P ′ − P even

∆P,P ′;n
nP,nP ′;n, P ′ − P odd

= ∆P,P ′;n
nP,nP ′ = −

(P ′ − P )2

4nPP ′
< 0 (2.21)

It follows that the effective central charge is independent of P,P ′ and given by the central charge of

the affine current algebra (A
(1)
1 )n

cP,P
′;n

eff = cP,P
′;n − 24∆P,P ′;n

min = cn =
3n

n+ 2
(2.22)

The logarithmic superconformal minimal models with n = 2 therefore all have the effective central
charge ceff = c2 =

3
2 .
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The infinitely extended Kac tables of conformal weights are shown in Table 1 for superconformal
dense polymers LM(1, 3; 2) with c = −5

2 and β2 = 0 and superconformal percolation LM(2, 4; 2) with
c = 0 and β2 = 1.

3 Fused Temperley-Lieb Algebra

The planar Temperley-Lieb (TL) algebra [31], is a diagrammatic algebra generated by the two tiles or
2-tangles

(3.1)

Within the planar algebra, these tiles are multiplied together (in arbitrary directions) by connecting
the nodes at the midpoints of the edges of the faces by a planar web of connectivities. Fixing the
direction for multiplication in the planar algebra leads to the loop representation of the correspondng
linear TL algebra [32].

3.1 Linear Temperley-Lieb algebra

The linear Temperley-Lieb (TL) algebra [32] TL(x;N) is a one-parameter algebra generated by the
identity I and the monoids ej , j = 1, . . . , N subject to the relations

e2j = βej (3.2)

ejej±1ej = ej (3.3)

eiej = ejei |i− j| ≥ 2 (3.4)

The parameter x = eiλ is a (complex) phase. For generic loop models λ ∈ R whereas, for the logarithmic

minimal models LM(p, p′), the crossing parameter λ = (p′−p)π
p′ is restricted to rational fractions of π.

A faithful representation of the (linear) TL algebra is given by the loop representation with generators
on a set of N parallel strings

I =

1 2 N−1N

. . . , ej =

1 2 j j+1 N−1N

. . . . . . (3.5)

that act by vertical concatenation. In diagrams, closed loops are removed and replaced with the scalar
loop fugacity β. For example, diagrammatically, relation (3.2) becomes

1 2 j j+1 N−1N

. . . . . . = β

1 2 j j+1 N−1N

. . . . . . (3.6)

The loop fugacity β is a scalar weight assigned to closed loops

β = β1 = = + = x+ x−1 = 2cos λ, βn−1 = [x]n =
xn − x−n

x− x−1
=

sinnλ

sinλ
(3.7)

The TL algebra is associated with (A
(1)
1 )1 or su(2) at level n = 1, so the loop segments carry a spin-12

charge.
The TL algebra TL(x;N) encompasses a braid-monoid algebra where the braids bj and inverse

braids b−1
j are defined by

bj = i(x1/2ej − x−1/2I), b−1
j = i(x1/2I − x−1/2ej) (3.8)

9



with diagrammatic representations

bj =

1 2 j j+1 N−1N

. . . . . . b−1
j =

1 2 j j+1 N−1N

. . . . . . (3.9)

Although braid operators are not strictly planar objects, in the planar algebra setting [31] they
are viewed as additional rigid tiles (2-tangles) that are connected by planar webs of connectivities.
Assuming the ej are real in a given matrix representation so that ej = ej , we see the inverse braids are
given by complex conjugation b−1

j = bj. The braids satisfy the quadratic relation

(bj + ix−1/2I)(bj − ix3/2I) = 0 (3.10)

The additional relations for the TL braid-monoid algebra are

bjb
−1
j = I

bjbj+1bj = bj+1bjbj+1

bibj = bjbi, |i− j| ≥ 2

biej = ejbi, |i− j| ≥ 2 (3.11)

ejbj±1bj = bj±1bjej±1 = ejej±1

bjej = ejbj = ωej

where the scalar phase ω = ix3/2 is called the twist, as it enters diagrammatically by undoing a twist

= ω (3.12)

The twist relation follows using the definition of the braid operator (3.8) and the property that closed
loops can be removed

bjej = (ix1/2ej − ix−1/2I)ej = [ix1/2(x+ x−1)− ix−1/2]ej = ix3/2ej = ωej (3.13)

A similar (complex conjugate) relation holds for undoing a twist created by acting with the inverse
braid on the monoid giving

b−1
j ej = ejb

−1
j = ω−1ej , = ω−1 (3.14)

3.2 Fused Temperley-Lieb algebra

3.2.1 2× 2 fused linear Temperley-Lieb algebra

Assume that λ 6= π
2 so that x = eiλ 6= i and β 6= 0. To define the 2× 2 fused TL algebra TL(x; 2, N),

we use the first non-trivial Wenzl-Jones [41,42] projector

pj = I − 1

β
ej , p2j = pj, β 6= 0 (3.15)

This projector annihilates the monoid
pjej = ejpj = 0 (3.16)

It is represented diagrammatically by two fused or cabled strings as

pj = = − β−1 (3.17)
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and satisfies
p2j = = = pj, = = 0 = pjej = ejpj (3.18)

In the 2× 2 fused TL algebra TL(x; 2, N), the consecutive pairs of 2N strings are fused together
to form N compound strings each carrying spin-1 charge. The identity in the 2× 2 fused TL algebra is

I =
N∏

j=1

p2j−1 (3.19)

The fused loop fugacity is

= = − 1

β
= β2 − β−1(β) = β2 − 1 = x2 + 1 + x−2 (3.20)

This spin-1 property reflects the fact that this algebra is associated with su(2) at level n = 2

= + + = x2 + 1 + x−2 = [x]3 =
sin 3λ

sinλ
= β2 (3.21)

The fused 2×2 braids and monoids are constructed by using the projector pj to fuse [28] the elementary
TL generators

Bj = p2j−1p2j+1b2jb2j−1b2j+1b2jp2j−1p2j+1

B−1
j = p2j−1p2j+1b

−1
2j b

−1
2j−1b

−1
2j+1b

−1
2j p2j−1p2j+1 (3.22)

Ej = p2j−1p2j+1e2je2j−1e2j+1e2jp2j−1p2j+1

Acting on 2 cabled strings, the operators are represented diagrammatically as

I = , Bj = = , B−1
j = = , Ej = = (3.23)

Not surprisingly for spin-1, the fused braids satisfy a cubic relation

(Bj − x4I)(Bj + x2I)(Bj − x−2I) = 0 (3.24)

and the monoids are given as quadratics in the braids by the skein relation

(x2 − x−2)(Ej − I) = Bj −B−1
j (3.25)

The two-parameter Birman-Wenzl-Murakami (BMW) algebra BMW(x, y;N) [39, 40] is a more
general braid-monoid algebra with cubic and skein relations

(Bj + yI)(Bj − x2yI)(Bj − y−1I) = 0, (y − y−1)(Ej − I) = Bj −B−1
j (3.26)

and braid-monoid relations

BjB
−1
j = I

BjBj+1Bj = Bj+1BjBj+1

BiBj = BjBi |i− j| ≥ 2

E2
j = β2Ej

EjEj±1Ej = Ej (3.27)

EiEj = EjEi |i− j| ≥ 2

EiBj = BjEi |i− j| ≥ 2

EjBj±1Bj = Bj±1BjEj±1 = EjEj±1

BjEj = EjBj = ω2Ej
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where

β2 = 1 +
x2y + x−2y−1

y − y−1
, ω2 = x2y (3.28)

The 2 × 2 fused TL algebra TL(x; 2, N) ≡ BMW(x, x2;N) is thus a one-parameter specialization of
the BMW algebra with y = x2.

It is often convenient to use an alternative presentation of the fused TL algebra TL(x; 2, N) by
defining [56–59] a generalized monoid operator

Xj = p2j−1p2j+1e2jp2j−1p2j+1 (3.29)

represented diagrammatically as

Xj = (3.30)

In this presentation, as opposed to the algebraically equivalent braid-monoid presentation, the
generators are all strictly planar objects. The braids and inverse braids are expressed in terms of
the operators I,Ej ,Xj by

Bj = x2Ej − (x+ x−1)Xj + x−2I, B−1
j = x−2Ej − (x+ x−1)Xj + x2I (3.31)

These combine to give the form

Xj =
(x2 + x−2)

2(x+ x−1)
(I + Ej)−

1

2(x+ x−1)
(Bj +B−1

j ) (3.32)

which is manifestly invariant under crossing symmetry (rotation through 90 degrees)

Ej ↔ I, Bj ↔ B−1
j , Xj ↔ Xj (3.33)

Eliminating the braids from the braid-monoid relations gives the relations [59]

E2
j = β2Ej

EjEj±1Ej = Ej

β2X2
j = β3Xj + Ej

βXjEj = βEjXj = β2Ej

EiEj = EjEi |i− j| ≥ 2

XiXj = XjXi |i− j| ≥ 2

XiEj = EjXi |i− j| ≥ 2 (3.34)

XjEj±1Xj = Xj±1EjXj±1

βEjXj±1Ej = β2Ej

XjEj±1Ej = Xj±1Ej

β2XjXj±1Ej = β3Xj±1Ej + Ej

β3(XjXj+1Xj −Xj+1XjXj+1) = β
(
EjXj+1 − Ej+1Xj +Xj+1Ej

−XjEj+1 +Xj −Xj+1

)
− Ej +Ej+1

where β3 is defined in (3.7). All of these relations hold under time-reversal, that is, with the order of
the products of Ej and Xj reversed on both sides. We note that replacing Xj with X̃j = βXj and using
the identity β−1β3 = β2− 1, gives a planar generalized monoid algebra with the fused loop fugacity β2
as the only parameter.
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3.2.2 n× n fused Temperley-Lieb algebra

The general Wenzl-Jones projectors [41,42,60,61] p
(n)
j are defined recursively by

p
(1)
j = I, p

(2)
j = pj, p

(n+1)
j = p

(n)
j − [x]n

[x]n+1
p
(n)
j en+j−1 p

(n)
j , βn = [x]n+1 6= 0 (3.35)

These projectors act on n strings with 1 ≤ n ≤ N so, diagrammatically, the recursion is

︸ ︷︷ ︸
n+ 1

=
︸ ︷︷ ︸
n

− [x]n
[x]n+1 ︸︷︷︸

n− 1

(3.36)

which is an expression of the spin-12 fusion rule n⊗2 = (n+1)⊕ (n−1). For general n, the generalized
loop fugacities defined to be the closure of the Wenzl-Jones projector on n strands, are given by the
Chebyshev polynomials of the second kind

βn := = Un

(β
2

)
=

xn+1 − x−n−1

x− x−1
= [x]n+1 (3.37)

This holds trivially for n = 1 since β1 = β = x+ x−1 = [x]2. It holds for general n by induction

βn+1 = = − [x]n
[x]n+1

= − [x]n
[x]n+1

= ββn −
[x]n
[x]n+1

βn = [x]2[x]n+1 −
[x]n
[x]n+1

[x]n+1 = [x]n+2 (3.38)

Similarly, the twists for general n can be obtained recursively

= = = (−x) = (−x)n−1

= (−x)n−1ω = ωn , ωn = in
2
xn(n+2)/2 (3.39)

by repeatedly using the relation

bj = (−x)b−1
j + ix1/2(x− x−1)I (3.40)

and the fact that the second terms do not contribute due to formation of a closed half-arc which is
killed by the action of the projector.

In summary, in the general n× n fused TL algebra [32,34–38], the loop fugacity and twist are

βn =

n/2∑

m=−n/2

x2m = [x]n+1 =
sin(n + 1)λ

sinλ
, ωn = in

2
xn(n+2)/2 (3.41)

where the sum is over half-integers or integers. The braid Bj satisfies a degree n + 1 polynomial
equation [36,38]

(Bj − ω(1)
n I)(Bj − ω(2)

n I) . . . (Bj − ω(n+1)
n I) = 0, ω(k)

n = (−1)k+1x−k(k−1)ωn (3.42)
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and the monoid Ej can be written as a degree n polynomial in the braid operators

Ej = βn
(Bj − ω

(2)
n I) . . . (Bj − ω

(n+1)
n I)

(ωn − ω
(2)
n )(ωn − ω

(3)
n ) . . . (ωn − ω

(n+1)
n )

(3.43)

3.3 General n× n fused face operators

3.3.1 m× n fusion and push-through properties

Let us introduce the following notations that we use throughout the paper

λ =
(p′ − p)π

p′
, gcd[p, p′] = 1, 1 ≤ p < p′, p, p′ ∈ N (3.44)

s(u) =
sinu

sinλ
, un = u+ nλ, sn(u) = s(u+ nλ) (3.45)

The weights of elementary 1× 1 faces of the logarithmic minimal models LM(p, p′) [11] are expressed
in terms of the TL algebra as

u = s(λ− u) + s(u) = s(λ− u)I + s(u)ej (3.46)

where the small arc in the bottom-left corner indicates the orientation of the face operator. The last
equality applies if the planar operators act from the bottom-left to the top-right. Fusion of m × n
blocks of face operators

u0

u1

...

...

un−1

u
−1

u0

...

...

un−2

u1−m

u2−m

...

...

un−m

· · · · · ·

· · · · · ·

· · · · · ·

(3.47)

is implemented diagrammatically by applying a restriction or projection, implemented by hand, along
each edge. If there is an internal closed arc beginning and ending anywhere along a given edge, then
there must be a small internal closed half arc between neighbouring nodes somewhere along that edge.
The fusion procedure acts to project out all faces with a closed internal arc along any of the edges.

If there is a closed half arc anywhere in a TL link state [11], then there must be a small closed half
arc between neighbouring nodes somewhere in the link state. Such small external closed half-arcs have
a push-through property. Specifically, if there is a small half-arc in an in-link state at the top acted
upon by a seam, consisting of a ρ×1 block of fused faces, then by a simple trigonometric identity there
must also be a small closed half-arc in the out-link state at the bottom of the seam

u−λ u = s(2λ− u)s(u) + s(2λ− u)s(λ− u) (3.48)

+ s(u− λ)s(λ− u) + s(u− λ)s(u) = s(2λ− u)s(u)
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Note that the closed loop in the third diagram on the right-side contributes a scalar factor β = s(2λ).
This push-through property means that, if there are no internal closed half loops on the bottom edge,
then there must be no closed half loops on the in-link state at the top. This means that the projector

can be pushed through from the bottom to the top. If the Wenzl-Jones projector p
(m)
j exists, then the

action of the projection process described above agrees with the action of the Wenzl-Jones projector

p
(m)
j . However, the projection process described above also makes sense when the Wenzl-Jones projector

fails to exist. For λ = (p′−p)π
p′ , we will always use the diagrammatic implementation of fusion, including

for the construction of fused boundary operators in Section 4.1.2.

3.3.2 2× 2 fused face operators

For 2× 2 fusion, the fused face transfer operator Xj(u) is defined by

η2,2(u)Xj(u) =
u−λ u

u u+λ

(3.49)

where the projectors are indicated by ovals and η2,2(u) is a suitable normalization factor which removes
common factors. Internally, there are 24 = 16 loop configurations, 9 of which are killed by the projectors
because they have half arcs along the edges. The remaining 7 internal configurations are

(3.50)

There are three distinct connectivity classes (with respect to the connections between the 8 external
nodes) given by the first, the last and the five intermediate planar operators. The first operator is the
fused identity I and the last is the fused monoid Ej. The other five planar operators combine to give
the generalized monoid Xj (3.30)

I = = Ej = = Xj = = (3.51)

Explicitly, using trigonometric identities to combine these 5 intermediate weights and removing the
common factors η2,2(u) = −s(2λ)s(λ− u)s(u) gives the 2× 2 fused face transfer operator

Xj(u) =
s(λ− u)s(2λ− u)

s(2λ)
I + s(u)s(λ− u)Xj +

s(u)s(u+ λ)

s(2λ)
Ej (3.52)

With this normalization, we have Xj(0) = I, Xj(λ) = Ej . The face transfer operators of more general
m× n fusions can be calculated similarly. The n× n fusions are considered explicitly in Section 3.3.4
since these coincide with physical face operators of the logarithmic minimal models LM(P,P ′;n).

3.3.3 2× 2 fused braids

In this section, we discuss the fused braids to obtain an alternative, but algebraically equivalent, braid-
monoid presentation of the generalized monoid form of the face transfer operators (3.52). In fact, the
2×2 fused face operator Xj(u) can be rewritten in terms of the fused braids Bj, B

−1
j and the identity I.
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We first derive expressions for Bj, B
−1
j in terms of fused monoids. This is done diagrammatically by

taking the diagrams for the braid and inverse braid

Bj = B−1
j = (3.53)

and expanding each elementary braid using its definition (3.8)

bj = i(x1/2ej − x−1/2I), b−1
j = i(x1/2I − x−1/2ej)

After canceling the configurations annihilated by the projectors, the surviving configurations are
precisely those in (3.50). Combining the terms into connectivity classes gives

Bj = x2Ej − (x+ x−1)Xj + x−2I, B−1
j = x−2Ej − (x+ x−1)Xj + x2I (3.54)

which agrees with (3.31). These expressions can be inverted to give

Xj =
x−2Bj − x2B−1

j + (x4 − x−4)I

(x2 − x−2)(x+ x−1)
, Ej = I +

1

x2 − x−2
(Bj −B−1

j ) (3.55)

where we recognize that the expression for the monoid is the skein relation (3.25). Finally, using these
relations, gives the 2× 2 face operator in terms of Bj , B

−1
j and I

Xj(z) = I +
(z − z−1)(x−1zBj − xz−1B−1

j )

(x− x−1)(x2 − x−2)
(3.56)

This is the one-parameter specialization (µ = 2λ, y = x2) of the face transfer operator associated with
the BMW algebra

Xj(z) = I +
(z − z−1)(x−1zBj − xz−1B−1

j )

(x− x−1)(y − y−1)
(3.57)

where
x = exp(iλ), y = exp(iµ), z = exp(iu) (3.58)

More usefully, this can be put into a form which manifestly respects the crossing symmetry (3.33) with
u↔ λ− u

Xj(u) =
1
2

[s(λ− u)s(2u)

s(u)
I +

s(λ− u)s(u)

s(2λ)
(Bj +B−1

j ) +
s(u)s(2λ− 2u)

s(λ− u)
Ej

]
(3.59)

Some typical lattice configurations for 2× 2 fused logarithmic minimal models are shown in Figure 1.

3.3.4 n× n fused face operators

The general n× n face transfer operator is constructed using fusion as

ηn,n(u) X
(n)
j (u) =

u0

u1

...

...

un−1

u
−1

u0

...

...

un−2

u1−n

u2−n

...

...

u0

· · · · · ·

· · · · · ·

· · · · · ·

(3.60)
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Figure 1: Typical lattice configurations for 2 × 2 fused models using the algebraically equivalent
braid-monoid presentation (3.59) on the left (with tiles I,Bj , B

−1
j , Ej) and the generalized monoid

presentation (3.52) on the right (with tiles I,Xj , Ej). The description on the left is well suited to
superconformal dense polymers LM(1, 3; 2) with β2 = 0. The polymers cannot form closed loops
but are allowed to cross and to form knots. The planar description on the right is well suited to
superconformal percolation LM(2, 4; 2) with c = 0 and β2 = 1. The interconnecting webs of cabled
connectivities can be localized or can percolate as an infinite connected cluster from one side to the
opposite side of a large lattice.

It is useful to write these in terms of generalized monoids X
(i)
j [62]. Explicitly, the face operators take

the form

X
(n)
j (u) =

n∑

i=0

Si(u)X
(i)
j , X

(0)
j = I, X

(n)
j = Ej (3.61)

where

Si(u) =
(−1)i+n

∏n
k=1 s

(
u+ (i+ k − n− 1)λ

)
∏i

l=1 s(lλ)
∏n−i

m=1 s(mλ)
(3.62)

The normalization is

ηn,n(u) =

n∏

k=1

s(kλ)

2n−2∏

l=1

s
(
u+ (l − n)λ

)Min[l,2n−1−l]
(3.63)

For example, for n = 4, the intermediate generalized monoid operators X
(i)
j are given by

X
(1)
j = = , X

(2)
j = = , X

(3)
j = =

(3.64)
Here the 4 × 4 fused face configurations are just indicative of the connectivity class of configurations
contributing to the generalized monoid.

3.4 2× 2 fused link states and matrix representations

The planar TL operators act on suitable vector spaces V(N)
r,s,ℓ of link states. In this section, we introduce

fused or cabled link states for the case n = 2 relevant to the logarithmic superconformal minimal
models. For simplicity, we restrict to the cases with r = 1. There are two sectors, Neveu-Schwarz (NS)
with r+ s even, ℓ = 0, 2 and Ramond (R) with r+ s odd, ℓ = 1. These correspond to an even and odd
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number of underlying elementary TL nodes respectively. The number of (single) defects d is directly
related to the quantum number s by

d = s− 1 =

{
2k, NS: 2N nodes

2k + 1, R: 2N+1 nodes
(3.65)

where the system size N is the number of projected paired nodes and k is the number of cabled defects.

3.4.1 Neveu-Schwarz

Let N be the size of the system given by the number of fused pairs of elementary nodes. For N even,
corresponding to ℓ = 0, the cabled link states with no (cabled) defects in the Neveu-Schwarz sector
(r, s, ℓ) = (1, 1, 0) are generated [27] by acting with Ej and Xj (for j = 1, . . . , N − 1) on the simplest

state in which neighboring pairs of nodes are connected. For N = 2, 4 the basis link states of V(N)
1,1,0 are

N = 2:

N = 4: , ,

The number of link states, for even N , is given by the Riordan numbers RN with even N

dimV(N)
1,1,0 = RN = 1, 3, 15, 91, . . . N = 2, 4, 6, 8, . . . (3.66)

The basis cabled link states in V(N)
1,1,2 in the Neveu-Schwarz sector (r, s, ℓ) = (1, 1, 2) are obtained

similarly but with N odd. For N = 3, 5 the link states are

N = 3:

N = 5: , , ,

, ,

The number of link states, in V(N)
1,1,2, is given by the Riordan numbers RN with odd N

dimV(N)
1,1,2 = RN = 1, 6, 36, 232, . . . N = 3, 5, 7, 9, . . . (3.67)

There is a simple bijection between Riordan cabled link states and Riordan paths for N even or
odd. Riordan paths are (spin-1) paths where each step is diagonally up, diagonally down or horizontal,
except that the first step must be diagonally up and the last step must be diagonally down. The path
must start and finish at the base height 0 and is constrained to lie above the base height. The paths
are unrestricted in the sense that they can reach arbitrarily large heights by taking N sufficiently large.
The number of Riordan paths of length N is given by the Riordan numbers [44,45]

RN = 0, 1, 1, 3, 6, 15, 36, 91, 232, . . . N = 1, 2, 3, . . . (3.68)

A Riordan path is uniquely labelled by the ordered list of heights at each step. Similarly, a link state is
uniquely labelled by the same ordered list of heights where the heights designate the number of doubled
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strands that pass above the gaps between consecutive (paired elementary) nodes. The matching of the
labels gives the bijection. For example,

0 01 1 1 12

↔
0 01 1 1 12

(3.69)

We next form link states with defects, that is, cabled strands that connect from the bulk to the
boundary. In the Neveu-Schwarz sectors, there is always an even number of underlying elementary
nodes. This means that, in the Neveu-Schwarz sectors, the defects consist of an even number d = 2k of
single strands mutually cabled together in the boundary. In the Ramond sectors with an odd number
of underlying elementary nodes, the defects consist of an odd number of single strands cabled together
in the boundary. In the following examples, in the NS sector, we take N to be even. The N odd cases
are similar. The basis link states for N = 2, 4 with a single (k = 1) cabled defect are

N = 2:

N = 4: , , ,

, ,

The (red) dashed line separates the bulk on the left from the boundary on the right. The number of
these link states with 1 (cabled) defect is

dimV(N)
1,3,0 = RN,1 = RN+1 = 1, 6, 36, 232, . . . N = 2, 4, 6, 8, . . . (3.70)

When there are k > 1 (cabled) defects, each (cabled) defect must be in a separate cluster. In
other words, the (cabled) defects are not allowed to be connected in the boundary. For example, in
the cases N = 2, 4 with k = 2, the link states are

N = 2:

N = 4: , , ,

, ,

dimV(N)
1,5,0 = RN,2 = 1, 6, 40, 280, . . . N = 2, 4, 6, 8, . . . (3.71)

In general, the number of cabled link states, with k (cabled) defects, is given by generalized
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Riordan numbers RN,k as shown in Table 2. Explicitly, these are differences of trinomial coefficients

dimV(N)
1,2k+1,ℓ = RN,k =

(
N

k

)

2

−
(

N

k+1

)

2

=
N∑

j=0

([
N

1
2(N−j−k), 12(N−j+k), j

]
−
[

N
1
2(N−j−k−1), 12(N−j+k+1), j

])
(3.72)

where ℓ = 2N mod 4 and the supertrinomial coefficients are given in terms of trinomial coefficients by

(x+ 1 + x−1)N =

N∑

k=−N

(
N

k

)

2

xk,

(
N

k

)

2

=

N∑

j=0

[
N

1
2(N−j−k), 12(N−j+k), j

]
(3.73)

and [
N

l,m,N−l−m

]
=

{
N !

l!m!(N−l−m)! , l,m,N − l −m ∈ Z≥0

0, otherwise
(3.74)

N
k 0 1 2 3

2 1 1 1 0
4 3 6 6 3
6 15 36 40 29
8 91 232 280 238
10 603 1585 2025 1890

(a) RN,k, N even (ℓ = 0)

N
k 0 1 2 3

1 0 1 0 0
3 1 3 2 1
5 6 15 15 10
7 36 91 105 84
9 232 603 750 672

(b) RN,k, N odd (ℓ = 2)

Table 2: The generalized Riordan numbers RN,k giving the number of link states on N (paired) nodes
with k cabled defects in the Neveu-Schwarz sectors with (a) N even (ℓ = 0) and (b) N odd (ℓ = 2).
We note that the numbers RN,k satisfy the recursion relation RN,k = RN−1,k−1 +RN−1,k +RN−1,k+1,
N > 1, k > 0 subject to the initial conditions R1,k = δ(1, k) and RN,0 = RN−1,1 = RN .

3.4.2 Ramond

In the Ramond sectors, corresponding to ℓ = 1, the link states have an odd number of underlying
elementary nodes in the bulk and the number d = 2k + 1 of single-strand cabled defects entering the
bulk from the boundary must be odd. We say that the system is of size N if there are N paired
nodes plus one single node in the bulk. The number of link states in the Ramond sector is given by
generalized Motzkin numbers MN,k as in Table 3. For example, the Ramond link states for N = 1, 2, 3
with one defect (k = 0) are

N = 1:

N = 2: ,

N = 3: , , ,

These link states are counted by the usual Motzkin numbers [43,45]

dimV(N)
1,2,1 = MN = MN,0 = RN +RN+1 = 1, 2, 4, 9, 21, . . . N = 1, 2, 3, . . . (3.75)
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N
k 0 1 2 3

1 1 1 0 0
2 2 2 1 0
3 4 5 3 1
4 9 12 9 4
5 21 30 25 14
6 51 76 69 44

Table 3: Generalized Motzkin numbers MN,k = RN,k + RN,k+1 giving the number of link states for
system size N with 2k + 1 defects in the Ramond sector. We note that MN,0 = MN .

This identity follows by partitioning the link states into Riordan link states of size N with a spectator
link on the right and Riordan link states of size N + 1 where the right most pair of nodes is not
projected. Similarly, the Ramond link states for N = 1, 2, 3 with three defects (k = 1) are

N = 1:

N = 2: ,

N = 3: , , ,

,

dimV(N)
1,4,1 = MN,1 = RN,1 +RN,2 = 1, 2, 5, 12, 30, . . . N = 1, 2, 3, . . . (3.76)

More generally, the Motzkin link states, for system size N with 2k + 1 single defects, can be
partitioned into two sets corresponding to the Riordan link states on N nodes with k cabled defects
and separately with k + 1 cabled defects

MN,k = RN,k +RN,k+1 (3.77)

Using (3.72), the generalized Motzkin numbers MN,k, as shown in Table 3, are given explicitly in terms
of supertrinomial coefficients and trinomial coefficients by

dimV(N)
1,2k+2,1 = MN,k =

(
N

k

)

2

−
(

N

k + 2

)

2

=
N∑

j=0

([
N

1
2(N−j−k), 12(N−j+k), j

]
−
[

N
1
2(N−j−k−2), 12(N−j+k+2), j

])
(3.78)

3.4.3 Action on cabled link states

The action of the operator Ej or Xj on a cabled link state is given diagrammatically by gluing
the operator underneath the link state and then decomposing any internal projectors to give a
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decomposition back into the original basis of cabled link states. For example,

= − 1

β
− 1

β
+

1

β2

=
(
β − 2β−1

)
+ β−2 (3.79)

The action of the generators can annihilate certain cabled link states. For example,

= = − 1

β
=
(
β − β−1

)
= 0 (3.80)

since the projector annihilates the single monoid operator (3.18).

3.4.4 Matrix representations

Matrix representations of the elements in the fused Temperley-Lieb algebra are obtained by acting with
the operators on the cabled link states. For example, to find the matrix representation of E1 using
the link states on four nodes with no defects, we act with E1 on each of the basis link states, write
the result as a linear combination of the basis link states and put the coefficients in the columns of a
matrix

N = 4: Neveu-Schwarz, no defects (k = 0)

E1=E3=



β2 1 β2

β

0 0 0
0 0 0


, E2=



0 0 0

1 β2
β2

β

0 0 0


, X1=X3=




β2

β 0 1
β2

0 0 0

0 1 β3

β2


, X2=




β2

β 0 1
β2

0 0 0

0 1 β3

β2


 (3.81)

N = 3: Ramond, one defect (k = 0)

E1=




0 0 0 0

0 β2 1 β2

β

0 0 0 0
0 0 0 0


, E2=




0 0 0 0
0 0 0 0

0 1 β2
β2

β

0 0 0 0


, X1=




β3

β2 0 − 1
β 0

0 β2

β 0 1
β2

0 0 0 0

0 0 1 β3

β2


, X2=




β3

β2 − 1
β 0 0

0 0 0 0

0 0 β2

β
1
β2

0 1 0 β3

β2




(3.82)
For modest values of the system size N , the action of the generators can be implemented in
Mathematica [63] using the elementary TL algebra to obtain matrix representations of the operators I,
Ej , Xj and hence the double row transfer matrices. In the case of an (r, s, ℓ) boundary condition on one
side of the strip and the vacuum (1, 1, 0) on the other side, these matrices can be directly diagonalized
to obtain finite-size spectra. In such cases, numerical conformal spectra are obtained by extrapolating
the finite-size corrections to the continuum scaling limit. For non-vacuum boundary conditions on both
sides of the strip, the transfer matrices need not be diagonalizable and Jordan blocks can occur.

4 Logarithmic Superconformal Minimal Lattice Models LSM(p, p′)

In this section, we regard the LSM(p, p′) models as exactly solvable lattice models [26] and discuss
their Yang-Baxter integrability. We also discuss duality and the combinatorial structure of finitized
Kac characters for the case n = 2 with r = 1.
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4.1 Yang-Baxter integrability

4.1.1 Generalized Yang-Baxter equations

The elementary n = 1 Yang-Baxter Equation (YBE) is expressed [26] in the equivalent forms

Xj(u)Xj+1(u+ v)Xj(v) = Xj+1(v)Xj(u+ v)Xj+1(u)

u

v
v−u =

v

u
v−u

(4.1)

In the diagrammatic representation, the square faces are distorted to rhombi. This YBE is satisfied
by the elementary face transfer operators (3.46). Diagrammatically, starting on the left hand side, the
diamond shaped face on the right is pulled through to the left with the effect of interchanging the
spectral parameters u, v of the other two faces.

The 2× 2 face transfer operators are defined by

Xj(u) = pj−1pj+1Xj(u− λ)Xj−1(u)Xj+1(u)Xj(u+ λ)pj−1pj+1 (4.2)

where increasing the j in Xj(u) by one unit equates to increasing the j in Xj(u) of the underlying
elementary lattice by two units. The unprojected 2× 2 fused YBE takes the form

Xj(u)Xj+1(u+ v)Xj(v) = Xj+1(v)Xj(u+ v)Xj+1(u)

u−λ u

u u+λ

v−λ v

v v+λ

w

w−λ w+λ

w

=

w

w−λ w+λ

w
u−λ u

u u+λ

v−λ v

v v+λ

(4.3)

where w = v−u. The fused YBE is readily proved, starting on the left hand side, by pulling through to
the left each of the four elementary faces of the diamond shaped fused face on the right and interchanging
spectral parameters appropriately. In this way, the elementary YBE is applied 8 times. Finally, the
fusion projector is applied on the six sides of each hexagon and pushed through to obtain the projected
2× 2 fused YBE. The scalar normalization factors η2,2(u) can be included because they trivially cancel
out of the YBE. The same proof easily extends to n × n fused YBE. Indeed, the faces need not be
square. A generalized YBE holds as long as the dimensions on the left and right sides are compatible
with the push-through properties. Everything in this section holds generally for the RSOS, vertex and
loop representations of TL. In particular, the projected 2×2 fused YBE is satisfied by the face transfer
operators Xj(u) given by (3.52) or (3.59).

4.1.2 Boundary Yang-Baxter equations

To work with lattice models on the strip in the presence of boundaries, we follow [29] and introduce left
and right boundary triangles and the fused crossing parameter µ. Since the left and right boundary
triangles and their Boundary Yang-Baxter Equations (BYBEs) are simply related by a reflection in
the vertical with the spectral parameter u replaced with µ − u, we only consider right triangles. For
the logarithmic superconformal minimal models, the boundary conditions are labelled by the quantum
numbers (r, s, ℓ). In this paper, we only consider boundary conditions of s-type with quantum number
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r = 1. More general r-type boundary conditions are considered in [64]. Let us start with the elementary
n = 1 logarithmic minimal models with boundary K operator acting on the last string

KN (u) = u (4.4)

To ensure integrability, these triangles must satisfy the BYBE

XN−1(u−v)KN (u)XN−1(λ−µ+u+v)KN (v) = KN (v)XN−1(λ−µ+u+v)KN (u)XN−1(u−v) (4.5)

Following [29], the general n × n fused transfer matrices satisfy the crossing symmetry D
n,n(u) =

D
n,n(µ − (n−1)λ − u). To ensure the crossing symmetry D

n,n(u) = D
n,n(λ − u), we need to choose

µ = nλ in these equations. For the superconformal loagrithmic minimal models, we choose µ = 2λ so
that D(u) = D(λ − u). Using the commutation relation [Xj(u),Xj(v)] = 0, it is seen that a simple
(vacuum) solution for n = 1 is given by

KN (u) = I = = (4.6)

This boundary condition is conjugate to the identity operator labelled by (r, s) = (1, 1).
The fused 2× 2 boundary triangles are defined by

KN (u) = pN−1KN (u)XN−1(2u)KN (u+ λ)pN−1 = 2u

u

u+λ

(4.7)

The fused BYBE

XN−1(u− v)KN (u)XN−1(u+ v)KN (v) = KN (v)XN−1(u+ v)KN (u)XN−1(u− v) (4.8)

follows by straightforward algebra, using the elementary YBE (4.1) and the elementary BYBE (4.5)
with µ = 2λ. This relation holds without the projectors so the projectors can be put in at the end.
Using the commutation relation [Xj(u),Xj(v)] = 0, it is seen that (after normalization) a simple solution
is given by

KN (u) = pN−1 = = (4.9)

This vacuum solution is obtained, up to a scalar, by substituting the elementary vacuum solution
(4.6) into (4.7) and observing that the projector acting on the face XN−1(2u) gives s1(−2u)pN−1.
Further solutions to the BYBE are obtained in Section 4.2 by acting on the vacuum solution (4.9) with
integrable seams to obtain dressed solutions.

4.2 Commuting double row transfer matrices

In this section, we construct commuting double row transfer matrices in the Neveu-Schwarz and
Ramond sectors. For each sector, we identify the appropriate integrable boundary conditions by the
action of integrable seams on the vacuum solution (4.9) of the BYBE. To complete the definition of
these transfer matrices we specify, referring to Section 3.4, the vector space of link states on which

24



they act. Following the methods of [29], the YBE (4.3), BYBE (4.8) and inversion relation (4.11)
together suffice to establish commuting transfer matrices and hence integrability at least for boundary
conditions of r = 1 type given by (4.9).

For the 2× 2 fused face operators (3.52), we introduce the diagrammatic representations

Xj(u) = u
(2, 2)

= [η2,2(u)]
−1

u−λ u

u u+λ

(4.10)

These face operators satisfy the inversion relation

Xj(u)Xj(−u) =
s(λ− u)s(λ+ u)s(2λ− u)s(2λ+ u)

s(2λ)2
I (4.11)

and crossing symmetry

Xj(u) = Xj(λ− u), u
(2, 2)

= λ−u
(2, 2)

(4.12)

4.2.1 Neveu-Schwarz sector (r, s) = (1, 1)

In the Neveu-Schwarz sector, we define double row transfer matrices with N columns diagrammatically
by

D(u) =
(2, 2) (2, 2)

(2, 2) (2, 2)

(2, 2) (2, 2)

(2, 2) (2, 2)

λ−u λ−u λ−u λ−u

u u u u. . .

. . .

(4.13)

These transfer matrices act on either the vector space of link states V(N)
1,1,0 or V

(N)
1,1,2 depending on whether

N is even or odd respectively.

4.2.2 Ramond sector (r, s) = (1, 2)

To move to the Ramond sector with r = 1 and s = 2, we change the boundary conditions by adding a
seam which consists of a single defect in the bulk which closes on the boundary. By construction, the
action of such seams on the vacuum solution (4.9) of the BYBE produces new dressed solutions [64] to
the BYBE. By convention, we place this (topological) defect seam on the right but by the generalized
YBE it can be propagated to any position along the double row. We thus define the double row transfer
matrices in the Ramond sector diagrammatically by

D(u) =
(2, 2) (2, 2)

(2, 2) (2, 2)

(2, 2) (2, 2)

(2, 2) (2, 2)

λ−u λ−u λ−u λ−u

u u u u. . .

. . .

u+ξ

u+λ
+ξ

λ−u
+ξ

2λ−u
+ξ

(4.14)
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The system size N for this transfer matrix is the number of columns in the bulk excluding the
Ramond seam. Notice that the single string in the boundary on the right is a spectator since it acts as

the identity. These transfer matrices act on the vector space of link states V(N)
1,2,1 for N even or odd. The

column inhomogeneity ξ is a boundary thermodynamic field. If we allow both columns of the Ramond
seam to depend on the spectral parameters (with the spectral parameters decreasing by λ with each
step to the left), fuse the 2 defects and set ξ = 0, we see that this has the effect of adding an extra
column of faces to the double row transfer matrix thus increasing N by 1 and taking us back to the NS
sector with the opposite parity of N . The width of the fused part of the Ramond seam that is spectral
parameter dependent is the quantum number ℓ ∈ {0, 1, 2} = A3 associated to the boundary condition
on the right. Since ℓ ∈ A3, it is perhaps not surprising that the Ramond seams and their parfermionic
indices satisfy the Ising fusion algebra with 0 being the identity and 1 the fundamental. Specifically,
ℓ satisfies the fusion rules 0 ⊗ ℓ = ℓ, 2 ⊗ 2 = 0, 1 ⊗ 2 = 1 and 1 ⊗ 1 = 0 ⊕ 2 but where the sum may
not be a direct sum. The superconformal picture is generated under the Z2 orbifolding [65] of this A3

diagram. In the general n ≥ 2 case, the width of this fused seam is ℓ ∈ {0, 1, 2, . . . , n} = An+1. In this
case, the seams and ℓ satisfy the An+1 fusion algebra. The parameter ξ associated with an ℓ-type seam
plays a similar role to that of the column inhomogeneity ξ for r-type boundary seams. To distinguish
the two, we will usually work with the equivalent field η = λ− ξ ∈ (0, π). Numerically, the continuum
scaling limit is found to be independent of the value chosen for η provided η is restricted to certain
subintervals of (0, π). In contrast, taking η to have an imaginary part, suitably scaled with logN , will
induce a boundary renormalization group flow between different conformal boundary conditions in the
continuum scaling limit [66].

4.2.3 Neveu Schwarz sectors (1, s), s ≥ 3

To move to sectors with r = 1, s ≥ 3 and s odd, we increase the number of defects d = s − 1 in the
transfer matrices and link states by adding an s-type seam on the right side in accord with (3.65). The
action of the s-type seams on the vacuum solution (4.9) of the BYBE produces new solutions to the
BYBE known as s-type boundary conditions. The s-type seams are obtained by fusing face operators
to form a seam with spectral parameters, introducing an inhomogeneity ξ and taking the braid limit
ξ → ±i∞. As in Section 3.4, the quantum number s − 1 is the number of single strands, in the link
state, that connect the bulk to the right boundary. These defects then just propagate along the right
boundary. In this way, the number of defects in the bulk is controlled by the boundary condition. The
double row transfer matrices in the NS sector for s = 3 are defined diagrammatically by

D(u) =
(2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2)

λ−u λ−u

u u. . .

. . .λ−u

u

(4.15)

These transfer matrices act on either the vector space of link states V(N)
1,3,0 or V

(N)
1,3,2 depending on whether

the number of columns N in the bulk is even or odd respectively. The cabled defect enters the bulk
through the link state and propagates through the bulk system. Transfer matrices with more defects
in the Neveu-Schwarz and Ramond sectors are defined similarly.

26



4.3 Hamiltonian Limit

In this section, we derive expressions for the quantum Hamiltonians associated with the matrix
representations D(u) of the double row transfer tangles of the previous section. For the numerical
calculations of spectra, it is more efficient to work with the Hamiltonians rather than the double row
transfer matrices.

4.3.1 Neveu-Schwarz sector (r, s) = (1, 1)

Let us define a normalised double row transfer matrix

d(u) =




β−1
2 D(u), β2 6= 0

3 sin 2λ
2 sin 3u D(u), β2 = 0

(4.16)

such that
lim
u→0

d(u) = I, d(u) = d(λ− u) (4.17)

for all β2. For small u, the double row transfer matrices then admit a series expansion of the form

d(u) = I − 2u

sin 2λ
H +O(u2) (4.18)

The quantum Hamiltonian H is thus given by the logarithmic derivative of the double row transfer
matrices

H = −sin 2λ

2

∂

∂u
logd(u)

∣∣∣∣
u=0

, λ ∈ (0, π), λ 6= π
2 (4.19)

To obtain the Hamiltonian, let us assume initially that β2 6= 0 and expand the double row transfer
matrix D(u) (4.13) to order O(u2). We do this diagrammatically. First, we open the double row
transfer matrix and use the crossing symmetry property to rotate the faces in the upper row

D(u) =

(2, 2)

λ−u
(2, 2)

λ−u
(2, 2)

λ−u
(2, 2)

λ−u

(2, 2)

u

(2, 2)

u

(2, 2)

u

(2, 2)

u

=

(2, 2)

u
(2, 2)

u
(2, 2)

u
(2, 2)

u

(2, 2)

u

(2, 2)

u

(2, 2)

u

(2, 2)

u

(4.20)

In the diagrams we show N = 4 but the general N case works similarly. We expand to O(u2) using
the series expansion of the face operator

Xj(u) = I − β2
sin 2λ

uI +
u

sinλ
Xj +

u

sin 2λ
Ej +O(u2), β2 = 2cos 2λ+ 1 (4.21)

27



The term with the identity on all faces is

D(0) = = β2I (4.22)

Since we are expanding to O(u2) and the operators Xj and Ej have a coefficient of u, we only need
configurations that have at most one of the operators Xj and Ej . This gives terms such as

=
β2
β
I = I (4.23)

= β2X1 = β2E1 (4.24)
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The expansion for the double row transfer matrix is thus

D(u) =
[
β2I − 2N

( β2
2

sin 2λ

)
uI + 2

(
u

sinλ

β2
β
I +

u

sin 2λ
I

)
+ 2

N−1∑

j=1

( u

sinλ
β2Xj +

u

sin 2λ
β2Ej

) ]
+O(u2)

= β2

{
I +

2u

sin 2λ

[(
−Nβ2 +

β2

β2

)
I +

N−1∑

j=1

(
βXj + Ej

)]
}

+O(u2), β2 6= 0 (4.25)

Comparing this with the expansion (4.18) gives the Neveu-Schwarz Hamiltonian

−H =
N−1∑

j=1

(βXj + Ej) (4.26)

where we have shifted the zero of energy (bulk and boundary free energies) by −Nβ2+β−1
2 β2 to remove

the constant terms in the Hamiltonian.
To obtain the Hamiltonian for superconformal dense polymers, we fix β2 = 0 and expand d(u)

to order O(u2). Because of the normalisation factor sin 3u in (4.16), this is equivalent to expanding
D(u) to order O(u3). In this case, the contributions (4.22) to (4.24) all vanish except for the term on
the right of (4.23) which gives the constant term in the Hamiltonian. At the next order in u, the only
surviving terms are diagrammatically as in the right side of (4.23) but with an additional Xj or Ej

for j = 1, 2, . . . , N − 1. After shifting the zero of energy, we again obtain the Hamiltonian (4.26). In

all cases, the Hamiltonian (4.26) acts on the vector space of link states V(N)
1,1,0 or V(N)

1,1,2 depending on
whether N is even or odd.

4.3.2 Ramond sector (r, s) = (1, 2)

Applying the same method used in the Neveu-Schwarz sector (r, s) = (1, 1) to the Ramond sector
(r, s) = (1, 2), gives the Ramond Hamiltonian

−H =

N−1∑

j=1

(βXj +Ej) + hN (η) p2N−1e2Np2N−1, hN (η) =
2 sin2 2λ

sin η sin(3λ− η)
, η ∈ (0, π) (4.27)

The extra boundary term with trigonometric coefficient hN (η) is due to the presence of the Ramond
seam introducing the single defect in the bulk. It acts at position N in the fused Temperley-Lieb
algebra and has the diagrammatic representation

p2N−1e2Np2N−1 = (4.28)

The Ramond Hamiltonian acts on the vector space of link states V(N)
1,2,1.

The trigonometric coefficient hN (η) has singularities at the endpoints η = 0, π. If λ = π/3 or
2π/3, there are no further singularities on η ∈ (0, π) and hN (η) is always positive if λ = π/3 and hN (η)
is always negative if λ = 2π/3. Otherwise, there is a third singularity at η = ηsing and so we restrict
the parameter η to

η ∈ (0, ηsing) ∪ (ηsing, π), ηsing = 3λ mod π (4.29)

In these cases, the field hN (η) is positive (ferromagnetic) on one subinterval and negative
(antiferromagnetic) on the other subinterval. The midpoints of the two subintervals are

η± =
ηsing
2

,
ηsing
2

+
π

2
, ± = sgn(hN (η)), sgn(hN (η+)) > 0, sgn(hN (η−)) < 0 (4.30)
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More explicitly, the midpoint of the positive interval of hN (η) is

η+ = η+(λ) =

{
ηsing

2 , λ ∈ (0, π3 ) ∪ (2π3 , π)
ηsing

2 + π
2 , λ ∈ (π3 ,

2π
3 )

; η+ = π
2 , λ = π

3 (4.31)

Numerical investigations indicate that the conformal properties in the continuum limit depend only
on the choice of the sign of hN (η), that is which subinterval η lies in, and that they are otherwise
independent of the choice of the value for η. For the purpose of generating numerical estimates with
λ < π

2 , it is therefore convenient to fix the value of η to η = η+.

4.3.3 Neveu-Schwarz sectors (1, s), s ≥ 3

The Hamiltonians, in the NS and R sectors, with r = 1 and s ≥ 3 are given by the same expressions
(4.26) and (4.27) depending on the parity of s. The only difference is that they act on the vector space

of link states V(N)
1,s,0 (s odd, N even), V(N)

1,s,2 (s odd, N even) or V(N)
1,s,1 (s even) with s ≥ 3. In these

cases, the generators Xj, Ej in the Hamiltonian do not act on the s−1 unpaired sites on the boundary.

Specifically, for s = 3, the Hamiltonian acting on the space of link states V(N)
1,3,0 is

−H =

N−1∑

j=1

(βXj + Ej) (4.32)

where the total number of underlying TL sites is 2N + 2.

4.4 Duality

In this section, we observe that the logarithmic superconformal minimal models exhibit an exact duality
for finite systems under the involution

λ↔ π − λ or p↔ p′ − p (4.33)

Since the spectra are invariant under this duality, as argued below, it therefore suffices to restrict our
study to models satisfying

λ <
π

2
, p >

p′

2
(4.34)

Under the duality (4.33), we see that

x↔ −x−1, β ↔ −β (4.35)

and observe that the TL algebra is invariant provided we supplement the map (4.33) with

I ↔ I, ej ↔ −ej (4.36)

The WJ projectors are then readily seen to be invariant (pj ↔ pj), while the generators of the fused
TL algebra are mapped as

I ↔ I, Xj ↔ −Xj , Ej ↔ Ej , Bj ↔ B−1
j (4.37)

As a consequence, the fused face operators, the double row transfer matrices (4.13) and the
Hamiltonians (4.26) are all invariant under the duality transformation if we map

u↔ −u or z ↔ z−1 (4.38)

30



It follows that, in the Neveu-Schwarz sectors, the matrix representatives D(u) = D(u, λ) andH = H(λ)
satisfy

D(u, λ) ∼D(−u, π − λ), H(λ) ∼ H(π − λ) (4.39)

where ∼ denotes matrix similarity.
The same duality transformation holds in the Ramond sectors with the additional mapping η ↔

π − η. The double row transfer and Hamiltonian matrix representatives then satisfy

D(u, λ, η) ∼D(−u, π − λ, π − η), H(λ, η) ∼ H(π − λ, π − η) (4.40)

We note that hN (η) changes sign under the duality mapping η ↔ π − η, λ↔ π − λ so the roles of η+
and η− are interchanged under duality and

η±(λ) = π − η∓(π − λ), λ 6= π
3 ,

2π
3 (4.41)

4.5 Free energies

As argued in [11], although we consider models with crossing parameter λ given by rational fractions
of π, these values are dense on the real line and so the bulk free energies, the boundary free energies
and central charges are all given as continuous functions of λ. In the next two subsections, we calculate
the bulk and boundary free energies analytically for 0 < λ < π

2 . The central charges and first few
conformal weights are determined numerically in Section 5.

4.5.1 Bulk free energies

The bulk free energies are calculated using the inversion method of Baxter [67]. The 2 × 2 fused face
operators satisfy the inversion (4.11) and crossing relation (4.12). It follows that the partition function
per face κ(u) = exp(−fbulk(u)) satisfies the inversion and crossing relations

κ(u)κ(u + λ) =
s(λ− u)s(λ+ u)s(2λ− u)s(2λ+ u)

s(2λ)2
, κ(u) = κ(λ− u) (4.42)

Using the identities

d2

du2
log

sinu

sinλ
= −

∫ ∞

−∞

2t cosh(π − 2u)t

sinhπt
dt, 0 < Reu < π (4.43)

and
d2

du2
log

sin(λ− u) sin(λ+ u)

sin2 λ
= −

∫ ∞

−∞

4t cosh(π − 2λ)t

sinhπt
e2ut dt, |Re u| < λ (4.44)

it follows that

d2

du2
log

s(λ− u)s(λ+ u)s(2λ− u)s(2λ+ u)

s(2λ)2
= −

∫ ∞

−∞

8t cosh(π − 3λ)t cosh λt

sinhπt
e2utdt (4.45)

Writing
d2

du2
log κ(u) =

∫ ∞

−∞
c(t)e2ut dt (4.46)

we conclude that

c(t) = e−2λtc(−t), (1 + e2λt)c(t) = −8t cosh(π − 3λ)t cosh λt

sinhπt
(4.47)

so that the solution is

c(t) = −4t cosh(π − 3λ)t

sinh πt
e−λt (4.48)
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Integrating twice and evaluating the integration constants gives

log κ(u) =

∫ ∞

−∞

cosh(π − 3λ)t [cosh(λ− 2u)t− coshλt]

t sinh πt
dt+Au

=2

∫ ∞

−∞

cosh(π − 3λ)t sinhut sinh(λ− u)t

t sinh πt
dt, −λ

2
< Re(u) <

3λ

2
(4.49)

where applying the crossing symmetry and setting u = λ implies A = 0. Since the solution without
zeros and poles in the relevant (physical) analyticity strip is unique, this solution can be rewritten as

κ(u) =
s(λ+ u)s(2λ − u)

s(2λ)
, −λ

2
< Reu <

3λ

2
, 0 < λ <

π

2
(4.50)

Let E0 be the lowest energy eigenvalue of the quantum Hamiltonian H in the vacuum sector
(r, s, ℓ) = (1, 1, 0). Then taking the Hamiltonian limit, as in Section 4.3, and allowing for the fact that
there are two faces in each column gives

κ(u) ∼ exp
[
− u

sin 2λ

(E0

N
+ β2

)]
∼ s(λ+ u)s(2λ− u)

s(2λ)
, N →∞ (4.51)

Taking the logarithmic derivative, or equivalently equating the linear terms in u for the small u
expansion and using

s(λ+ u)s(2λ− u)

s(2λ)
∼ u

sin 2λ
(4.52)

gives the energy eigenvalue E0 of the quantum Hamiltonian H as

− E0

N
∼ β2 + 1 = β2, N →∞ (4.53)

This result is confirmed to high precision by our numerics in both the NS and R sectors.

4.5.2 Boundary free energies

The boundary free energies are calculated using the boundary inversion relation methods of [68].
Diagrammatically, following [69], the boundary partition function κ0(u) = exp(−fbdy(u)) satisfies the
boundary inversion relation

κ0(u)κ0(u+ λ) =
s(2λ)2

s(λ−2u)s(λ+2u)s(2λ−2u)s(2λ+2u)

(2, 2)

2u
(2, 2)

−2u

u

u+ λ

λ−u

−u
(4.54)

where the faces with spectral parameters ±2u are put in using the inversion relation (4.11) and
compensated by the scalar prefactors. The identity acting internally at the bottom is decomposed
into the complementary fusion projectors

I =
Ej

β2
+
(
I − Ej

β2

)
, β2 6= 0 (4.55)
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and only the first projector is kept. Replacing the four boundary triangles in (4.54) with the vacuum
triangles (4.9), rotating the central faces and using the push-through relations

Xj(λ−2u)Ej =
s(3λ−2u)s(2λ−2u)

s(2λ)
Ej , Xj(λ+2u)Ej =

s(3λ+2u)s(2λ+2u)

s(2λ)
Ej (4.56)

gives the scalar contributions of the central faces and the scalar boundary inversion relation

κ0(u)κ0(u+ λ) =
s(3λ−2u)s(3λ+2u)

s(λ−2u)s(λ+2u)
(4.57)

Applying the decomposition (4.55) to the full double row transfer matrices, as in (4.54), gives an
inversion identity [70] of the form

D(u)D(u+ λ) =
s(3λ−2u)s(3λ+2u)

s(λ−2u)s(λ+2u)
I + φ(u)D(1,2)(u) (4.58)

where φ(u) is a scalar function and D
(1,2)(u) is a fused double row transfer matrix. The scalar inversion

relation ensues because the second term on the right of this inversion identity is exponentially small
for u in an appropriate strip in the complex u plane.

We first calculate the boundary free energies for the transfer matrices D(u). Taking the
Hamiltonian limit gives the boundary free energies of the Hamiltonians valid on the interval 0 < λ < π

3 .
We then analytically continue these results to the interval 0 < λ < π

2 .

In its analyticity strip −λ
2 < Reu < 3λ

2 , the vacuum boundary contribution κ̃0(u) = κ0(u)/β2
satisfies the inversion relation and crossing relations

κ̃0(u)κ̃0(u+ λ) =
sin2 λ sin(3λ− 2u) sin(3λ+ 2u)

sin2 3λ sin(λ− 2u) sin(λ+ 2u)
, κ̃0(u) = κ̃0(λ− u), κ̃(0) = 1 (4.59)

log κ̃0(u) + log κ̃0(u+ λ) = log
sin3 λ sin(3λ− 2u) sin(3λ+ 2u)

sin2 3λ sin(λ− 2u) sin(λ+ 2u)
, −λ

2
<Reu <

λ

2
(4.60)

But now using the identities (4.43) and (4.44), it follows that in the strip |Reu| < λ/2

d2

du2
log

sin(3λ− 2u) sin(3λ+ 2u)

sin(λ− 2u) sin(λ+ 2u)
=

∫ ∞

−∞

2t sinh (π−4λ)t
2 sinhλt

sinh πt
2

e2utdt (4.61)

We conclude that

c(t) = e−2λtc(−t), (1 + e2λt)c(t) =
2t sinh (π−4λ)t

2 sinhλt

sinh πt
2

(4.62)

so that the solution is

c(t) =
t sinh (π−4λ)t

2 sinhλt

sinh πt
2 cosh λt

e−λt (4.63)

Integrating twice and evaluating the integration constants gives

log κ̃0(u) =

∫ ∞

−∞

sinh (π−4λ)t
2 sinhλt

4t sinh πt
2 coshλt

e−(λ−2u)t dt+Au+B

=

∫ ∞

−∞

sinh (π−4λ)t
2 sinhλt [cosh(λ− 2u)t− coshλt]

4t sinh πt
2 cosh λt

dt+Au

=

∫ ∞

−∞

sinh (π−4λ)t
2 sinhλt sinhut sinh(λ− u)t

2t sinh πt
2 coshλt

dt, −λ

2
< Re(u) <

3λ

2
(4.64)
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Figure 2: Plot of the Hamiltonian boundary free energy (4.68) against λ. The agreement with numerical
estimates is good for λ < π

3 . There is some scatter of numerical data points for λ > π
3 due to larger

errors arising from slow convergence of the sequences of approximants.

where applying the crossing symmetry and setting u = λ implies A = 0. This result applies in the
interval 0 < λ < π

3 . This result can be analytically continued to the interval 0 < λ < π
2 , but since we

do not need it, we do not give the expression here.
Taking the Hamiltonian limit of (4.64) gives the boundary free energy for the Hamiltonian (4.26)

fbdy = f2,2
bdy =

β2

β2
+ sin 2λ

∫ ∞

−∞

sinh (π−4λ)t
2 sinhλt tanhλt

sinh πt
2

dt

= sin 2λ
[2 cos λ
sin 3λ

+

∫ ∞

−∞

sinh (π−4λ)t
2 sinhλt tanhλt

sinh πt
2

dt
]
, 0 < λ < π

3 (4.65)

For λ > π
3 , the integral diverges so we analytically continue this result to 0 < λ < π

2 by combining the
two terms in square brackets into one integral. We start with the identity

log sinλ = −
∫ ∞

−∞

sinh2 (π−2λ)t
2

t sinhπt
dt, 0 < λ < π (4.66)

It follows that

2 cos λ

sin 3λ
=

1

3

d

dλ

[
3 log sinλ− log sin 3λ

]
=

1

3

d

dλ

∫ ∞

−∞

sinh2 (π−6λ)t
2 − 3 sinh2 (π−2λ)t

2

t sinhπt
dt

=

∫ ∞

−∞

sinh(π−2λ)t− sinh(π−6λ)t
sinhπt

dt =

∫ ∞

−∞

cosh (π−4λ)t
2 sinhλt

sinh πt
2

dt (4.67)

Substituting into (4.65) and simplifying the single integrand gives

fbdy = sin 2λ

∫ ∞

−∞

cosh (π−2λ)t
2 tanhλt

sinh πt
2

dt, 0 < λ < π
2 (4.68)

A plot of the analytic boundary free energy fbdy against λ is shown in Figure 2. This analytic result is
well confirmed numerically.

34



4.6 Finitized r = 1 Kac characters

In this section, we use combinatorial arguments to conjecture the r = 1 finitized Kac characters of
the logarithmic superconformal (n = 2) minimal models LSM(p, p′). Our arguments generalize those
applied to the logarithmic minimal models LM(p, p′) [11] by replacing the role of q-binomials with
q-trinomials. The quantum numbers r, s, ℓ determining the sector are fixed by boundary conditions.
In each sector, we impose the requirements that (i) as q → 1, the finitized characters give the correct
counting of the link states with s−1 single defects, (ii) as N →∞, the finitized characters converge to the
corresponding full character (up to the leading power of q) and (iii) the finitized characters are fermionic
in the sense that, for each N , they admit a q-expansion with nonnegative integer coefficients. The
manner in which sums of q-trinomial coefficients enter is fixed by the trinomial coefficients appearing
in the counting formulas of Section 3.4. These q-trinomial coefficients are multiplied by suitable powers
of q with quadratic exponents to ensure condition (ii) is satisfied. That such finitized characters exist
in each sector (at least with r = 1), satisfying all of the required properties (i)–(iii), gives remarkable
confirmation of the consistency of the lattice approach.

To obtain a finitized form χ
P,P ′;2,(N)
r,s,ℓ (q) of χP,P ′;2

r,s,ℓ (q), we use q-trinomial coefficients defined in
terms of q-factorials (2.8) by

[
n

l,m, n − l −m

]

q

=

{
(q)n

(q)l(q)m(q)n−l−m
l,m, n−l−m ∈ Z≥0

0, otherwise
(4.69)

In the limit q → 1, the q-trinomials reduce to the trinomial coefficients (3.74)

lim
q→1

[
n

l,m, n−l−m

]

q

=

[
n

l,m, n−l−m

]
(4.70)

In the limit N →∞, the q-trinomials satisfy

lim
N→∞

[
N

1
2 (N−j−k), 12(N−j+k), j

]

q

= lim
N→∞

(q)N
(q) 1

2
(N−j−k)(q) 1

2
(N−j+k)(q)j

=
(q)∞

(q)∞(q)∞(q)j
=

1

(q)∞(q)j
(4.71)

We present our conjectured finitized superconformal Kac characters separately in the Neveu-
Schwarz and Ramond sectors. Since the form of the finitized characters for r > 1 is more complicated,
we restrict our attention in this paper to r = 1. Observe that, as in the n = 1 case, the dependence on
P,P ′ or p, p′ in the Kac characters only enters in the fractional power of q in the prefactor. To remove
these fractional powers of q, it is convenient to write the superconformal Kac characters (2.14) and Z2

string functions (2.7) as

χP,P ′,2
r,s,ℓ (q) = q−

cP,P ′;2

24
+∆P,P ′;2

r,s,ℓ χ̂r,s,ℓ(q), c11 = q
1
24 ĉ11(q), cℓm = q−

1
48 ĉℓm(q), ℓ = 0, 2 (4.72)

where ĉ20(q) = ĉ02(q) = q
1
2 (1 + · · · ) is the only hatted quantity with a q-expansion not starting with 1.

We recall that s−1 is the number of single defects and, since r = 1, we must have s+ ℓ odd in the NS
and R sectors. In the NS sector with ℓ = 0, 2, r = 1 and s odd, we also define

∆ℓ
s = ∆ℓ;2

1−s +Max[12 (ℓ−s+1), 0] =





3
2 , s = 1, ℓ = 2
1
2 ,

s+ℓ−1
2 odd, s > 1

0, s+ℓ−1
2 even

(4.73)
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4.6.1 Neveu-Schwarz sectors

NS: s odd, N even (ℓ = 0) or N odd (ℓ = 2)

q∆
ℓ
s χ̂

(N)
1,s,ℓ(q) =

N∑

j=0

q
j2

2

([
N

1
2(N−j − s−1

2 ), 12(N−j+ s−1
2 ), j

]

q

−q s
2

[
N

1
2 (N−j− s+1

2 ), 12(N−j+ s+1
2 ), j

]

q

)

(4.74)
Taking the limit as q → 1 and using (4.70) gives

lim
q→1

χ̂
(N)
1,s,ℓ(q) =

N∑

j=0

([
N

1
2 (N−j − s−1

2 ), 12(N−j+ s−1
2 ), j

]
−
[

N
1
2(N−j− s+1

2 ), 12(N−j+ s+1
2 ), j

])

=

(
N
s−1
2

)

2

−
(

N
s−1
2 + 1

)

2

= RN, s−1
2

(4.75)

which is the correct number of Riordan link states with s − 1 single or 1
2 (s − 1) cabled defects. We

check that the limit N →∞ gives χ̂1,s,ℓ(q) separately for ℓ = 0 and ℓ = 2.

NS: s odd, N even (ℓ = 0)

We separate the two terms in (4.74) and sum over only the nonzero terms (in which the arguments of
the q-trinomial coefficients are integers). This gives two cases: s = 1 mod 4 and s = 3 mod 4.

NS: s = 1 mod 4, N even (ℓ = 0)

lim
N→∞

χ̂
(N)
1,s,0(q) = lim

N→∞

{
∞∑

j=0
j even

q
j2

2

[
N

1
2(N−j − s−1

2 ), 12(N−j+ s−1
2 ), j

]

q

− q
s
2

∞∑

j=1
j odd

q
j2

2

[
N

1
2 (N−j− s+1

2 ), 12(N−j+ s+1
2 ), j

]

q

}

=
1

(q)∞

∞∑

j=0
j even

q
j2

2

(q)j
− q

s
2

(q)∞

∞∑

j=1
j odd

q
j2

2

(q)j
= ĉ00 − q

s
2 ĉ02 (4.76)

where we have used (4.71) and the fermionic forms (2.15) of the string functions. Indeed, these
fermionic forms were used to fix the quadratic exponents of q in the factors multiplying the q-trinomial
coefficients. We notice that such fermionic forms are known [71] more generally for n ≥ 2 parafermionic
string functions.

NS: s = 3 mod 4, N even (ℓ = 0)

lim
N→∞

q
1
2 χ̂

(N)
1,s,0(q) = lim

N→∞

{
∞∑

j=1
j odd

q
j2

2

[
N

1
2(N−j − s−1

2 ), 12(N−j+ s−1
2 ), j

]

q

− q
s
2

∞∑

j=0
j even

q
j2

2

[
N

1
2(N−j− s+1

2 ), 12 (N−j+ s+1
2 ), j

]

q

}

=
1

(q)∞

∞∑

j=1
j odd

q
j2

2

(q)j
− q

s
2

(q)∞

∞∑

j=0
j even

q
j2

2

(q)j
= ĉ02 − q

s
2 ĉ00 (4.77)

36



NS: s = 1 mod 4, N odd (ℓ = 2)

lim
N→∞

q
1
2
+δ(s,1)χ̂

(N)
1,s,2(q) =

1

(q)∞

∞∑

j=1
j odd

q
j2

2

(q)j
− q

s
2

(q)∞

∞∑

j=0
j even

q
j2

2

(q)j
= ĉ20 − q

s
2 ĉ22 (4.78)

NS: s = 3 mod 4, N odd (ℓ = 2)

lim
N→∞

χ̂
(N)
1,s,2(q) =

1

(q)∞

∞∑

j=0
j even

q
j2

2

(q)j
− q

s
2

(q)∞

∞∑

j=1
j odd

q
j2

2

(q)j
= ĉ22 − q

s
2 ĉ20 (4.79)

In the Neveu-Schwarz sectors with r = 1, these four expressions for the N → ∞ limit of the finitized
characters combine to give the required result in accord with (2.14):

NS: s odd, ℓ = 0, 2

lim
N→∞

χ̂
(N)
1,s,ℓ(q) = q−∆ℓ

s(ĉℓm−
− q

s
2 ĉℓm+

) (4.80)

where m− = s− 1 mod 4, m+ = s+ 1 mod 4 and m+ = 2−m− mod 4.

4.6.2 Ramond sectors

In the Ramond sectors, we have ℓ = 1 and s even.

Ramond: s even, N even or odd (ℓ = 1)

χ̂
(N)
1,s,1(q) =

N∑

j=0

q
j2−j
2

([
N

1
2 (N−j− s−2

2 ), 12(N−j+ s−2
2 ), j

]

q

−q s
2

[
N

1
2(N−j− s+2

2 ), 12(N−j+ s+2
2 ), j

]

q

)

(4.81)
Taking the limit q → 1 gives

lim
q→1

χ̂
(N)
1,s,1(q) =

N∑

j=0

([
N

1
2(N−j − s−2

2 ), 12(N−j+ s−2
2 ), j

]
−
[

N
1
2 (N−j− s+2

2 ), 12(N−j+ s+2
2 ), j

])

=

(
N
s−2
2

)

2

−
(

N
s−2
2 + 2

)

2

= MN, s−2
2

(4.82)

which is the correct number of Motzkin link states for system size N with s− 1 single defects. For the
limit N →∞, the cases N odd or even and s = 0 or 2 mod 4 must be considered separately

Ramond: s = 0 mod 4, N even (ℓ = 1)

lim
N→∞

χ̂
(N)
1,s,1(q)= lim

N→∞

∞∑

j=1
j odd

q
j2−j
2

([
N

1
2(N−j− s−2

2 ),12 (N−j+ s−2
2 ), j

]

q

− q
s
2

[
N

1
2 (N−j− s+2

2 ),12 (N−j+ s+2
2 ), j

]

q

)

=
(1− q

s
2 )

(q)∞

∞∑

j=1
j odd

q
j2−j

2

(q)j
= (1− q

s
2 ) ĉ11(q) (4.83)

Ramond: s = 2 mod 4, N even (ℓ = 1)

lim
N→∞

χ̂
(N)
1,s,1(q)= lim

N→∞

∞∑

j=0
j even

q
j2−j
2

([
N

1
2(N−j− s−2

2 ),12 (N−j+ s−2
2 ), j

]

q

− q
s
2

[
N

1
2(N−j− s+2

2 ),12 (N−j+ s+2
2 ), j

]

q

)

=
(1− q

s
2 )

(q)∞

∞∑

j=0
j even

q
j2−j

2

(q)j
= (1− q

s
2 ) ĉ11(q) (4.84)
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Ramond: s = 0 mod 4, N odd (ℓ = 1)

lim
N→∞

χ̂
(N)
1,s,1(q) =

(1− q
s
2 )

(q)∞

∞∑

j=0
j even

q
j2−j

2

(q)j
= (1− q

s
2 ) ĉ11(q) (4.85)

Ramond: s = 2 mod 4, N odd (ℓ = 1)

lim
N→∞

χ̂
(N)
1,s,1(q) =

(1− q
s
2 )

(q)∞

∞∑

j=1
j odd

q
j2−j

2

(q)j
= (1− q

s
2 ) ĉ11(q) (4.86)

In the Ramond sector with r = 1, these four expressions for the N →∞ limit of the finitized characters
all give the required result in accord with (2.14):

Ramond: s even, N even or odd (m+= m−= ℓ = 1)

lim
N→∞

χ̂
(N)
1,s,1(q) = (1− q

s
2 ) ĉ11(q) (4.87)

5 Numerical Strip Partition Functions for LSM(p, p′)

5.1 Finite-size corrections

In this section, we use finite size scaling to numerically estimate the eigenvalue spectra of the logarithmic
superconformal minimal Hamiltonians in the NS and R sectors.

5.1.1 Transfer matrices

For given p, p′ or the related P,P ′, the partition function, on a strip with N columns and N ′ double
rows, of the n×n fused lattice models LM(p, p′)n×n with double row transfer matrix D

n,n(u) of fused
faces is defined by

Z
P,P ′;n,(N)
(r1,s1,ℓ1)|(r2,s2,ℓ2)

= TrDn,n(u)N
′

=
∑

j

Dn,n
j (u)N

′

=
∑

j

e−N ′En,n
j (u) (5.1)

where the sum over j = 0, 1, 2, . . . is over all eigenvalues of the transfer matrix D
n,n(u) including

possible multiplicities and En,n
j (u) is the energy associated to the eigenvalue Dn,n

j (u). The form of the
partition function (5.1) holds in all sectors where (r1, s1, ℓ1) and (r2, s2, ℓ2) are the boundary conditions
on the left and right of the strip respectively in the Virasoro picture.

We usually work in the (r, s, ℓ) sector by taking (r2, s2, ℓ2) = (r, s, ℓ) and (r1, s1, ℓ1) = (1, 1, 0)
which is the vacuum boundary condition conjugate to the identity operator. In these cases, it is found
numerically that the double row transfer matrices D

n,n(u) are diagonalizable with real eigenvalues.
Conformal invariance of the model in the continuum scaling limit dictates [72, 73] that the leading
finite-size corrections for large N in the (r, s, ℓ) sector are of the form

En,n
j (u) = − lnDn,n

j (u) ≃ Nfn,n
bulk(u) + fn,n

bdy (u) +
2π sinϑ

N

(
− c

24
+ ∆P,P ′;n

r,s,ℓ + k
)
+ · · · (5.2)

for some k = 0, 1, 2, . . . where the anisotropy angle ϑ [74] and modular nome q are

ϑ =
πu

λ
, λ =

(p′ − p)π

p′
, q = exp

(
− 2π

N ′

N
sinϑ

)
(5.3)
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The central charge of the CFT is c while the spectrum of conformal weights is given by the possible

values of ∆P,P ′;n
r,s,ℓ with excitations or descendants labelled by the non-negative integers k. Here fn,n

bulk(u)
is the limiting bulk free energy per fused column (which is twice the free energy per fused face) and
fn,n
bdy (u) is the boundary free energy. The bulk free energy is independent of the boundary parameters
r, s, ℓ and the boundary free energy is independent of s.

5.1.2 Hamiltonians

Similarly, the finite-size corrections for the eigenenergies of the Hamiltonian H are given by

En,n
j = Nfn,n

bulk + fn,n
bdy +

πvs
N

(
− c

24
+ ∆P,P ′;n

r,s,ℓ + k
)
+ · · · , k = 0, 1, 2, . . . (5.4)

where vs is the velocity of sound. For 2× 2 fusion, the velocity of sound is given explicitly by

vs =
π sin 2λ′

λ′
, λ′ = Min[λ, π − λ] (5.5)

in accord with duality. For the superconformal n = 2 case of primary interest, we will usually drop
the superscripts (n, n). Again the bulk free energy is independent of the boundary parameters r, s, ℓ
and the boundary free energy is independent of s. In particular, for the logarithmic superconformal
theories with n = 2, the Hamiltonian finitized conformal partition functions are

Z
P,P ′;2,(N)
(1,1,0)|(r,s,ℓ)(q) = χ

P,P ′;2,(N)
r,s,ℓ (q) (5.6)

where the r = 1 finitized characters are given in Section 4.6 with the modular nome

q = exp
(
− N ′πvs

N

)
(5.7)

5.2 Numerical central charges and conformal weights

In this section, we present the results of numerical calculations for the central charges and conformal
weights of the LSM(p, p′) := LM(p, p′)2×2 models, in the NS (r + s even) and R (r + s odd) sectors,
to confirm the identification with the n = 2 logarithmic minimal coset models

LSM(p, p′) ≡ LM(P,P ′; 2), P = |2p − p′|, P ′ = p′ (5.8)

Since it is numerically more efficient, we calculate the central charges and conformal weights using the
Hamiltonians and not the double row transfer matrices. Because of duality, we can restrict ourselves to
the case 0 < λ < π

2 . The numerics support well our theoretical arguments. Ultimately, of course, these
models are exactly solvable. So, in principle, it should be possible to obtain all of the conformal data
analytically by extending the analysis of Klümper and Pearce [30] based on T - and Y -systems. Indeed,
these functional equations are derived for the logarithmic minimal models LM(P,P ′;n) in [75].

5.2.1 Neveu-Schwarz sector (r, s) = (1, 1)

Estimates for the central charge c and conformal weights ∆j are obtained by applying the finite-size
corrections (5.4) with the velocity of sound vs (5.5) to the ground state and excited states of the
Hamiltonians (4.26) and (4.27). The matrices representing these Hamiltonians are constructed and
diagonalized in Mathematica [63] out to system sizes N = 13. Since we work in the 2 × 2 fused TL
algebra, this means we work with chains of up to 26 sites in the underlying TL algebra. Let E0 be the
lowest energy in the vacuum sector with (1,1,0) boundary conditions on both sides of the strip. For
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Central charges c and ∆1,1,2 =
3
2 of LSM(p, p′) with (r, s) = (1, 1)

(p, p′) (P,P ′) λ
π

NS, ℓ = 0 (N even) NS, ℓ = 2 (N odd)
Exact Estimated Error Estimated Error

(6, 7) (5, 7) 0.143 81/70 1.15714 1.15709 .005% 1.4996 .03%
(5, 6) (4, 6) 0.167 1 1 1.0004 .04% 1.5008 .05%
(4, 5) (3, 5) 0.2 7/10 0.7 0.6998 .02% 1.4995 .03%
(3, 4) (2, 4) 0.25 0 0 0 0 1.498 .14%
(5, 7) (3, 7) 0.286 −11/14 −0.7857 −0.7854 .04% 1.499 .07%
(2, 3) (1, 3) 0.333 −5/2 −2.5 −2.502 .08% 1.504 .27%
(3, 5) (1, 5) 0.4 −81/10 −8.1 −7.97 1.6% 1.45 3.4%
(4, 7) (1, 7) 0.429 −195/14 −13.93 −14.12 1.4% 1.46 2.5%

Table 4: Numerical estimates of central charges c and the conformal weight ∆1,1,2 = 3
2 in the Neveu-

Schwarz sector with (r, s) = (1, 1) for different logarithmic superconformal minimal models LSM(p, p′).

The models are listed in increasing order of the crossing parameter λ = (p′−p)π
p′ with 0 < λ

π < 1
2 :

(i) Comparison of some exact (2.5) and estimated values (5.9) of c with (r, s, ℓ) = (1, 1, 0) and N even.
There are no finite size corrections for c in the case of superconformal percolation LSM(3, 4) with the
largest eigenvalue of −H given exactly by 2(N − 1). (ii) Some estimates of ∆1,1,2 with ℓ = 2 and N
odd. The exact value ∆1,1,2 =

3
2 is independent of (p, p′) corresponding to the supersymmetric partner

of the energy-momentum tensor. The agreement of the numerical values with the theoretical prediction
is good for λ < π

3 . For ∆1,1,2, the convergence is slower and the errors greater for λ > π
3 . The results in

this table, along with the additional results in the plot shown in Figure 3, confirm the identifications
P = |2p − p′|, P ′ = p′.
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Figure 3: Plot of the central charges c = 3
2 − 12λ2

π(π−2λ) , 0 < λ < π
2 of the Hamiltonian (4.26) in the

Neveu-Schwarz sector (r, s, ℓ) = (1, 1, 0). For λ < 2π
5 , the agreement with numerics is good. As λ

approaches π
2 , the central charges diverge to −∞ and the errors in the numerical estimates are larger.
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the quantum chains (4.26) and (4.27), the precise sequences of approximants we use for E0 and excited
state energies Ej are

E0

n
→ fbulk, (E0 −Nfbulk)→ fbdy, −24n

πvs
(E0 − nfbulk − fbdy)→ c (5.9)

c

24
+

n

πvs
(Ej − nfbulk − fbdy)→ ∆j + k, k = 0, 1, 2, . . . n = N − 1 (5.10)

These sequences are extrapolated using Vanden Broeck-Schwartz [76] acceleration. The lowest energy
E0 in the vacuum Neveu-Schwarz sector with (r, s, ℓ) = (1, 1, 0) and ∆1,1,0 = 0 gives the central charge.
Our numerical results are shown as a plot in Figure 3 and tabulated in Table 4. For the special case
of superconformal percolation with (p, p′) = (3, 4), the eigenenergies of the Hamiltonian in this sector
are given by −E0(N) = 2(N − 1) = 2, 6, 10, 14, . . . for N = 2, 4, 6, 8, . . . . In this case, we have λ = π

4 ,
−fbulk = 2 = β2, fbdy = 0 and there are no finite-size corrections so that c = 0.

Some results for the numerical estimates to the conformal weight ∆1,1,2 =
3
2 in the Neveu-Schwarz

sector with N odd are also shown in Table 4.

5.2.2 Neveu-Schwarz sector (r, s) = (1, 3)

The Hamiltonian in the Neveu-Schwarz sectors with (r, s) = (1, 3) is given by (4.32). The quantum
number ℓ takes the values ℓ = 0 (N even) or ℓ = 2 (N odd). Some numerical estimates for the conformal
weights ∆1,3,0 = 1 − 2λ

π and ∆1,3,2 = 1
2 − 2λ

π are shown in Table 5 for 0 < λ < π
3 . For λ > π

3 , the
extrapolations are less reliable.

Conformal weights ∆1,3,0 and ∆1,3,2 of LSM(p, p′) with (r, s) = (1, 3)

(p, p′) (P,P ′) λ
π

∆1,3,0 (N even) ∆1,3,2 (N odd)
Exact Est. Error Exact Est. Error

(6, 7) (5, 7) 0.143 5/7 0.7143 0.7148 .07% 3/14 0.2143 0.2142 .05%
(5, 6) (4, 6) 0.167 2/3 0.6667 0.6673 .10% 1/6 0.1667 0.1666 .01%
(4, 5) (3, 5) 0.2 3/5 0.6 0.6001 .01% 1/10 0.1 0.0999 .06%
(3, 4) (2, 4) 0.25 1/2 0.5 0.5001 .03% 0 0 0 0
(5, 7) (3, 7) 0.286 3/7 0.429 0.4289 .07% −1/14 −0.07143 −0.07136 .09%
(2, 3) (1, 3) 0.333 1/3 0.3333 0.3336 .09% −1/6 −0.1667 −0.1665 .09%

Table 5: Some numerical estimates of the conformal weights ∆1,3,0 = 1− 2λ
π and ∆1,3,2 =

1
2 − 2λ

π in the
Neveu-Schwarz sector with (r, s) = (1, 3) and ℓ = 0 (N even), ℓ = 2 (N odd) for different logarithmic
superconformal minimal models LSM(p, p′). The models are listed in increasing order of the crossing

parameter λ = (p′−p)π
p′ with 0 < λ

π < 1
3 . In this range, the agreement of the numerical values with

the theoretical prediction is good. For λ > π
3 , the estimates are less reliable. There are no finite size

corrections for ∆1,3,2 in the case of superconformal percolation LSM(3, 4) with the largest eigenvalue
of −H given exactly by 2(N − 1).

5.2.3 Ramond sector (r, s) = (1, 2)

The boundary free energies have not been calculated analytically in the Ramond sectors, so they are
estimated by numerical extrapolation. Since the extrapolations of conformal quantities are sensitive
to the value of the boundary free energy, the numerical precision of the estimates is reduced in the
Ramond sectors. Some numerical estimates of the conformal weight ∆1,2,1 =

3
16

(
1− 4λ

π

)
are shown in

Table 6 for 0 < λ < π
3 . For λ > π

3 , the extrapolations are unreliable. A plot of the conformal weight
∆1,2,1 for 0 < λ < π

3 against the numerical estimates for even and odd N is shown in Figure 4.
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Conformal weight ∆1,2,1 of LSM(p, p′) with (r, s) = (1, 2)

(p, p′) (P,P ′) λ
π

Ramond, ℓ = 1
Exact Est. (N even) Error Est. (N odd) Error

(6, 7) (5, 7) 0.143 9/112 0.0804 0.0808 0.49% 0.0806 0.25%
(5, 6) (4, 6) 0.167 1/16 0.0625 0.0626 0.10% 0.0625 0.05%
(4, 5) (3, 5) 0.2 3/80 0.0375 0.0375 0.04% 0.0376 0.39%
(3, 4) (2, 4) 0.25 0 0 0 0 0 0
(5, 7) (3, 7) 0.286 −3/112 −0.0268 −0.0256 4.3% −0.0262 2.1%
(2, 3) (1, 3) 0.333 −1/16 −0.0625 −0.0585 6.3% −0.0643 2.9%

Table 6: Some numerical estimates of the conformal weight ∆1,2,1 = 3
16

(
1 − 4λ

π

)
in the Ramond

sector with (r, s) = (1, 2), ℓ = 1 and N even or odd for different logarithmic superconformal minimal

models LSM(p, p′). The models are listed in increasing order of the crossing parameter λ = p′−p
p′ with

0 < λ
π < 1

3 . In this range, the agreement of the numerical values with the theoretical prediction is good.
For λ > π

3 , the convergence is unreliable. The errors are greater in the Ramond sector since, for this
sector, the boundary free energy is not known analytically and the extrapolations are sensitive to the
value of the boundary free energy. There are no finite size corrections for the case of superconformal
percolation LSM(3, 4) with the largest eigenvalue of −H given exactly by 4

√
2 + 2(N − 3) for both

even and odd N .
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for 0 < λ < π
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5.3 Excitations

It is possible to numerically estimate the first few excitations in the conformal towers in each sector.
Although the finite sizes we can handle are too small to go very far, the results we do obtain are
consistent with the q expansion of the r = 1 Kac characters (2.14) for all P,P ′

ZP,P ′;2
(1,1,0)|(1,1,0)(q) = q−

c
24 (1 + q2 + q3 + · · · ) (5.11)

ZP,P ′;2
(1,1,0)|(1,1,2)(q) = q−

c
24

+ 3
2 (1 + q + 2q2 + · · · ) (5.12)

ZP,P ′;2
(1,1,0)|(1,2,1)(q) = q−

c
24

+∆P,P ′;2
1,2,1 (1 + q + 2q2 + · · · ) (5.13)

ZP,P ′;2
(1,1,0)|(1,3,0)(q) = q−

c
24

+∆P,P ′;2
1,3,0 (1 + q + 3q2 + · · · ) (5.14)

ZP,P ′;2
(1,1,0)|(1,3,2)(q) = q−

c
24

+∆P,P ′;2
1,3,2 (1 + q + 2q2 + · · · ) (5.15)

6 Jordan Cells and Representation Theory

In this section, we work with exact transfer matrices for small system sizes N to give some examples
of the occurrence of Jordan cells in the NS sector. We also show, in a couple of examples, how this
relates to the representation theory of the N = 1 superconformal algebra.

6.1 Example rank-2 Jordan cells for LSM(2, 3) and LSM(3, 4)

As already mentioned in Section 5.1, if the double row transfer matrix has a (1, s, ℓ) boundary on one
side and the vacuum on the other, then the matrix is found to be diagonalizable with real eigenvalues.
Although well supported by numerics, this observation is highly non-trivial because these transfer
matrices are not normal matrices. Typically, in the Hamiltonian limit, the eigenvalues are all distinct
but this is not always the case. We conjecture that, in general, these matrices are diagonalizable in the
Hamiltonian limit u→ 0 and assume this in the following discussion.

Following [11], let us consider fusing boundary conditions by placing non-trivial boundary
conditions on both the left and right edges of the strip. Specifically, let us consider fusion of the
boundary conditions (r, s, ℓ) = (1, 3, ℓ) with ℓ = 0, 2 in the NS sectors. If ℓ1 = ℓ2 = 0, the number
of bulk sites N is even. To obtain N odd, we add a seam with ℓ = 2 on the left or the right. These
boundary conditions correspond to one cabled defect entering the bulk from the left and one from the
right. Since s = 3, this is described by the fusion of spin-1 representations given by the su(2) fusion
rule

(1, 3, ℓ1)⊗ (1, 3, ℓ2) = (1, 1, ℓ) ⊕ (1, 3, ℓ) ⊕ (1, 5, ℓ), ℓ1, ℓ2 = 0, 2, ℓ = ℓ1 + ℓ2 mod 4 (6.1)

where the decompositions are direct sums if

∆P,P ′;2
1,3,ℓ −∆P,P ′;2

1,1,ℓ /∈ Z, ∆P,P ′;2
1,5,ℓ −∆P,P ′;2

1,3,ℓ /∈ Z, ∆P,P ′;2
1,5,ℓ −∆P,P ′;2

1,1,ℓ /∈ Z (6.2)

In case of integer differences, Jordan cells can be formed thereby rendering the corresponding sums non-
direct. In terms of link states, the decomposition (6.1) says that 2, 1 or 0 single defects can close between
the left and right boundaries with the remaining 0, 2 or 4 single defects entering and propagating in
the bulk. If the link states are partitioned in this way, the double row transfer matrices become upper
block triangular since defects can only be annihilated in pairs and not created by the action of the TL
algebra. In all cases, the blocks on the diagonal are diagonalizable with real eigenvalues. The finitized
conformal partition functions are

Z
P,P ′;2,(N)
(1,3,ℓ1)|(1,3,ℓ2)

(q) = q−
c
24Tr qL

(N)
0 = χ

P,P ′;2,(N)
(1,1,ℓ) (q) + χ

P,P ′;2,(N)
(1,3,ℓ) (q) + χ

P,P ′;2,(N)
(1,5,ℓ) (q) (6.3)
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where L
(N)
0 is a finitized Virasoro dilatation operator (related to the Hamiltonian by a shift in energy)

with limN→∞ L
(N)
0 = L0.

If the conditions (6.2) are satisfied, the double row transfer matrices, corresponding to fusing
the two cabled defects, are expected to be diagonalizable and this is confirmed numerically. If the
conditions (6.2) are not satisfied, then it is possible to form rank-2 Jordan cells between two blocks
whose conformal weights differ by integers. The formation of such non-trivial Jordan cells is a hallmark
of a logarithmic CFT and, indeed, we explicitly find such non-trivial Jordan cells for small system sizes

between diagonal blocks with ∆P,P ′;2
1,s,ℓ −∆P,P ′;2

1,s′,ℓ ∈ Z. We illustrate this with two examples. Explicitly,
we consider superconformal dense polymers LSM(2, 3) with (P,P ′) = (1, 3), ℓ1 = 0, ℓ2 = 2, N = 3,
β = 1, β2 = 0, c = −5

2 and superconformal percolation LSM(3, 4) with (P,P ′) = (2, 4), ℓ1 = ℓ2 = 0,

N = 4, β =
√
2, β2 = 1, c = 0. The relevant conformal weights in these two case are respectively

LSM(2, 3) : ∆1,3;2
1,1,2 =

3
2 , ∆1,3;2

1,3,2 = −1
6 , ∆1,3;2

1,5,2 =
1
2 , ∆1,3;2

1,5,2 −∆1,3;2
1,1,2 ∈ Z (6.4)

LSM(3, 4) : ∆2,4;2
1,1,0 = 0, ∆2,4;2

1,3,0 =
1
2 , ∆2,4;2

1,5,0 =
1
2 , ∆2,4;2

1,5,0 −∆2,4;2
1,3,0 ∈ Z (6.5)

In the first case, we expect Jordan cells to appear between the s = 1 and s = 5 blocks in (6.1). In
the second case, we expect Jordan cells to appear between the s = 3 and s = 5 blocks, as discussed in
Section 6.2. These expectations are confirmed by Jordan decompositions of the exact finite-size double
row transfer matrices. In the examples we consider, only rank-2 Jordan cells appear.

For the example of superconformal dense polymers, the Jordan decomposition of the 6×6 (energy-
shifted) Hamiltonian matrix gives

1
2(
√
17− 1)I −H ∼ 0⊕ 1

2(
√
17− 1)⊕ 1

2(
√
17− 1)⊕

(
1
2(
√
17 + 3) 1

0 1
2 (
√
17 + 3)

)
⊕
√
17 (6.6)

where the diagonal blocks are ordered with increasing energy eigenvalues. The 6 link states, in the NS
sector, are the same as the N = 4, (r, s, ℓ) = (1, 3, 0) link states shown above (3.70) but with a dashed
red line inserted to separate off the cabled defect on the left. The states in the s = 1, 3, 5 blocks appear
in positions {5}; {3, 4, 6} and {1, 2} respectively. The N = 3 finitized conformal partition function is

Z
1,3;2,(3)
(1,3,0)|(1,3,2)(q) = χ

1,3;2,(3)
1,1,2 (q) + χ

1,3;2,(3)
1,3,2 (q) + χ

1,3;2,(3)
1,5,2 (q)

= q−
c
24 [q

3
2 + q−

1
6 (1 + q + q2) + q

1
2 (1 + q)] = q−

c
24 [q−

1
6 + q

1
2 + q

5
6 + 2q

3
2 + q

11
6 ] (6.7)

corresponding to

L
(3)
0 =

(
− 1

6

)
⊕ 1

2 ⊕ 5
6 ⊕

(
3
2 1
0 3

2

)
⊕ 11

6 (6.8)

Matching the ordering of the energies, confirms that the single rank-2 Jordan cell indeed forms between
the two degenerate energy eigenvalues 1

2(
√
17 + 3) in the s = 1 and s = 5 blocks of the Hamiltonian

exactly coinciding with the degenerate conformal energy eigenvalues E = 3
2 between the s = 1 and

s = 5 finitized characters. Moreover, the appearance of such Jordan cells is robust as the system
size N is increased [77]. The Hamiltonian energy eigenvalues will, of course, only approach the exact
conformal energies in the limit N →∞.

For the example of superconformal percolation, the Jordan decomposition of the 15 × 15
Hamiltonian matrix gives

−H ∼ (−6)⊕J1⊕
(
−1−

√
3 1

0 −1−
√
3

)
⊕(−

√
2)⊕J2⊕J3⊕

(√
3−1 1

0
√
3−1

)
⊕
√
2⊕J4 (6.9)
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where the diagonal blocks are ordered with increasing energy eigenvalues, x = xj are the four real roots
of the quartic equation x4 + 4x3 − 6x2 − 12x− 4 = 0 and

J j =

(
xj 1
0 xj

)
, j = 1, 2, 3, 4; x1 < x2 < x3 < x4 (6.10)

The N = 4 finitized conformal partition function is

Z
2,4;2,(4)
(1,3,0)|(1,3,0)(q) = χ

2,4;2,(4)
1,1,0 (q) + χ

2,4;2,(4)
1,3,0 (q) + χ

2,4;2,(4)
1,5,0 (q) = (1+q2+q4) + 2q

1
2 (1+q+2q2+q3+q4)

= 1 + 2q
1
2 + 2q

3
2 + q2 + 4q

5
2 + 2q

7
2 + q4 + 2q

9
2 (6.11)

corresponding to

L
(4)
0 = 0⊕

(
1
2 1
0 1

2

)
⊕
(

3
2 1
0 3

2

)
⊕ 2⊕

(
5
2 1
0 5

2

)
⊕
(

5
2 1
0 5

2

)
⊕
(

7
2 1
0 7

2

)
⊕ 4⊕

(
9
2 1
0 9

2

)
(6.12)

Matching the ordering of the energies, confirms that rank-2 Jordan cells form between all of the six
pairs of degenerate energy eigenvalues in the s = 3 and s = 5 blocks of the Hamiltonian and that this
exactly coincides with the six pairs of degenerate eigenvalues between the s = 3 and s = 5 finitized
characters. The exact degeneracy of 4 for the eigenvalue of the Hamiltonian corresponding to the
conformal energy E = 5

2 will only emerge in the limit N →∞. Moreover, as N →∞, the early terms

in the direct sum expansion of L
(N)
0 will stabilize as L

(N)
0 → L0.

6.2 Some representation theory

Although our boundary conditions explicitly break supersymmetry, the representation theory of the
N = 1 superconformal algebra [78] can nevertheless be used to explain our findings in the continuum
scaling limit. The N = 1 superconformal algebra is defined by the (anti-)commutator relations

[Ln, Lm] = (n−m)Ln+m + c
12n(n

2 − 1)δn+m,0

[Ln, Gσ ] = (n2 − σ)Gn+σ

{Gσ , Gσ′} = 2Lσ+σ′ + c
3(σ

2 − 1
4)δσ+σ′,0

(6.13)

where n,m ∈ Z, while σ, σ′ ∈ Z + 1
2 in the Neveu-Schwarz sector whereas σ, σ′ ∈ Z in the Ramond

sector. The central charge is denoted by c and is treated as a constant.
Here we focus on the NS sector of LM(P,P ′; 2) in which case a typical highest-weight module of

highest weight ∆ is of the form

level 0: |∆〉
level 1

2 : G− 1
2
|∆〉

level 1: L−1|∆〉
level 3

2 : G− 3
2
|∆〉, L−1G− 1

2
|∆〉

level 2: L−2|∆〉, G− 3
2
G− 1

2
|∆〉, L2

−1|∆〉
level 5

2 : G− 5
2
|∆〉, L−2G− 1

2
|∆〉, G− 3

2
L−1|∆〉, L2

−1G− 1
2
|∆〉

...

(6.14)

Examples of NS highest-weight modules are provided by the superconformal Kac modules (r, s) for
r = 1 and s odd. Such a module (1, s) is constructed as the quotient module obtained by quotienting
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out the submodule generated from the singular vector at level s
2 in the highest-weight Verma module

of conformal weight ∆1,s where

∆r,s = ∆P,P ′;2
r,s =

(rP ′ − sP )2 − (P ′ − P )2

8PP ′
, r − s ∈ 2Z (6.15)

The associated superconformal Kac modules arising in the continuum scaling limit of the lattice model
LM(P,P ′; 2) in the NS sector have characters

χP,P ′;2
r,s (q) = q∆r,s−

c
24 (1− q

rs
2 )φNS(q), φNS(q) =

∞∏

j=1

1 + qj−
1
2

1− qj
(6.16)

We believe these modules are given by Feigin-Fuchs type modules as in the logarithmic minimal
models [79].

We can separate the set of states in (6.14) into integer and half-integer level parts. This corresponds
to decomposing the module with respect to its Virasoro subalgebra and gives rise to the characters

χP,P ′;2
1,s,ℓ (q), ℓ = 0, 2, and more generally to χP,P ′;2

r,s,ℓ (q). As illustration, let us consider the superconformal

Kac module (1, 3) constructed by setting the singular vector at level 3
2 to zero in the ambient Verma

module of conformal weight ∆1,3. Since ℓ = 2 corresponds to the integer-level part in this case, it
readily follows that, in the notation of (4.72) and in accordance with (5.14) and (5.15),

χ̂1,3,0(q) = 1 + q + 3q2 + . . . , χ̂1,3,2(q) = 1 + q + 2q2 + . . . (6.17)

Correspondingly, the full decomposition is given by

χP,P ′;2
1,3 (q) = q∆1,3−

c
24

[
χ̂1,3,2(q) + q

1
2 χ̂1,3,0(q)

]
(6.18)

More generally, the superconformal Kac characters (6.16) are obtained as the plus expressions in (2.16).

6.2.1 Superconformal dense polymers LSM(2, 3)

In the case of superconformal dense polymers LSM(2, 3) = LM(1, 3; 2) where c = −5
2 , the embedding

or structure diagram of the Verma module of highest weight ∆1,1 = 0 is given by

0 → 1
2
→ 5

2
→ 4 → 8 → 21

2
→ . . . (6.19)

where the arrows indicate actions of the algebra generators (6.13) on irreducible subquotients
represented by their conformal weights. The structure diagrams of the superconformal Kac modules
(1, s) for s odd but s 6∈ 3N appear as sub-diagrams of this ambient structure diagram. The first few of
these superconformal Kac modules are thus given by

(1, 1) : 0, (1, 5) : 0→ 1
2 , (1, 7) : 1

2 → 5
2 , (1, 11) : 5

2 → 4 (6.20)

indicating that the module (1, 1) is irreducible.
Reducible yet indecomposable modules on which L0 acts non-diagonalizably also arise in the NS

sector of the N = 1 superconformal algebra, and as above, their integer and half-integer parts match
our lattice observations in the previous subsection. Here we focus on the structure of a particular
reducible yet indecomposable module of rank 2 which we conjecture appears in LM(1, 3; 2), namely

R0,2
1,3 :

1
2

0 0←−
տւ (6.21)
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Up to Virasoro level 3
2 , the states in this module are given by

level 3
2 : G− 3

2
|0〉′ G− 3

2
|0〉 L−1|12 〉

level 1: G− 1
2
|12〉

level 1
2 : |12〉

level 0: |0〉′ |0〉
︸ ︷︷ ︸
(1,1): 0

︸ ︷︷ ︸
(1,5): 0→ 1

2

(6.22)

where
|12〉 = G− 1

2
|0〉, G− 1

2
|12〉 = L−1|0〉, L−1|12 〉 = L−1G− 1

2
|0〉 (6.23)

The states in the leftmost column form the irreducible superconformal Kac module (1, 1) up to level 3
2 ,

while the states in the other two columns form the two irreducible subquotients 0 and 1
2 of the reducible

yet indecomposable superconformal Kac module (1, 5). Jordan cells of rank 2 are formed between the
states in the two copies of the irreducible subquotient of conformal weight ∆1,1 = ∆1,5 = 0. Concretely,
actions by the superconformal generators contributing to the horizontal arrow in (6.21) are

L0|0〉 = |0〉′, L0

(
G− 3

2
|0〉
)
= 3

2G− 3
2
|0〉+G− 3

2
|0〉′, G 3

2

(
G− 3

2
|0〉
)
= −5

3 |0〉+ 2 |0〉′ (6.24)

from which it readily follows that |0〉 and |0〉′ form an L0 Jordan cell of rank 2 of conformal weight 0,
while G− 3

2
|0〉 and G− 3

2
|0〉′ form a similar cell of conformal weight 3

2 . The actions contributing to the

southwest arrow in (6.21) are

G 1
2
|12〉 = 2 |0〉′, L1

(
G− 1

2
|12〉
)
= 2 |0〉′, G 3

2

(
L−1|12〉

)
= 4 |0〉′ (6.25)

It is noted that, since the state L−1|12 〉 is an element of the irreducible subquotient of conformal weight
1
2 , it does not participate in a nontrivial Jordan cell. Instead, we simply have

L0

(
L−1|12〉

)
= 3

2L−1|12〉 (6.26)

Modules over the Virasoro algebra similar in structure to the rank-2 module in (6.21) were first
described in [80,81] with extensions to certain W -algebras discussed in [82], and they are often referred
to as staggered modules. Although these types of modules now are ubiquitous in logarithmic CFT [6,
55, 83–85], rank-2 modules over the N = 1 superconformal algebra have not been described explicitly
before in the literature. The module in (6.21) and the ones in (6.33), (6.41) and (6.42) below are
therefore the first of their kind.

The notation R0,b
1,s (with certain restrictions on the labels s and b) mimics the one used in [86,87] to

denote indecomposable higher-rank modules in the logarithmic minimal models LM(p, p′) and indicates
that the module can be thought of as an indecomposable combination of the two superconformal
Kac modules (1, s − b) and (1, s + b). The particular rank-2 module R0,2

1,3 is thus an indecomposable
combination of (1, 1) and (1, 5), implying that the character of the module is given by

χ[R0,2
1,3](q) = χ1,3;2

1,1 (q) + χ1,3;2
1,5 (q) =

[
χ1,3;2
1,1,0(q) + χ1,3;2

1,5,0(q)
]
+
[
χ1,3;2
1,1,2(q) + χ1,3;2

1,5,2(q)
]

(6.27)

The two characters given by square brackets are the ones we observe from the lattice.
We can also decompose the character (6.27) in terms of the irreducible superconformal characters

ch∆1,s(q) = q
5
48φNS(q)




q∆1,6k−1 − q∆1,6k+1 = q∆1,s(1− qk−

1
2 ), s = 6k − 1

q∆1,6k+1 − q∆1,6k+5 = q∆1,s(1− q2k) s = 6k + 1
k ∈ N (6.28)

Noting that ∆1,1 = ∆1,5, the decomposition thus reads

χ[R0,2
1,3](q) = 2 ch∆1,5(q) + ch∆1,7(q) = 2 ch0(q) + ch 1

2
(q) (6.29)
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6.2.2 Superconformal percolation LSM(3, 4)

In the case of superconformal percolation LSM(3, 4) = LM(2, 4; 2) where c = 0, the structure diagrams
of the superconformal Kac modules (1, s) for s odd appear as sub-diagrams of the ambient structure
diagram

∆1,s

ր

ց

∆3,4−s → ∆5,s → ∆7,4−s → . . .

∆3,s → ∆5,4−s → ∆7,s → . . .

ցր ցր ցր s = 1, 3 (6.30)

where the conformal weights are given by (6.15) with P = 2 and P ′ = 4. The ambient Verma module
of highest weight ∆1,1 = ∆1,3 = 0 is therefore described by

0
ր

ց

1
2
→ 5 → 15

2
→ . . .

3
2
→ 3 → 21

2
→ . . .

ցր ցր ցր (6.31)

from which it follows that the first few superconformal Kac modules (1, s) are given by

(1, 1) : 0→ 3
2 , (1, 3) : 0→ 1

2 , (1, 5) : 1
2 → 5, (1, 7) : 3

2 → 3 (6.32)

We conjecture that the reducible yet indecomposable rank-2 module

R0,1
1,4 :

5

1
2

1
2

0

←−
տւ

ւտ
(6.33)

appears in LM(2, 4; 2). Jordan cells of rank 2 are formed between the states in the two copies of the
irreducible subquotient of conformal weight ∆1,5 = 1

2 . Since the rank-2 module R0,1
1,4 can be thought

of as an indecomposable combination of the two superconformal Kac modules (1, 3) and (1, 5), its
character is given by

χ[R0,1
1,4](q) = χ2,4;2

1,3 (q) + χ2,4;2
1,5 (q) =

[
χ2,4;2
1,3,0(q) + χ2,4;2

1,5,0(q)
]
+
[
χ2,4;2
1,3,2(q) + χ2,4;2

1,5,2(q)
]

(6.34)

As before, the two characters given by square brackets are the ones we observe from the lattice. In
terms of the irreducible superconformal characters

ch∆1,s(q) = φNS(q)
(
q∆1,s +

∞∑

j=k+1

(−1)j−k[q∆2j+1,1 + q∆2j+1,3 ]
)

(6.35)

where
s = s0 + 4k, s0 = 1, 3, k ∈ N0 (6.36)

we have
χ2,4;2
1,s (q) = ch∆1,s0+4k

(q) + ch∆1,8−s0+4k
(q) (6.37)

and
χ[R0,1

1,4](q) = ch∆1,1(q) + 2 ch∆1,5(q) + ch∆1,11(q) = ch0(q) + 2 ch 1
2
(q) + ch5(q) (6.38)

Among the irreducible characters (6.35), it is noted that

ch0(q) = 1 (6.39)

as in the case of critical percolation LM(2, 3).
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6.2.3 Neveu-Schwarz sector conjectures

As we intend to discuss elsewhere, the N = 1 representation theory outlined above for the NS sector
for r = 1 can be extended to r > 1 and the Ramond sector and generalises to all LM(P,P ′; 2). Here
we conjecture that, in the NS sector of LM(P,P ′; 2), there exists an infinite family of indecomposable

rank-2 modules R0,b
1,kP ′ with 1 ≤ b < P ′, kP ′− b ∈ 2N−1 and k ∈ N, where R0,b

1,kP ′ can be thought of as
an indecomposable combination of the two superconformal Kac modules (1, kP ′ − b) and (1, kP ′ + b),
and where these modules are described by

(1, kP ′ − b) : ∆1,kP ′−b → ∆1,kP ′+b, (1, kP ′ + b) : ∆1,kP ′+b → ∆(k+2)P ′−b (6.40)

The corresponding structure diagram is given by

R0,b
1,kP ′ :

∆(k+2)P ′−b

∆1,kP ′+b ∆1,kP ′+b

∆1,kP ′−b

←−
տւ

ւտ
(6.41)

and the rank-2 Jordan cells are formed between the states in the two copies of irreducible subquotients
of conformal weight ∆1,kP ′+b. In the special case ∆1,kP ′−b = ∆1,kP ′+b, the superconfomal Kac module
(1, kP ′−b) is irreducible. This happens if and only if k = 1 and P = 1, and the corresponding structure
diagram is then given by

R0,b
1,P ′ :

∆(k+2)P ′−b

∆1,kP ′+b ∆1,kP ′+b←−
տւ (6.42)

Following the analysis initiated in (6.1), we also conjecture the N = 1 superconformal fusion rule

(1, 3) ⊗ (1, 3) =





(1, 3) ⊕R0,2
1,3, in LM(1, 3; 2)

(1, 1) ⊕R0,1
1,4, in LM(2, 4; 2)

(1, 1) ⊕ (1, 3) ⊕ (1, 5), otherwise

(6.43)

encapsulating the Jordan-cell structures observed in Section 6.1 and discussed in Section 6.2. In
the case of LM(2, 4; 2), the fusion rule (6.43) and the conjectured structure diagram (6.33) of the
indecomposable rank-2 module R0,1

1,4 seem to be confirmed [88] by initial applications of the Nahm-
Gaberdiel-Kausch algorithm [81,89] to the fusion product (1, 3) ⊗ (1, 3).

7 Conclusion

In this paper, we have argued that the higher level logarithmic minimal models LM(P,P ′;n) [7] with
n ≥ 2, as defined by the GKO cosets (2.1), are realized as the continuum scaling limit of the n × n
fused logarithmic minimal lattice models LM(p, p′)n×n. The identification

LM(p, p′)n×n ≡ LM(P,P ′;n) (7.1)

assumes that P,P ′ are properly related to p, p′. After developing an algebraic framework for general
n within the fused TL algebra, we have focussed on the n = 2 logarithmic superconformal minimal
models LSM(p, p′) (1.1) which include superconformal dense polymers LSM(2, 3) and superconformal
percolation LSM(3, 4) as its first members. For this series, we establish numerically that the
identification (7.1) is indeed correct with P = |2p−p′| and P ′ = p′. We explicitly construct commuting
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double row transfer matrices and their associated quantum Hamiltonians on the strip for the simplest
boundary conditions conjugate to operators labelled by the quantum numbers (r, s, ℓ) with r = 1,
s = 1, 2, 3, . . . and ℓ = 0, 1, 2. These matrices are diagonalizable with real eigenvalues. The spectra
separates into Neveu-Schwarz (r+s even, ℓ = 0, 2) and Ramond (r+s odd, ℓ = 1) sectors. The transfer
matrices and Hamiltonians act on suitable vector spaces of link states which are explicitly constructed
for the boundary conditions considered. By using combinatorial arguments based on the counting of the
link states, q-trinomial coefficients as well as Motzkin and Riordan polynomials, we conjecture general
fermionic finitized Kac characters for the r = 1 boundary conditions which reproduce the expected
superconformal Kac characters as the system size N → ∞. The fact that such finitized characters
exist in each r = 1 sector, satisfying all of the required properties, gives remarkable confirmation of
the consistency of the lattice approach.

The bulk free energies of the logarithmic superconformal minimal models are obtained analytically.
Similarly, the boundary free energies are obtained analytically in the Neveu-Schwarz sectors with r = 1.
In the Neveu-Schwarz sectors (r, s, ℓ) = (1, 1, ℓ), (1, 3, ℓ) with ℓ = 0, 2 and the Ramond sector (1, 2, 1),
we have carried out extensive finite-size numerical studies of the Hamiltonian spectra to extract the
central charges c and conformal dimensions ∆1,1,2 =

3
2 , ∆1,2,1, ∆1,3,0 and ∆1,3,2. In all cases, to within

numerical error, we find complete agreement with the theoretical predictions. In addition, the numerics
correctly reproduce the first few excited levels for the n = 2 Kac characters. Lastly, examination of
the Jordan canonical forms of the Hamiltonians for small system sizes confirms the expected patterns
for the appearance of Jordan cells in the Virasoro dilatation operator L0, thus confirming that the
logarithmic superconformal minimal models are indeed logarithmic. Further work is required to study
the logarithmic superconformal minimal models with boundary conditions labelled by (r, s, ℓ) with
r > 1 building on the results of [15]. It would also be of interest to construct the lattice boundary
conditions associated with the superconformal andW-extended chiral algebras and to study the fusion
rules and representation theory in full generality.
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