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Abstract

Even though weight multiplicity formulas, such as Kostant’s formula, exist their computational use
is extremely cumbersome. In fact, even in cases when the multiplicity is well understood, the number
of terms considered in Kostant’s formula is factorial in the rank of the Lie algebra and the value of the
partition function is unknown. In this paper we address the difficult question: What are the contributing

terms to the multiplicity of the zero weight in the adjoint representation of a finite dimensional Lie alge-

bra? We describe and enumerate the cardinalities of these sets (through linear homogeneous recurrence
relations with constant coefficients) for the classical Lie algebras of Type B, C, and D, the Type A case
was computed by the first author in [5]. In addition, we compute the cardinality of the set of contributing
terms for non-zero weight spaces in the adjoint representation. In the Type B case, the cardinality of
one such non-zero-weight is enumerated by the Fibonacci numbers. We end with a computational proof
of a result of Kostant regarding the exponents of the respective Lie algebra for some low rank examples
and provide a section with open problems in this area.

MSC Codes: 05E10

1 Introduction

In [9], Narayanan proved that the problem of computing Kostka numbers and Littlewood-Richardson coeffi-
cients is #P -complete. This implies that “... unless P = NP , which is widely disbelieved, there do not exist
efficient algorithms that compute these numbers.” Since the Kostka number Kλ,µ also can be interpreted as
the multiplicity of the weight µ in the representation of slr(C) with highest weight λ, which we denote L(λ),
it is clear that computing weight multiplicities, in much generality, is a computationally complex problem.
However, there are cases when computing weight multiplicities can be done in polynomial time. Take for
example computing the set of all nonzero Kostka numbers for a particular µ, [1].

Though Kostant’s formula provides a means to compute weight multiplicities, the computation itself is
difficult and time-consuming. In fact, even in cases when the multiplicity is well understood, the number
of terms appearing in Kostant’s formula is exponential in the rank of the Lie algebra and the value of the
partition function is unknown. In this paper we imagine that the value of a partition function (in fact it’s
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q-analog) is provided by an oracle. We then address the issue of how many terms contribute to the weight
multiplicity formula.

The depth of such approach is appreciated through the easy question: What is the multiplicity of the zero
weight in the adjoint representation? Lie theory provA234599ides the answer almost instantly: the rank
of the Lie algebra. In this paper we address the difficult question: What are the contributing terms to the
multiplicity of the zero weight in the adjoint representation of a finite dimensional Lie algebra? In Sections
4, 5, and 6 we describe and enumerate these supporting sets for the classical Lie algebras of Type B, C, and
D, respectively. The Type A case was computed by the first author in [5]. We show that the cardinality of
the contributing sets satisfy linear homogeneous recurrence relations with constant coefficients. Namely we
show that the cardinalities of these sets are as follow: 1

Type Ar (r ≥ 2): 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . .

Type Br (r ≥ 2): 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, . . .

Type Cr (r ≥ 2): 2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480, 42530, 92853, 202742, . . .

Type Dr (r ≥ 4): 9, 18, 35, 82, 180, 385, 846, 1853, 4034, 8810, 19249, 42014, 91727, 200298, 437316, . . .

This proves that while the number of terms appearing in Kostant’s formula grows factorially, with the
rank of the Lie algebra, the number of terms that contribute non-trivially to the multiplicity formula only
grow exponentially. In addition, we compute the cardinality of the set of contributing terms for non-zero
weight spaces in the adjoint representation. In the Type B case, the cardinality of one such non-zero-weight
is enumerated by the Fibonacci numbers.

This paper ends with some open problems related to Kostant’s partition function. We explain how a
closed formula for the partition function would lead to a combinatorial proof of a result of Kostant regarding
the exponents of the respective Lie algebra. We do provide a proof of this result for some low rank cases.

2 Background

Throughout this article we let G be a simple linear algebraic group over C, T a maximal algebraic torus in G
of dimension r, and B, T ⊆ B ⊆ G, a choice of Borel subgroup. Then let g, h, and b denote the Lie algebras
of G, T , and B respectively. We let Φ be the set of roots corresponding to (g, h), and let Φ+ ⊆ Φ be the set
of positive roots with respect to b. Let ∆ ⊆ Φ+ be the set of simple roots. Denote the set of integral and
dominant integral weights by P (g) and P+(g), respectively. Let W = NormG(T )/T denote the Weyl group
corresponding to G and T , and for any w ∈ W , we let ℓ(w) denote the length of w.

A finite dimensional complex irreducible representation of g is equivalent to a highest weight representa-
tion with dominant integral highest weight λ, which we denote by L(λ). To find the multiplicity of a weight
µ in L(λ), we use Kostant’s weight multiplicity formula, [6]:

m(λ, µ) =
∑

σ∈W

(−1)ℓ(σ)℘(σ(λ + ρ)− (µ+ ρ)), (1)

where ℘ denotes Kostant’s partition function and ρ = 1
2

∑

α∈Φ+ α. Recall that Kostant’s partition function
is the nonnegative integer valued function, ℘, defined on h∗, by ℘(ξ) = number of ways ξ may be written as
a nonnegative integral sum of positive roots, for ξ ∈ h∗.

With the aim of describing the contributing terms of (1) we introduce.

1The sequences of integers for Types B, C, and D were added by the authors to The On-Line Encyclopedia of Integer
Sequences (OEIS) as A232163, A232165, and A234599, respectively.
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Definition 2.1. For λ, µ dominant integral weights of g define the Weyl alternation set to be

A(λ, µ) = {σ ∈ W : ℘(σ(λ + ρ)− (µ+ ρ)) > 0}.

Therefore, σ ∈ A(λ, µ) if and only if σ(λ + ρ) − (µ + ρ) can be written as a nonnegative integral
combination of positive roots. Moreover, in the simple Lie algebra cases, the positive roots are made up
of certain nonnegative integral sums of simple roots. Hence we can reduce to σ ∈ A(λ, µ) if and only if
σ(λ + ρ)− (µ+ ρ) can be written as a nonnegative integral combination of simple roots.

Of particular interest is describing the elements of the Weyl group which contribute to the multiplicity
of the zero weight in the adjoint representation of the classical Lie algebras. That is, we compute the Weyl
alternation sets, A(α̃, 0), for a simple lie algebra g where α̃ denotes the highest root. The case of the simple
Lie algebra of Type A, namely slr(C), was completed by Harris in [5]. In this paper we provide the analogous
results for Lie algebras of Type B (so2r+1(C)), Type C (sp2r(C)), and Type D (so2r(C)). These results are
found in Sections 4, 5, and 6, respectively.

3 General Results for Classical Lie Algebras

We begin with some general results regarding the classical Lie algebras. First we give some preliminary
information for each of the Lie algebras we consider, for notation see [4].

Type Ar (slr(C)): Let r ≥ 1 and let αi = εi − εi+1 for 1 ≤ i ≤ r. Then ∆ = {αi | 1 ≤ i ≤ r}, is a set of
simple roots. The associated set of positive roots is Φ+ = {εi − εj : 1 ≤ i < j ≤ r}, where the highest root
is α̃ = α1 + α2 + · · ·+ αr and ρ = 1

2

∑r

i=1 i(r − i+ 1)αi.

Type Br (so2r+1(C)): Let r ≥ 2 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and αr = εr. Then
∆ = {αi | 1 ≤ i ≤ r}, is a set of simple roots. The associated set of positive roots is Φ+ = {εi − εj , εi + εj :
1 ≤ i < j ≤ r}∪{εi : 1 ≤ i ≤ r}, where the highest root is α̃ = α1+2α2+· · ·+2αr and ρ = 1

2

∑r

i=1 i(2r−i)αi.

Type Cr (sp2r(C)): Let r ≥ 3 and let αi = εi−εi+1 for 1 ≤ i ≤ r−1 and αr = 2εr. Then ∆ = {αi | 1 ≤ i ≤ r},
is a set of simple roots. The associated set of positive roots is Φ+ = {εi − εj , εi + εj : 1 ≤ i < j ≤ r} ∪ {2εi :

1 ≤ i ≤ r}, where the highest root is α̃ = α1+2α2+· · ·+2αr−1+αr and ρ = 1
2

∑r−1
i=1 i(2r−i+1)αi+

r(r+1)
4 αr.

Type Dr (so2r(C)): Let r ≥ 4 and let αi = εi−εi+1 for 1 ≤ i ≤ r−1 and αr = εr−1+εr. Then ∆ = {αi | 1 ≤
i ≤ r}, is a set of simple roots. The associated set of positive roots is Φ+ = {εi− εj, εi+ εj | 1 ≤ i < j ≤ r},
where the highest root is α̃ = ε1 + ε2 = α1 + 2α2 + · · · + 2αr−2 + αr−1 + αr and ρ = 1

2

∑

α∈Φ+ α =

(r − 1)ε1 + (r − 2)ε2 + (r − 3)ε3 + · · · 2εr−2 + εr−1 = 1
2

∑r−2
i=1 2(ir − i(i+1)

2 )αi +
r(r−1)

4 (αr−1 + αr).

Lemma 3.1. The following simple transpositions do not fix the highest root in each respective Lie type.

• In type Ar: s1(α̃) = α̃− α1 and sr(α̃) = α̃− αr,

• In type Br: s2(α̃) = α̃− α2,

• In type Cr: s1(α̃) = α̃− 2α1,

• In type Dr: s2(α̃) = α̃− α2.

The rest of simple reflections fix the highest root si(α̃) = α̃.

Proof. The lemma follows from facts about how simple transpositions act on simple roots.

Type Ar: For 1 ≤ i ≤ r−1 we have si(αi) = −αi, si(αi−1) = αi−1+αi, and si(αi+1) = αi+αi+1. For i = r,
we have that sr(αr) = −αr and sr(αr−1) = αr−1 + αr. The highest root in this case is α̃ = α1 + · · ·+ αr.

3



For 2 ≤ i ≤ r − 1

si(α̃) = α1 + α2 + · · ·+ αi−2 + (αi−1 + αi) + (−αi) + (αi + αi+1) + αi+2 + · · ·+ αr = α̃.

Finally observe that
s1(α̃) = (−α1) + (α1 + α2) + α3 + · · ·+ αr = α̃− α1,

and
sr(α̃) = α1 + · · ·+ αr−2 + (αr−1 + αr) + (−αr) = α̃− αr.

Type Br: For 1 ≤ i ≤ r−1 we have si(αi) = −αi, si(αi−1) = αi−1+αi, and si(αi+1) = αi+αi+1. For i = r we
have that sr(αr) = −αr and sr(αr−1) = αr−1+2αr. The highest root in this case is α̃ = α1+2α2+ · · ·+2αr.

Thus we compute that
s1(α̃) = −α1 + 2α1 + 2α2 + · · ·+ 2αr = α̃,

and
s2(α̃) = α1 − 2α2 + 3α2 + 2α3 + · · ·+ 2αr = α1 + α2 + 2α3 + · · ·+ 2αr = α̃− α2.

For 3 ≤ i ≤ r − 1 we compute that

si(α̃) = α1 + 2α2 + · · ·+ 2αi−2 + 2(αi−1 + αi)− 2αi + 2(αi + αi+1) + 2αi+2 + · · ·+ 2αr = α̃.

Finally,
sr(α̃) = α1 + 2α2 + · · ·+ 2αr−2 + 2(αr−1 + 2αr)− 2αr = α̃.

Type Cr: For 1 ≤ i ≤ r we have si(αi) = −αi, si(αi−1) = αi−1+αi. For 1 ≤ i ≤ r−2, si(αi+1) = αi+αi+1,
while sr−1(αr) = 2αr−1 + αr. The highest root in this case is α̃ = 2α1 + · · ·+ 2αr−1 + αr.

Thus we compute that

s1(α̃) = 2(−α1) + 2(α1 + α2) + 2α3 + · · ·+ 2αr−1 + αr = 2α2 + · · ·+ 2αr−1 + αr = α̃− 2α1,

For 2 ≤ i ≤ r − 2 we compute that

si(α̃) = 2α1 + 2α2 + · · ·+ 2αi−2 + 2(αi−1 + αi)− 2αi + 2(αi + αi+1) + 2αi+2 + · · ·+ 2αr−1 + αr = α̃.

Finally,
sr−1(α̃) = 2α1 + 2α2 + · · ·+ 2αr−3 + 2(αr−2 + αr−1)− 2αr−1 + (2αr−1 + αr) = α̃,

and
sr(α̃) = 2α1 + 2α2 + · · ·+ 2αr−2 + 2(αr−1 + αr)− αr = α̃.

Type Dr: For 1 ≤ i ≤ r, si(αi) = −αi. If 1 ≤ i < j ≤ r − 1 with |i − j| = 1 or if i = r − 2 and j = r, then
si(αj) = sj(αi) = αi + αj . For i = r − 1 or i = r we have that sr−1(αr) = αr and sr(αr−1) = αr−1. The
highest root in this case is α̃ = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr.

Thus we compute that

s1(α̃) = −α1 + 2(α1 + α2) + 2α3 + · · ·+ 2αr−2 + αr−1 + αr = α̃,

and
s2(α̃) = (α1 + α2)− 2α2 + 2(α2 + α3) + 2α4 + · · ·+ 2αr−2 + αr−1 + αr = α̃− α2.

For 3 ≤ i ≤ r − 3,

si(α̃) = α1 + 2α2 + · · ·+ 2αi−2 + 2(αi−1 + αi)− 2αi + 2(αi + αi+1) + 2αi+2 + · · ·+ 2αr−2 + αr−1 + αr = α̃.

Finally observe that

sr−1(α̃) = α1 + 2α2 + · · ·+ 2αr−3 + 2(αr−2 + αr−1)− αr−1 + αr = α̃,

4



sr(α̃) = α1 + 2α2 + · · ·+ 2αr−3 + 2(αr−2 + αr) + αr−1 − αr = α̃,

and

sr−2(α̃) = α1 + 2α2 + · · ·+ 2αr−4 + 2(αr−3 + αr−2)− 2αr−2 + (αr−2 + αr−1) + (αr−2 + αr) = α̃.

❞ ❞

α1 α2

Figure 1: Dynkin diagram of the root system A2

Lemma 3.2. When the Dynkin diagram of αi and αi+1 embeds into that of A2 (Figure 1) the products of
si and si+1 have the following effect on 2ρ

si(2ρ) = 2ρ− 2αi and si+1(2ρ) = 2ρ− 2αi+1,

si+1si(2ρ) = 2ρ− 2αi − 4αi+1,

sisi+1(2ρ) = 2ρ− 4αi − 2αi+1,

sisi+1si(2ρ) = 2ρ− 4αi − 4αi+1.

Proof. A simple reflection si maps αi to −αi and permutes all of the other positive roots. Thus si(2ρ) =
2ρ− 2αi for any simple transposition in any Lie type. This proves the first two equations.

Next we note that si+1(αi + αi+1) = αi; hence sisi+1(αi + αi+1) = −αi and si+1si(αi) = si+1(−αi) =
−αi − αi+1. Since sisi+1 is a length two element of W , it maps only two positive roots to negative roots.
Thus sisi+1 permutes all of the other positive roots. We conclude that sisi+1(2ρ) = 2ρ− 4αi − 2αi+1. The
same calculation shows the claim for si+1si. This proves the next two equations.

Since the reflection sisi+1si has length 3, we know it maps three positive roots to negative roots. We
calculate that it maps αi to −αi+1, αi+1 to −αi and αi + αi+1 to −αi − αi+1. Hence the reflection
sisi+1si must map all of the other positive roots to other positive roots. We conclude that sisi+1si(2ρ) =
2ρ− 4αi − 4αi+1.

❞ ❞ ❞

α1 α2 α3

Figure 2: Dynkin diagram of the root system A3

Lemma 3.3. If the Dynkin diagram of αi, αi+1, and αi+2 embeds into the Dynkin diagram of A3 (Figure 2),
then the elements sisi+1si+2, si+2si+1si,sisi+2si+1, and si+1sisi+2 act on the sum of positive roots as follows:

sisi+1si+2(2ρ) = 2ρ− 6αi − 4αi+1 − 2αi+2,

si+2si+1si(2ρ) = 2ρ− αi − 4αi+1 − 6αi+2,

sisi+2si+1(2ρ) = 2ρ− 4αi − 2αi+1 − 4αi+2,

si+1sisi+2(2ρ) = 2ρ− 2αi − 6αi+1 − 2αi+2.
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Proof. When the Dynkin diagram of the consecutive roots looks like that of A3 we calculate that three roots
αi+2, αi+1+αi+2, αi+αi+1+αi+2 get mapped to −αi−αi+1−αi+2, −αi−αi+1, and −αi by sisi+1si+2. The
roots αi, αi+1+αi, αi+αi+1+αi+2 get mapped to −αi−αi+1−αi+2, −αi+1−αi+2, and −αi+1 by si+2si+1si.
The word sisi+2si+1 maps the positive roots αi + αi+1, αi+1 + αi+2, and αi+1 to the negative roots −αi ,
−αi+2, and −αi − αi+1 − αi+2 respectively. The word si+1sisi+2 maps αi, αi+2, and αi + αi+1 + αi+2 to
−αi − αi+1,−αi+1 − αi+2, and −αi+1 respectively, and it permutes the rest of the positive roots.

❞ ❞ ❞ ❞

α1 α2 α3 α4

Figure 3: Dynkin diagram of the root system A4

Lemma 3.4. If the Dynkin diagram of αi, αi+1, αi+2, and αi+3 embeds into A4 (Figure 3), then no σ
containing all of the simple transpositions si, si+1, si+2, and si+3 at least once, is in the support of the Weyl
alternation set.

Proof. By Lemma 3.3, the only length-three product of si, si+1 and si+2 that is in the support of the Weyl
alternation set is sisi+2si+1. To obtain a word σ with all four simple transpositions, we can either multiply on
the left or right by si+3. However, if we multiply by si+3 on the left we get si+3sisi+2si+1 = sisi+3si+2si+1.
This contains si+3si+2si+1 which is not in the support by Lemma 3.3. If we multiply on the right by si+3

we obtain sisi+2si+1si+3. By Lemma 3.3, si+2si+1si+3 is not in the support because si+2si+1si+3(2ρ) =
2ρ − 2αi+1 − 6αi+2 − 2αi+3. An analogous argument shows that si+1si+3si+2 can not be extended to a
product containing si that is in the support.

❞ ❞❅
�α1 α2

Figure 4: Dynkin diagram of the root system B2

Lemma 3.5. When the Dynkin diagram of αi and αi+1 embeds into the Dynkin diagram of type B2 (Figure 4)
or when i = r − 1 in type Br, we have the following

sisi+1(2ρ) = 2ρ− 4αi − 2αi+1 and si+1si(2ρ) = 2ρ− 2αi − 6αi+1.

Proof. When i = r − 1, we calculate that sr−1sr(αr−1 + 2αr) = sr−1(αr−1) = −αr−1 and sr−1sr(αr) =
sr−1(−αr) = −αr−1 − αr. Again, sr−1sr is a length two element, so these are the only roots which get
mapped to negative roots. Thus sr−1sr(2ρ) = 2ρ− 4αr−1 − 2αr.

To show that srsr−1(2ρ) = 2ρ − 6αr − 2αr−1 we note that srsr−1(αr−1) = sr(−αr−1) = −αr−1 − 2αr

and srsr−1(αr−1 + αr) = sr(αr) = −αr. These are the only two roots which get sent to negative roots. So
the other positive roots must be permuted by srsr−1. We conclude that srsr−1(2ρ) = 2ρ− 6αr− 2αr−1.

Lemma 3.6. When the Dynkin diagram of αi and αi+1 embeds into the Dynkin diagram of type C2 (Figure 5)
or when i = r − 1 in type Cr, we have the following

sisi+1(2ρ) = 2ρ− 6αi − 2αi+1 and si+1si(2ρ) = 2ρ− 2αi − 4αi+1.

6



❞ ❞�
❅α1 α2

Figure 5: Dynkin diagram of the root system C2

Proof. When i = r− 1, we calculate that sr−1sr(αr) = sr−1(−αr) = −2αr−1 −αr and sr−1sr(αr−1 +αr) =
sr−1(αr−1) = −αr−1. Again, sr−1sr is a length two element, so these are the only roots which get mapped
to negative roots. Thus sr−1sr(2ρ) = 2ρ− 6αr−1 − 2αr.

To show that srsr−1(2ρ) = 2ρ− 2αr−1− 4αr we note that srsr−1(αr−1) = sr(−αr−1) = −αr−1 −αr and
srsr−1(2αr−1 + αr) = sr(αr) = −αr. These are the only two roots which get sent to negative roots. So the
other positive roots must be permuted by srsr−1. We conclude that srsr−1(2ρ) = 2ρ− 2αr−1 − 4αr.

Lemmas 3.3 and 3.4 allow us to identify a set of Weyl group elements which are not in the Weyl alternation
set for any classical type. We record this set now for ease of reference in the type specific proofs presented
in the following sections.

Lemma 3.7. Let σ ∈ Wr be a Weyl group element in any classical Lie type. If σ contains a subword of the
form

sisi+1si+2, si+2si+1si, or si+1sisi+2

or any product of four consecutive simple reflections si, si+1, si+2, si+3 (in any order) then σ is not in the
Weyl alternation set A(α̃, 0).

Proof. Recall that in any classical Lie algebra, when the highest root α̃ is written as a linear combination of
the simple roots, the coefficients are either 1 or 2. Thus the coefficients of 2α̃ are either 2 or 4. Any Weyl
group element σ ∈ Wr will either fix α̃ or map it to a shorter root or possibly negative root. This means
that the coefficients of σ(2α̃) are at most 4. It follows that if σ(2ρ)− 2ρ has a coefficient less than −4 when
written as a linear combination of simple roots, then σ(2α̃+ 2ρ)− 2ρ contains a negative coefficient as well.

Lemma 3.3 shows that sisi+1si+2(2ρ)− 2ρ contains a term −6αi, si+2si+1si(2ρ)− 2ρ contains −6αi+2,
and si+1sisi+2(2ρ)− 2ρ contains a −6αi+1. Thus any element σ containing one of these subwords will not
be in the Weyl alternation set. Lemma 3.4 shows that any σ containing a product of four consecutive simple
reflections si, si+1, si+2, si+3 (in any order) must contain either sisi+1si+2, si+2si+1si, or si+1sisi+2. Hence,
no such σ will be in the Weyl alternation set of any classical Lie algebra.

4 Type B

When we consider the Lie algebra of type B and rank r we denote the Weyl alternation set as follows:

Br := A(α̃, 0) = {σ ∈ W : ℘(σ(α̃+ ρ)− ρ) > 0},

where W is the Weyl group and α̃ denotes the highest root of Br. Namely α̃ = α+ 2α2 + · · ·+ 2αr.
In order to illustrate the complexity in computing weight multiplicities we present a detailed example.

Example 4.1. We will use Kostant’s weight multiplicity formula to compute the multiplicity of the zero-
weight in the adjoint representation of so7(C). In this process we will compute the Weyl alternation set
B3. First note that the Weyl group, W, corresponding to the Lie algebra of type Br has order 2rr! Hence,
when r = 3 the Weyl group has order 48. This means that Kostant’s weight multiplicity formula will be an
alternating sum consisting of 48 terms.

We begin by considering the term corresponding to the identity element of W. First notice that 1(α̃+ρ)−
ρ = α̃ and now we must compute the value of Kostant’s partition function. To compute the number of ways

7



❞ ❞ ❞ ❞ ❞ ❞❛ ❛ ❛ ❅
�α1 α2 α3 αr−2 αr−1 αr

Figure 6: Dynkin diagram of the root system Br

to express α̃ as a sum of positive roots we use parenthesis to denote which positive roots we are using when
expressing α̃ as a nonnegative integral combination of positive roots. In this way we can see that

α̃ = (α1) + 2(α2) + 2(α3)

= (α1) + 2(α2 + α3)

= (α1) + (α2) + (α3) + (α2 + α3)

= (α1) + (α2) + (α2 + 2α3)

= (α1 + α2) + (α2) + 2(α3)

= (α1 + α2) + (α2 + α3) + (α3)

= (α1 + α2 + α3) + (α2) + (α3)

= (α1 + α2 + α3) + (α2 + α3)

= (α1 + 2α2) + 2(α3)

= (α1 + α2 + 2α3) + (α2)

= (α1 + 2α2 + 2α3).

Thus ℘(1(α̃ + ρ) − ρ) = 11. Table 1 summarizes these computations for all 48 elements of the Weyl group.
Observe that of the 48 elements of the Weyl group only 5 elements, namely 1, s1, s2, s3, and s3s1, contribute
a positive partition function value. Thus B3 = {1, s1, s2, s3, s3s1}. It is worth remarking again that as the
rank of the Lie algebra increases the number of terms grows exponentially, and thus it is more evident that
it is essential to know which elements are contributing nonzero terms to the alternating sum.

Now we can finally compute the multiplicity of the zero-weight in the adjoint representation by reducing
the sum to only the contributing terms. Thus

m(α̃, 0) =
∑

σ∈W

(−1)ℓ(σ)℘(σ(α̃ + ρ)− ρ) =
∑

σ∈B3

(−1)ℓ(σ)℘(σ(α̃ + ρ)− ρ) = 11− 4− 1− 5 + 2 = 3,

which is the rank of the Lie algebra so7(C), as we expected.

The Weyl group of type Br is a poset with order given by inclusion of sub-words. To cut down on the
number of elements in Wr that we need to consider, we start by describing the set of Weyl group elements
σ which are not in Br. Any Weyl group element that is greater than or equal to one of the elements listed
below will not be in Br.

Lemma 4.2. No Weyl group element σ containing the following products of simple reflections in its reduced
word decomposition is in the Weyl alternation set Br:

s1s2, s2s1, s2s3, s3s2, and srsr−1,

sisi+1si+2, si+2si+1si, or si+1sisi+2 where 3 ≤ i ≤ r − 2,

or any product of four consecutive simple reflections si, si+1, si+2, si+3 in any order.

Proof. A simple calculation shows that

s1s2(2α̃+ 2ρ)− 2ρ = 2α̃− 6α1 − 4α2 = −4α1 + 4α3 + · · ·+ 4αr,

s2s1(2α̃+ 2ρ)− 2ρ = 2α̃− 2α1 − 6α2 = −2α2 + 4α3 + · · ·+ 4αr,

s2s3(2α̃+ 2ρ)− 2ρ = 2α̃− 6α2 − 2α3 = 2α1 − 2α2 + 2α3 + 4α4 + · · ·+ 4αr,

s3s2(2α̃+ 2ρ)− 2ρ = 2α̃− 4α2 − 6α3 = 2α1 − 2α3 + 4α4 + · · ·+ 4αr, and

srsr−1(2α̃+ 2ρ)− 2ρ = 2α̃− 2αr−1 − 6αr = 2α1 + 4α2 + · · ·+ 4αr−2 + 2αr−1 − 2αr.

8



Table 1: Data for Lie algebra of Type B3.

σ ∈ W ℓ(σ) σ(α̃ + ρ)− ρ ℘(σ(α̃+ ρ)− ρ)
1 0 α1 + 2α2 + 2α3 11
s1 1 2α2 + 2α3 4
s2 1 α1 + 2α3 1
s3 1 α1 + 2α2 + α3 5
s1s2 2 −2α1 + 2α3 0
s2s1 2 −α2 + 2α3 0
s2s3 2 α1 − α2 + α3 0
s3s1 2 2α2 + α3 2
s3s2 2 α1 − 3α3 0
s1s2s1 3 −2α1 − α2 + 2α3 0
s1s2s3 3 −3α1 − α2 + α3 0
s2s3s1 3 −2α2 + α3 0
s2s3s2 3 α1 − 3α2 − 3α3 0
s3s1s2 3 −2α1 − 3α3 0
s3s2s1 3 α2 − 5α3 0
s3s2s3 3 α1 − α2 − 4α3 0
s1s2s3s1 4 −3α1 − 2α2 + α3 0
s1s2s3s2 4 −5α1 − 3α2 − 3α3 0
s2s3s1s2 4 −2α1 − 6α2 − 3α3 0
s2s3s2s1 4 −5α2 − 5α3 0
s3s1s2s1 4 −2α1 − α2 − 5α3 0
s3s1s2s3 4 −3α1 − α2 − 4α3 0
s3s2s3s1 4 −2α2 − 6α3 0
s3s2s3s2 4 α1 − 3α2 − 4α3 0
s1s2s3s1s2 5 −5α1 − 6α2 − 3α3 0
s1s2s3s2s1 5 −6α1 − 5α2 − 5α3 0
s2s3s1s2s1 5 −2α1 − 7α2 − 5α3 0
s2s3s1s2s3 5 −3α1 − 7α2 − 4α3 0
s3s1s2s3s1 5 −3α1 − 2α2 − 6α3 0
s3s1s2s3s2 5 −5α1 − 3α2 − 4α3 0
s3s2s3s1s2 5 −2α1 − 6α2 − 10α3 0
s3s2s3s2s1 5 −5α2 − 6α3 0
s1s2s3s1s2s1 6 −6α1 − 7α2 − 5α3 0
s2s3s1s2s3s1 6 −3α1 − 8α2 − 6α3 0
s2s3s1s2s3s3 6 −5α1 − 7α2 − 4α3 0
s3s1s2s3s1s2 6 −5α1 − 6α2 − 10α3 0
s3s1s2s3s2s1 6 −6α1 − 5α2 − 6α3 0
s3s2s3s1s2s1 6 −2α1 − 7α2 − 10α3 0
s3s2s3s1s2s3 6 −3α1 − 7α2 − 11α3 0
s2s3s1s2s3s1s2 7 −5α1 − 10α2 − 10α3 0
s2s3s1s2s3s2s1 7 −6α1 − 8α2 − 6α3 0
s3s1s2s3s1s2s1 7 −6α1 − 7α2 − 10α3 0
s3s2s3s1s2s3s1 7 −3α1 − 8α2 − 11α3 0
s3s2s3s1s2s3s2 7 −5α1 − 7α2 − 11α3 0
s2s3s1s2s3s1s2s1 8 −6α1 − 10α2 − 10α3 0
s3s2s3s1s2s3s1s2 8 −5α1 − 10α2 − 11α3 0
s3s2s3s1s2s3s2s1 8 −6α1 − 8α2 − 11α3 0
s3s2s3s1s2s3s1s2s1 9 −6α1 − 10α2 − 11α3 0
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Thus, no Weyl group element σ containing these products of simple reflections s1s2, s2s1, s2s3, s3s2, or srsr−1

in its reduced word decomposition is in the Weyl alternation set Br.
Lemma 3.7 shows that a Weyl group element σ containing a product of simple reflections of the form

sisi+1si+2, si+2si+1si, or si+1sisi+2 or a product of four consecutive simple root reflections si, si+1, si+2, si+3

is not in Br.

We call the subwords described in Lemma 4.2 the basic forbidden subwords of Br. It is easy to see that
the vast majority of elements in Wr contain one of these forbidden subwords. Thus we have greatly reduced
the number of elements we must consider. Now that we have described which elements of Wr are not in Br,
we turn our attention to the elements σ which do not contain a forbidden subword.

The next proposition and its corollary describe the Weyl group elements which are in Br as commuting
products of short strings of simple transpositions. We shall refer to these products of simple transpositions
listed in Proposition 4.3 as the basic allowable subwords of Type B. It is essential to note that by definition,
the basic allowable subwords are the largest products of consecutive simple reflections that do not contain a
forbidden subword.

Proposition 4.3. The following elements of Wr are in Br

• (r ≥ 2): 1, i.e. the identity element of Wr

• (r ≥ 3): si for any 1 ≤ i ≤ r

• (r ≥ 4): sisi+1 for any 3 ≤ i ≤ r − 1

• (r ≥ 5): si+1si for any 3 ≤ i ≤ r − 2

• (r ≥ 5): sisi+1si for any 3 ≤ i ≤ r − 2

• (r ≥ 6): sisi+2si+1 for any 3 ≤ i ≤ r − 3.

Proof. Recall σ ∈ Br if and only if σ(α̃ + ρ) − ρ can be written as a nonnegative integral combination of
simple roots. Moreover, since we are only concerned with whether or not the coefficients are nonnegative
integers we know that σ ∈ Br if and only if σ(2α̃+2ρ)− 2ρ. Also recall that in the Type B case the highest
root is α̃ = α1 + 2α2 + · · · + 2αr. Clearly 1 ∈ Br since 1(α̃ + ρ) − ρ = α̃ which can be written as a sum of
simple roots with nonnegative integer coefficients.

Let r ≥ 3 and i ∈ {1, 3, 4, . . . , r}. Then by Lemma 3.1

si(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 2αi)− 2ρ = 2α̃− 2αi = 2α1 + 4α2 + · · ·+ 4αi−1 + 2αi + 4αi+1 + · · ·+ 4αr,

and when i = 2 we have that

s2(2α̃+ 2ρ)− 2ρ = 2(α̃− α2) + (2ρ− 2α2)− 2ρ = 2α̃− 4α2 = 2α1 + 4α3 + · · ·+ 4αr.

Hence si ∈ Br for all 1 ≤ i ≤ r.
Let r ≥ 4 and let 3 ≤ i ≤ r − 1. Then by Lemmas 3.1 and 3.2

sisi+1(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 4αi − 2αi+1 − 2ρ

= 2α1 + 4α2 + · · ·+ 4αi−1 + 2αi+1 + 4αi+2 + · · ·+ 4αr.

Hence sisi+1 ∈ Br, for all 3 ≤ i ≤ r − 1.
Let r ≥ 5 and let 3 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.2

si+1si(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 2αi − 4αi+1 − 2ρ

= 2α1 + 4α2 + · · ·+ 4αi+1 + 2αi + 4αi+2 + · · ·+ 4αr.

Hence si+1si ∈ Br, for all 3 ≤ i ≤ r − 2.
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Let r ≥ 5 and let 3 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.2

sisi+1si(2α̃+ 2ρ)− 2ρ = 2α̃− 4αi − 4αi+1

= 2α1 + 4α2 + · · ·+ 4αi−1 + 4α1+2 + · · ·+ 4αr.

Hence sisi+1si ∈ Br, for all 3 ≤ i ≤ r − 2.
Let r ≥ 6 and let 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.3

sisi+2si+1(2α̃+ 2ρ)− 2ρ = 2α̃− 4αi − 2αi+1 − 4αi+2

= 2α1 + 4α2 + · · ·+ 4αr−1 + 2αi+1 + 4αi+3 + · · ·+ 4αr.

Hence sisi+2si+1 ∈ Br, for all 3 ≤ i ≤ r − 3.

Corollary 4.4. If σ ∈ W can be expressed as a commuting product of basic allowable subwords of Type B,
then σ ∈ Br.

Proof. This follows from the fact that all basic allowable subwords are in Br and since they commute they
act on disjoint subsets of the indices in the expression α̃+ρ. Hence σ(α̃+ρ)−ρ will continue to be expressible
as a non-negative integral combination of simple roots, and thus this commuting product of basic allowable
subwords will again be in Br.

We are now ready to state a complete classification of the set Br in terms of basic allowable subwords.

Theorem 4.5. Let σ ∈ Wr. Then σ ∈ Br if and only if σ is a commuting product of basic allowable subwords
of Type B.

Proof. They Weyl group Wr is a partially ordered set with order given by inclusion of subwords. Every
element of Wr is either greater than or equal to one of the forbidden subwords described in Lemma 4.2, or
it is a commuting product of the basic allowable subwords described in Proposition 4.3.

4.1 Cardinality of Br

We will now build Br recursively in order to determine the cardinality of this set. For r ≥ 3, let Pr denote
the subset of Br of all elements which do not contain a factor of sr. We define P0 and P1 as the empty set
and some simple computations show that P2 = {1, s1}.

Lemma 4.6. Let r ≥ 3. If σ ∈ Pr−1, then σ ∈ Pr.

Lemma 4.7. Let r ≥ 4. If σ ∈ Pr−2, then σsr−1 ∈ Pr.

Lemma 4.8. Let r ≥ 5. If σ ∈ Pr−3, then Pr will contain σsr−2sr−1, σsr−1sr−2, and σsr−2sr−1sr−2.

Lemma 4.9. Let r ≥ 6. If σ ∈ Pr−4, then σsr−3sr−1sr−2 ∈ Pr.

Proposition 4.10. The cardinality of the set Pr is given by the following recursive formula:

|Pr| = |Pr−1|+ |Pr−2|+ 3|Pr−3|+ |Pr−4|,

where |P0| = |P1| = 0, |P2| = 2, |P3| = 3.

Proof. We know that P0 and P1 are the empty set, hence |P0| = |P1| = 0. By definition of Pr, we know
that P2 = {1, s1} and P3 = {1, s1, s2}, hence |P2| = 2 and |P3| = 3. Let Pjπ = {σπ |σ ∈ Pj} for any Weyl
group element π and any positive integer j. Then by Lemmas 4.6 and 4.7 we have that P4 = P3 ·∪ (P2s3) =
{1, s1, s2, s3, s1s3}. Hence |P4| = |P3| + |P2|+ 3|P1|+ |P0| = 5. We now proceed by an induction argument
on r and by Lemmas 4.6-4.9 which imply that for any k ≥ 5, Pk is the union of pairwise disjoint sets

11



Pk = Pk−1 ·∪ (Pk−2sk−1) ·∪ (Pk−3sk−2) ·∪ (Pk−3sk−2sk−1) ·∪ (Pk−3sk−1sk−2) ·∪ (Pk−4sk−3sk−1sk−2).

Thus
|Pk| = |Pk−1|+ |Pk−2|+ 3|Pk−3|+ |Pk−4|.

The first 20 terms of the sequence2 |Pi|, beginning with i = 0:

0, 0, 2, 3, 5, 14, 30, 62, 139, 305, 660, 1444, 3158, 6887, 15037, 32842, 71698, 156538, 341799, 746273, . . .

We now need to count the elements of Br which contain a factor of sr. To do so, we note the following:

Lemma 4.11. Let r ≥ 3. If σ ∈ Br and σ contains a factor of sr, then σ = πsr for some π ∈ Pr−1 or
σ = τsr−1sr for some τ ∈ Pr−2.

Corollary 4.12. For r ≥ 2, the cardinality of the set Br is given by the following recursive formula:

|Br| = |Pr|+ |Pr−1|+ |Pr−2|.

Proof. Let r ≥ 2. Then by Lemma 4.11 we know that Br is the union of three pairwise disjoint sets. Namely

Br = Pr ·∪ (Pr−1sr) ·∪ (Pr−2sr−1sr).

Thus
|Br| = |Pr|+ |Pr−1|+ |Pr−2|.

The first 20 terms of the sequence3 |Bi|, beginning with i = 2:

2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, 261078, 570035, 1244610, 2717456, 5933249, . . .

5 Type C

When we consider the Lie algebra of type C and rank r we denote the Weyl alternation set as follows:

Cr := A(α̃, 0) = {σ ∈ W : ℘(σ(α̃ + ρ)− ρ) > 0}.

❞ ❞ ❞ ❞ ❞ ❞❛ ❛ ❛ �
❅

α1 α2 α3 αr−2 αr−1 αr

Figure 7: Dynkin diagram of the root system Cr

2This sequence of integers, A232162, was added by the authors to The On-Line Encyclopedia of Integer Sequences (OEIS).
3This sequence of integers, A232163, was added by the authors to The On-Line Encyclopedia of Integer Sequences (OEIS).
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Direct calculations, as those provided in Example 4.1, show that:

C2 = {1, s2}

C3 = {1, s2, s3}

C4 = {1, s2, s3, s4, s2s3, s3s2, s2s3s2, s2s4}

C5 = {1, s2, s3, s4, s5, s2s3, s2s3s5, s3s2, s3s2s5, s2s5, s2s3s2, s2s3s2s5, s2s4, s3s4, s4s3, s3s4s3, s2s4s3, s3s5}

C6 =







1, s2, s3, s4, s5, s6, s2s3, s2s4, s2s5, s2s6, s3s2, s3s4, s3s5, s3s6, s4s3, s4s5, s4s6,
s5s4, s2s3s2, s2s3s5, s2s3s6, s2s4s3, s2s4s5, s2s4s6, s2s5s4, s3s2s5, s3s2s6, s3s4s3,
s3s4s6, s3s5s4, s4s3s6, s4s5s4, s2s3s2s5, s2s3s2s6, s2s4s3s6, s2s4s5s4, s3s4s3s6







Remark 5.1. In this case the Weyl group is isomorphic to the group of signed permutations, and hence has
order 2rr! where r denotes the rank of the Lie algebra. It is important to note that the cardinalities of the
Weyl alternation sets above are much smaller than the order of the respective Weyl group, see Table 3.

Rank Weyl Alternation Set Cardinality Weyl Group Order
2 2 8
3 3 48
4 8 384
5 18 3840
6 37 46080

Table 3: Cardinalities of Weyl alternation sets in comparison to order of Weyl group in Type C

We now describe the elements σ of Wr which are not in the Weyl alternation set Cr by identifying a list
of forbidden subwords that prohibit σ from being in Cr.

Lemma 5.2. Any element σ ∈ Wr containing the following subwords is not in the set Cr:

s1, sr−1sr, and srsr−1,

sisi+1si+2, si+2si+1si, si+1sisi+2 where 1 ≤ i ≤ r − 2,

or any product of four consecutive simple root reflections si, si+1, si+2, si+3, in any order.

Proof. Recall that by Lemma 3.1, s1(α̃) = α̃− 2α1 and all other simple root reflections fix the highest root,
while by Lemma 3.2 we know s1(2ρ) = 2ρ − 2α1. So s1 is never in the Weyl alternation set Cr, nor is any
word containing s1. Lemma 3.6 shows that the Weyl group elements sr−1sr and srsr−1 are never in Cr nor
is any word containing them. Lemma 3.7 also shows that a Weyl group element σ containing a product of
simple reflections of the form sisi+1si+2, si+2si+1si, or si+1sisi+2 where 3 ≤ i ≤ r − 2 or a product four
consecutive simple root reflections si, si+1, si+2, si+3 is not in the Weyl alternation set Cr.

We can now describe the elements of the Weyl alternation set Cr as a product of basic allowable subwords
in the following proposition and its corollary. Each basic allowable subword listed in the following proposition
is the largest products of consecutive simple reflections that do not result in a forbidden subword.

Proposition 5.3. The following elements of Wr are in Cr

• (r ≥ 2): 1, i.e. the identity element of Wr

• (r ≥ 2): si for any 2 ≤ i ≤ r

• (r ≥ 4): sisi+1 for any 2 ≤ i ≤ r − 2

• (r ≥ 4): si+1si for any 2 ≤ i ≤ r − 2
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• (r ≥ 4): sisi+1si for any 2 ≤ i ≤ r − 2

• (r ≥ 5): sisi+2si+1 for any 2 ≤ i ≤ r − 3.

We will refer to the elements listed in Proposition 5.3 as the basic allowable subwords of Type C.

Proof. Recall that in the Type C case the highest root is α̃ = 2α1 + · · · + 2αr−1 + αr, and that σ ∈ Cr if
and only if σ(α̃ + ρ) − ρ can be written as a nonnegative integral combination of simple roots. Of course
σ(α̃ + ρ) − ρ will have nonnegative coefficients if and only if σ(2α̃ + 2ρ) − 2ρ has nonnegative coefficients.
We will apply Lemma 3.1 and Lemma 3.5 in the statement below. Clearly 1 ∈ Br since 1(α̃ + ρ) − ρ = α̃
which can be written as a sum of simple roots with nonnegative integer coefficients.

Let r ≥ 2 and 2 ≤ i ≤ r. Then by Lemmas 3.1 and 3.2

si(2α̃+2ρ)−2ρ = 2α̃+(2ρ−2αi)−2ρ = 2α̃−2αi = 4α1+4α2+ · · ·+4αi−1+2αi+4αi+1+ · · ·+4αr−1+2αr.

Hence si ∈ Cr for all 2 ≤ i ≤ r, with r ≥ 2.
Let r ≥ 4 and let 2 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.2

sisi+1(2α̃+2ρ)−2ρ = 2α̃+(2ρ−4αi−2αi+1)−2ρ = 2α̃−4αi−2αi+1 = 4α1+· · ·+4αi−1+2αi+1+4αi+2+· · ·+4αr−1+2αr.

Hence sisi+1 ∈ Cr, for all 2 ≤ i ≤ r − 2, with r ≥ 4.
Let r ≥ 4 and let 2 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.2

si+1si(2α̃+2ρ)−2ρ = 2α̃+(2ρ−2αi−4αi+1)−2ρ = 2α̃−2αi−4αi+1 = 4α1+· · ·+4αi−1+2αi+4αi+2+· · ·+4αr−1+2αr.

Hence si+1si ∈ Cr, for all 2 ≤ i ≤ r − 2, with r ≥ 4.
Let r ≥ 4 and let 2 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.2

sisi+1si(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 4αi − 4αi+1)− 2ρ

= 4α1 + · · ·+ 4αi−1 + 4αi+2 + · · ·+ 4αr−1 + 2αr.

Hence sisi+1si ∈ Cr, for all 2 ≤ i ≤ r − 2, with r ≥ 4.
Let r ≥ 5 and let 2 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.3

sisi+2si+1(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 4αi − 2αi+1 − 4αi+2)− 2ρ

= 4α1 + · · ·+ 4αi−1 + 2αi+1 + 4αi+3 + · · ·+ 4αr−1 + 2αr.

Hence sisi+2si+1 ∈ Cr, for all 2 ≤ i ≤ r − 3, with r ≥ 5.

Corollary 5.4. If σ ∈ W can be expressed as a product of commuting basic allowable subwords of Type C,
then σ ∈ Cr.

Proof. By Proposition 5.3, all basic allowable subwords are in Cr. Moreover, two basic allowable subwords
commute if and only if they act on disjoint sets of simple roots. Hence, in a product of commuting basic
allowable subwords each subword acts on nonconsecutive indices of the expression α̃+ρ. Hence the expression
σ(α̃+ ρ)− ρ will continue to be expressible as a non-negative integral combination of simple roots, and thus
a product of commuting basic allowable subwords will again be in Cr.

Theorem 5.5. Let σ ∈ Wr. Then σ ∈ Cr if and only if σ is a product of commuting basic allowable subwords
of Type C.

Proof. The Weyl group Wr is a partially ordered set with order defined by inclusion of subwords. It is easy
to see that an element σ ∈ Wr either contains one of the forbidden subwords listed in Lemma 5.2, or it is a
product of commuting basic allowable subwords described in Proposition 5.3
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5.1 Cardinality of Cr

We will now build Cr recursively in order to determine the cardinality of this set. For r ≥ 3, let Pr denote
the subset of Cr of all elements which do not contain a factor of sr. We define P0 as the empty set and some
simple computations show that P1 = P2 = {1} and P3 = {1, s2}.

Lemma 5.6. Let r ≥ 2. If σ ∈ Pr−1, then σ ∈ Pr.

Lemma 5.7. Let r ≥ 3. If σ ∈ Pr−2, then σsr−1 ∈ Pr.

Lemma 5.8. Let r ≥ 4. If σ ∈ Pr−3, then Pr will contain σsr−2sr−1, σsr−1sr−2, and σsr−2sr−1sr−2.

Lemma 5.9. Let r ≥ 5. If σ ∈ Pr−4, then σsr−3sr−1sr−2 ∈ Pr.

Proposition 5.10. The cardinality of the set Pr is given by the following recursive formula:

|Pr| = |Pr−1|+ |Pr−2|+ 3|Pr−3|+ |Pr−4|,

where |P0| = 0, |P1| = |P2| = 1, |P3| = 2.

Proof. We know that P0 is the empty set, hence |P0| = 0. By definition of Pr and some basic computations
we can show that P1 = P2 = {1} and P3 = {1, s2}, hence |P1| = |P2| = 1 and |P3| = 2. Let Pjπ =
{σπ |σ ∈ Pj} for any Weyl group element π and any positive integer j. Then by Lemmas 5.6 and 5.7
we have that P4 = P3 ·∪ (P2s3) ·∪ (P1s2s3) ·∪ (P1s3s2) ·∪ (P1s2s3s2) = {1, s2, s3, s2s3, s3s2, s2s3s2}. Hence
|P4| = |P3|+ |P2|+3|P1|+ |P0| = 2+ 1+ 3(1)+ 0 = 6. We now proceed by an induction argument on r and
by Lemmas 5.6-5.9 which imply that for any k ≥ 5, Pk is the union of pairwise disjoint sets

Pk = Pk−1 ·∪ (Pk−2sk−1) ·∪ (Pk−3sk−2sk−1) ·∪ (Pk−3sk−1sk−2) ·∪ (Pk−3sk−2sk−1sk−2) ·∪ (Pk−4sk−3sk−1sk−2).

Thus
|Pk| = |Pk−1|+ |Pk−2|+ 3|Pk−3|+ |Pk−4|.

The first 20 terms of the sequence4 |Pi|, beginning with i = 0:

0, 1, 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, 63685, 139057, 303608, 662888, 1447352, . . .

We now need to count the elements of Cr which contain a factor of sr. To do so, we note the following:

Lemma 5.11. Let r ≥ 2. If σ ∈ Cr and σ contains a factor of sr, then σ = πsr for some π ∈ Pr−1.

Corollary 5.12. For r ≥ 2, the cardinality of the set Cr is given by the following recursive formula:

|Cr| = |Pr|+ |Pr−1|.

Proof. Let r ≥ 2. Then by Lemma 5.11 we know that Cr is the union of two pairwise disjoint sets. Namely

Cr = Pr ·∪ (Pr−1sr).

Thus
|Cr| = |Pr|+ |Pr−1|.

The first 20 terms of the sequence5 |Ci|, beginning with i = 2:

2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480, 42530, 92853, 202742, 442665, 966496, 2110240, 4607473, . . .
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Figure 8: Dynkin diagram of the root system Dr

6 Type D

When we consider the Lie algebra of type D and rank r ≥ 4 we denote the Weyl alternation set as follows:

Dr : = A(α̃, 0) = {σ ∈ W : ℘(σ(α̃ + ρ)− ρ) > 0}. (2)

Direct calculations, as those provided in Example 4.1, show that:

D4 = {1, s1, s2, s3, s4, s1s3, s1s4, s3s4, s1s3s4}

D5 = {1, s1, s2, s3, s4, s5, s1s3, s1s4, s1s5, s2s4, s2s5, s4s5, s3s4, s3s5, s1s4s5, s1s3s4, s1s3s5, s2s4s5}

D6 =

{

1, s1, s2, s3, s4, s5, s6, s1s3, s1s4, s1s5, s1s6, s2s4, s2s5, s2s6, s3s4, s3s5, s3s6, s4s3, s4s5, s4s6, s5s6, s1s3s4,
s1s3s5, s1s3s6, s1s4s3, s1s4s5, s1s4s6, s1s5s6, s2s4s5, s2s4s6, s2s5s6, s3s4s3, s3s5s6, s1s3s4s3, s1s3s5s6

}

D7 =































1, s1, s2, s3, s4, s5, s6, s7, s1s3, s3s4, s1s4, s2s4, s4s3, s4s5, s1s5, s2s5, s3s5, s5s4, s5s6, s5s7, s1s6, s2s6, s3s6,
s4s6, s1s7, s2s7, s3s7, s4s7, s7s6, s1s3s4, s3s4s3, s1s4s3, s1s4s5, s2s4s5, s4s5s4, s1s3s5, s5s3s4, s1s5s4,

s2s5s4, s1s5s6, s2s5s6, s3s5s6, s1s5s7, s2s5s7, s3s5s7, s1s3s6, s3s4s6, s1s4s6, s2s4s6, s4s3s6, s1s3s7, s3s4s7,
s1s4s7, s2s4s7, s4s3s7, s1s7s6, s2s7s6, s3s7s6, s4s7s6, s1s3s4s3, s1s4s5s4, s2s4s5s4, s1s5s3s4, s1s3s5s6,
s1s3s5s7, s1s3s4s6, s3s4s3s6, s1s4s3s6, s1s3s4s7, s3s4s3s7, s1s4s3s7, s1s3s7s6, s3s4s7s6, s1s4s7s6,

s2s4s7s6, s4s3s7s6, s1s3s4s3s6, s1s3s4s3s7, s1s3s4s7s6, s3s4s3s7s6, s1s4s3s7s6, s1s3s4s3s6s7































We start by identifying a list of forbidden subwords that are not in Dr.

Lemma 6.1. Any Weyl group element σ ∈ Wr containing the following subwords is not in the Weyl alter-
nation set Dr

s1s2, s2s1, s2s3, s3s2, sr−1sr−2, or srsr−2

sisi+1si+2, si+2si+1si, or si+1sisi+2 where 1 ≤ i ≤ r − 2

In addition, any σ containing a product of four consecutive simple reflections si, si+1, si+2, si+3 in any
order, will not be in Dr.

Proof. We calculate that s1s2, s2s1, s2s3, s3s2, sr−1sr−2, and srsr−2 are not in the Weyl alternation set Dr

because

s1s2(2α̃+ 2ρ)− 2ρ = 2α̃− 6α1 − 4α2 = −4α1 + 4α3 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

s2s1(2α̃+ 2ρ)− 2ρ = 2α̃− 2α1 − 6α2 = −2α2 + 4α3 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

s2s3(2α̃+ 2ρ)− 2ρ = 2α̃− 6α2 − 2α3 = 2α1 − 4α2 + 2α3 + 4α4 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

s3s2(2α̃+ 2ρ)− 2ρ = 2α̃− 4α2 − 6α3 = 2α1 − 2α3 + 4α4 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

sr−1sr−2(2α̃+ 2ρ)− 2ρ = 2α̃− 2αr−2 − 4αr−1 = 2α1 + 4α2 + · · ·+ 4αr−2 − 2αr, and

srsr−2(2α̃+ 2ρ)− 2ρ = 2α̃− 2αr−2 − 4αr = 2α1 + 4α2 + · · ·+ 4αr−3 + 2αr−2 + 2αr−1 − 2αr.

4This sequence of integers, A232164, was added by the authors to The On-Line Encyclopedia of Integer Sequences (OEIS).
5This sequence of integers, A232165, was added by the authors to The On-Line Encyclopedia of Integer Sequences (OEIS).
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Thus σ cannot contain any of the above subwords as factors in its reduced word expression.
Now Lemma 3.7 shows that if σ contains any of the subwords sisi+1si+2, si+2si+1si, or si+1sisi+2 with

1 ≤ i ≤ r − 2 or a product of four consecutive simple root reflections, then σ is not in Dr.

We have identified a large set of elements in Wr which are not in the Weyl alternation set Dr. Now we
will show that the remaining elements are in Dr and describe them as products of basic allowable subwords
as follows.

Proposition 6.2. The following elements of Wr are in Dr

• (r ≥ 2): 1, i.e. the identity element of Wr

• (r ≥ 3): si for any 1 ≤ i ≤ r

• (r ≥ 4): sisi+1 for any 3 ≤ i ≤ r − 1

• (r ≥ 6): si+1si for any 3 ≤ i ≤ r − 3

• (r ≥ 6): sisi+1si for any 3 ≤ i ≤ r − 3

• (r ≥ 7): sisi+2si+1 for any 3 ≤ i ≤ r − 4.

We will refer to the elements listed in Proposition 6.2 as the basic allowable subwords of Type D.

Proof. Recall that for 1 ≤ i ≤ r, si(αi) = −αi. If 1 ≤ i < j ≤ r− 1 with |i− j| = 1 or if i = r− 2 and j = r,
then si(αj) = sj(αi) = αi + αj . For i = r − 1 or i = r we have that sr−1(αr) = αr and sr(αr−1) = αr−1.
The highest root in this case is α̃ = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr.

Observe that σ ∈ Dr if and only if σ(α̃ + ρ) − ρ can be written as a nonnegative integral combination
of simple roots. Moreover, since we are only concerned with whether or not the coefficients are nonnegative
integers we know that σ ∈ Dr if and only if σ(2α̃+ 2ρ)− 2ρ.

Clearly 1 ∈ Dr since 1(α̃ + ρ) − ρ = α̃ which can be written as a sum of simple roots with nonnegative
integer coefficients.

Let r ≥ 3 and observe that by Lemma 3.1 and Lemma 3.2

s1(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 2α1 − 2ρ = 4α2 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

s2(2α̃+ 2ρ)− 2ρ = 2α̃− 2α2 + 2ρ− 2α2 − 2ρ = 2α1 + 4α3 + · · ·+ 4αr−2 + 2αr−1 + 2αr,

sr−1(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 2αr−1 − 2ρ = 2α1 + 4α+ · · ·+ 4αr−2 + 2αr,

sr(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 2αr − 2ρ = 2α1 + 4α2 + · · ·+ 4αr−2 + 2αr−1.

Now for 3 ≤ i ≤ r we have that by Lemma 3.1 and Lemma 3.2

si(2α̃+2ρ)−2ρ = 2α̃+(2ρ−2αi)−2ρ = 2α̃−2αi = 2α1+4α2+· · ·+4αi−1+2αi+4αi+1+· · ·+4αr−2+2αr−1+2αr.

Hence si ∈ Dr for all 1 ≤ i ≤ r, with r ≥ 3.
Now let r ≥ 4 and 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.2

sisi+1(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 4αi − 2αi+1)− 2ρ

= 2α̃− 4αi − 2αi+1

= 2α1 + 4α2 + · · ·+ 4αi−1 + 2αi+1 + 4αi+2 + · · ·+ 4αr−2 + 2αr−1 + 2αr.

Similarly,

sr−2sr−1(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 4αr−2 − 2αr−1 − 2ρ = 2α1 + 4α2 + · · ·+ 4αr−3 + 2αr,

sr−1sr(2α̃+ 2ρ)− 2ρ = 2α̃+ 2ρ− 2αr−1 − 2αr − 2ρ = 2α1 + 4α2 + · · ·+ 4αr−2.
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Hence sisi+1 ∈ Dr, for all 3 ≤ i ≤ r − 3, with r ≥ 4.
Now let r ≥ 6 and 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.2

si+1si(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 2αi − 4αi+1)− 2ρ

= 2α̃− 2αi − 4αi+1 = 2α1 + 4α2 · · ·+ 4αi−1 + 2αi + 4αi+2 + · · ·+ 4αr−2 + 2αr−1 + 2αr.

Hence si+1si ∈ Dr, for all 3 ≤ i ≤ r − 3, with r ≥ 6.
Let r ≥ 6 and let 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.2

sisi+1si(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 4αi − 4αi+1)− 2ρ

= 2α1 + 4α2 + · · ·+ 4αi−1 + 4αi+2 + · · ·+ 4αr−2 + 2αr−1 + 2αr.

Hence sisi+1si ∈ Dr, for all 3 ≤ i ≤ r − 3, with r ≥ 6.
Let r ≥ 7 and let 3 ≤ i ≤ r − 4. Then by Lemmas 3.1 and 3.3

sisi+2si+1(2α̃+ 2ρ)− 2ρ = 2α̃+ (2ρ− 4αi − 2αi+1 − 4αi+2)− 2ρ

= 2α1 + 4α2 + · · ·+ 4αi−1 + 2αi+1 + 4αi+3 + · · ·+ 4αr−2 + 2αr−1 + 2αr.

Hence sisi+2si+1 ∈ Dr, for all 3 ≤ i ≤ r − 4, with r ≥ 7.

Corollary 6.3. If σ ∈ W can be expressed as a product of commuting basic allowable subwords of Type D,
then σ ∈ Dr.

Proof. This follows from the fact that all basic allowable subwords are in Dr by Proposition 6.2, and since
we are assuming these basic allowable subwords commute, these subwords act on disjoint sets of simple roots
in expression α̃ + ρ. Hence the expression σ(α̃ + ρ) − ρ will continue to be expressible as a non-negative
integral combination of simple roots, and thus this disjoint product of basic allowable subwords will again
be in Dr.

Theorem 6.4. Let σ ∈ Wr. Then σ ∈ Dr if and only if σ can be expressed as a product of commuting basic
allowable subwords of Type D.

Proof. Every element of Wr either contains one of the forbidden subwords described in Lemma 6.1 or it is
the product of commuting basic allowable subwords.

6.1 Cardinality of Dr

To help us recursively count the elements in Dr, we start by defining some special subsets of the support.
Letting Dr := Ar(α̃, 0), as denoted in Equation (2), we then let Mr ⊂ Dr denote the subset of Dr consisting
of elements that do not contain s1 in any reduced word decomposition. Let Nr ⊂ Dr denote the subset
of Dr consisting of elements that contain s1. By definition Nr = Dr \ Mr, Dr = Mr ·∪ Nr and hence
|Dr| = |Mr| + |Nr|. Let Lr ⊂ Dr denote the subset of Dr consisting of elements that do not contain s1 or
s2. Note that if σ ∈ Nr, then there exists τ ∈ Lr such that s1τ = σ. Hence |Nr| = |Lr|.

With this notation in place, we define a map

φ : Dr−1 → Mr ⊂ Dr

which sends si to si+1 for every simple transposition s1, . . . , sr−1.
We can now characterize the elements of the set Nr. When r ≥ 8 the elements of Nr are obtained

from the sets Lr−1,Lr−2, Lr−3, and Lr−4 by either multiplying s1 times a word from φ(Lr−1), multiplying
s1s3 times a word from φ2(Lr−2), multiplying s1s3s4, s1s4s3, or s1s3s4s3 times a word from φ3(Lr−3), or
multiplying s1s3s5s4 times a word from φ4(Lr−4).

Since |Nr| = |Lr| this implies that the cardinality of Nr satisfies the following recursion:

|Nr| = |Nr−1|+ |Nr−2|+ 3|Nr−3|+ |Nr−4|. (3)
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Next we characterize the elements of the set Mr. Every element of Mr either contains s2 or it does not.
The ones that contain s2 are obtained by multiplying s2 times the elements of φ(Lr−1). The elements of
Mr by definition do not contain s1, so if in addition they do not contain s2 they are, again by definition, all
elements of Lr. This implies that |Mr| satisfies the following recursion:

|Mr| = |Lr|+ |Lr−1| = |Nr|+ |Nr−1| = 2|Nr−1|+ |Nr−2|+ 3|Nr−3|+ |Nr−4|. (4)

Finally, by the definitions of Dr, Mr, and Nr we see that

|Dr| = |Mr|+ |Nr| = 2|Nr|+ |Nr−1| = 3|Nr−1|+ 2|Nr+2|+ 6|Nr−3|+ 2|Nr−4|. (5)

We have listed the elements of Dr for r ≤ 7 in the previous section. From these sets, and the recursions
described in Equations (3), (4), (5), we can find the cardinalities of the sets Dr, Mr, Nr, and Lr for r ≥ 4.6

The cardinalities of the first 16 sets are listed below:

r |Dr| |Mr| |Nr|= |Lr|
4 9 5 4
5 18 11 7
6 35 21 14
7 82 48 34
8 180 107 73
9 385 229 156
10 846 501 345
11 1853 1099 754
12 4034 2394 1640
13 8810 5225 3585
14 19249 11417 7832
15 42014 24923 17091
16 91727 54409 37318
17 200298 118808 81490
18 437316 259403 177913
19 954809 566361 388448

7 q-analog of Kostant’s weight multiplicity formula

The q-analog of Kostant’s weight multiplicity (q-multiplicity) is defined as follows

mq(λ, µ) =
∑

σ∈W

(−1)ℓ(σ)℘q(σ(λ + ρ)− ρ− µ), (6)

where ℘q denotes the q-analog of Kostant’s partition function. That is, for any weight ξ, we have that

℘q(ξ) = c0 + c1q + c2q
2 + c3q

3 + · · ·+ ckq
k,

where ci is the number of ways to write ξ as a sum of exactly i positive roots.
Given g, a simple Lie algebra of rank r with highest root α̃, it is known that mq(α̃, 0) =

∑r

i=1 q
ei ,

where e1, · · · , er are the exponents of g, [7]. Using the q-analog values of the partition function as listed in

6These sequences of integers, A234576, A234597, A234599, were added by the authors to The On-Line Encyclopedia of
Integer Sequences (OEIS).
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Tables 6-16 we can prove that for the Lie algebras of Type B (ranks 2, 3, 4, 5, and 6), Type C (ranks 2, 3,
4, 5, and 6) and Type D (ranks 4, 5, and 6):

mq(α̃, 0) =
∑

σ∈W

(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = qe1 + qe2 + · · ·+ qer ,

where e1, e2, . . . , er are given in Table 4.

Lie algebra Exponents
Ar 1, 2, 3, . . . , r
Br 1, 3, 5, . . . , 2r − 1
Cr 1, 3, 5, . . . , 2r − 1
Dr 1, 3, 5, . . . , 2r − 3, r − 1

Table 4: Exponents of simple Lie algebras.

Notice that in Tables 6-16, the column labeled string denotes the coefficients of the simple roots for the
expression σ(α̃ + ρ) − ρ. For example, in Table 8 the string of 102201, corresponding to the Weyl group
element s2s5s6, is short hand notation for the fact that s2s5s6(α̃+ ρ)− ρ = α1 + 2α3 + 2α4 + α6.

A complete combinatorial proof of the above result for Lie algebras of type B, C, and D is yet to be
completed. Such a proof would require a closed formula for the q-analog of Kostant’s partition function,
℘q(σ(α̃ + ρ) − ρ), for every element in the respective Weyl alternation set, see Section 9. In [5], Harris
provided the necessary results to complete such a proof in the Type A case.

8 Non-zero Weight Spaces

It is fundamental in Lie theory that the zero weight space is a Cartan subalgebra, and that the non-zero
weights of L(α̃), the adjoint representation of g, are the roots and have multiplicity 1. We visit this from
our point of view in the case of the Lie algebras of Types B, C, and D. First we begin with the following
general result.

Theorem 8.1. Let λ be a dominant integral weight of the simple Lie algebra g of rank r. Then σ(λ+ρ)−λ−ρ
can be written as a nonnegative integral sum of positive roots if and only if σ is the identity.

Proof. (⇒) If σ 6= 1, then there exists nonnegative integers m1, . . . ,mj between 1 and r, such that σ(λ+ρ) =

λ + ρ −
∑j

i=1 miαi. Then σ(λ + ρ) − λ − ρ = −
∑j

i=1 miαi. Hence σ(λ + ρ) − λ − ρ cannot be written as
nonnegative integral sum of positive roots.

(⇐) If σ = 1, then σ(λ + ρ)− λ− ρ = 0, which can be written as a nonnegative integral combination of
positive roots as desired.

Recall that the fundamental weights (relative to the choice of simple roots) are the elements ̟1, . . . , ̟r

of h∗ which are dual to the coroot basis {α̌1, . . . , α̌r}, see [4] for notation. Also recall that in every Lie type
the highest root is a dominant weight since it is the highest weight of the adjoint representation. It is a
simple exercise7 to show that the only dominant positive roots are:

• Type Ar: α̃ = ̟1 +̟r,

• Type Br: α̃ = ̟2 and ̟1 = α1 + · · ·+ αr,

• Type Cr: α̃ = 2̟1 and ̟2 = α1 + 2α2 + · · ·+ 2αr−1 + αr,

• Type Dr: α̃ = ̟2.

7See exercise 3.2.5 #1(a) in [4].
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Since in all Lie types the highest root is dominant Theorem 8.1 implies the following.

Corollary 8.2. Let α̃ denote the highest root of the Lie algebra of Type A, B, C, or D, respectively. Then,
in each respective Lie type, the Weyl alternation set associated to the pair of dominant weights λ = α̃ and
µ = α̃ is given by A(α̃, α̃) = {1}.

Recall that given µ ∈ P (g), there exists w ∈ W and ξ ∈ P+(g) such that w(ξ) = µ and given that weight
multiplicities are invariant under W (Propositions 3.1.20, 3.2.27 in [4]) it suffices to consider µ ∈ P+(g).
Thus Corollary 8.2 implies that for all Lie types, m(α̃, µ) = 1, whenever µ ∈ Φ.

However, it is interesting to consider the remaining cases where there exists a dominant positive root,
which is not the highest root. Namely the case λ = α̃ and µ = ̟1 in Type B and the case λ = α̃ and µ = ̟2

in Type C.

Theorem 8.3. Let σ ∈ W , then σ ∈ Br(α̃,̟1) if and only if σ = 1 or σ = si1si2 · · · sij , where i1, . . . , ij are
non-consecutive integers between 3 and r.

Proof. Recall σ ∈ Br(α̃,̟1) if and only if σ(α̃ + ρ) − ρ − ̟1 can be written as a nonnegative integral
combination of simple roots. Moreover, since we are only concerned with whether or not the coefficients
are nonnegative integers we know that σ ∈ Br(α̃,̟1) if and only if σ(2α̃ + 2ρ)− 2ρ− 2̟1 is an equivalent
statement. Also recall that in the Type B case the highest root is α̃ = α1 + 2α2 + · · · + 2αr and ̟1 =
α1 + · · ·+ αr.

(⇐) : Observe that 1(α̃+ρ)−ρ−̟1 = (α1+2α2+ · · ·+2αr)− (α1+ · · ·+αr) = α2+ · · ·+αr, which can
be written as a sum of simple roots with nonnegative integer coefficients. Thus, if σ = 1, then σ ∈ Br(α̃,̟1).
Now observe that if 3 ≤ i ≤ r, then by Lemmas 3.1 and 3.2

si(2α̃+ 2ρ)− 2ρ− 2̟ = 2α̃+ (2ρ− 2αi)− 2ρ− 2̟1

= 2α̃− 2αi − 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 2αi − 2(α1 + · · ·+ αr)

= 2α2 + · · ·+ 2αi−1 + 2αi+1 + · · ·+ 2αr.

Hence si ∈ Br(α̃,̟1) for all 3 ≤ i ≤ r. Suppose σ = si1si2 · · · sij , where i1, . . . , ij are non-consecutive
integers between 3 and r. Then by Lemmas 3.1 and 3.2 we have that

si1si2 · · · sij (2α̃+ 2ρ)− 2ρ− 2̟1 = 2α̃+ 2ρ− 2(αi1 + αi2 + · · ·+ αij )− 2ρ− 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 2(αi1 + αi2 + · · ·+ αij )− 2(α1 + · · ·+ αr)

= (2α2 + · · ·+ 2αr)− 2(αi1 + αi2 + · · ·+ αij ).

Thus σ ∈ Br(α̃,̟1) as claimed.
(⇒) : Suppose that σ ∈ Br(α̃,̟1). If σ = 1, we are done. So suppose that σ is not the identity element.

First notice that

s1(2α̃+ 2ρ)− 2ρ− 2̟1 = 2α̃+ (2ρ− 2α1)− 2ρ− 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 2α1 − 2(α1 + · · ·+ αr)

= −2α1 + 2α2 + · · ·+ 2αr

and

s2(2α̃+ 2ρ)− 2ρ− 2̟1 = (2α̃− 2α2) + (2ρ− 2α2)− 2ρ− 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 4α2 − 2(α1 + · · ·+ αr)

= −2α2 + 2α3 + · · ·+ 2αr.
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Hence σ cannot contain s1 and s2 as a factor. Now notice that by Lemmas 3.1 and 3.2

sisi+1(2α̃+ 2ρ)− 2ρ− 2̟1 = 2α̃+ (2ρ− 4αi − 2αi+1)− 2ρ− 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 4αi − 2αi+1 − 2(α1 + · · ·+ αr)

= 2α2 + · · ·+ 2αi−1 − 2αi + 2αi+2 + · · ·+ 2αr

and

si+1si(2α̃+ 2ρ)− 2ρ− 2̟1 = 2α̃+ (2ρ− 2αi − 4αi+1)− 2ρ− 2̟1

= (2α1 + 4α2 + · · ·+ 4αr)− 2αi − 4αi+1 − 2(α1 + · · ·+ αr)

= 2α2 + · · ·+ 2αi−1 − 2αi+1 + 2αi+2 + · · ·+ 2αr.

Therefore σ cannot contain any consecutive factors, as claimed.

The Fibonacci numbers, denoted by Fn and defined in [10], are given by the recurrence relation

Fn = Fn−1 + Fn−2,

where F1 = F2 = 1.

Corollary 8.4. Let r ≥ 2. Then |Br(α̃,̟1)| = Fr.

The proof of Corollary 8.4 follows from the fact that the rth Fibonacci number, Fr, counts the number of
ways to choose nonconsecutive integers from the numbers 3, 4, · · · , r. Moreover, the following lemmas and
propositions follow from analogous arguments as for Lemma 3.1 and Proposition 3.2 in [5].

Lemma 8.5.

|{σ ∈ Br(α̃,̟1) : ℓ(σ) = k and σ contains no sr factor}| =

(

r − 3− k

k

)

|{σ ∈ Br(α̃,̟1) : ℓ(σ) = k + 1 and σ contains an sr factor}| =

(

r − 4− k

k

)

max{ℓ(σ) : σ ∈ Br(α̃,̟1) and σ contains no sr factor} =

⌊

r − 3

2

⌋

max{ℓ(σ) : σ ∈ Br(α̃,̟1) and σ contains an sr factor} =

⌊

r − 2

2

⌋

We can also compute the value of the q-analog of Kostant’s partition function, as defined in Section 7,
for every σ ∈ Br(α̃,̟1).

Proposition 8.6. If σ ∈ Br(α̃,̟1), then

℘q(σ(α̃+ ρ)− ρ−̟1) =

{

q1+ℓ(σ)(1 + q)r−1−2ℓ(σ) if σ contains no sr factor

qℓ(σ)(1 + q)r−2ℓ(σ) if σ contains an sr factor.

Corollary 8.7. If σ ∈ Br(α̃,̟1), then ℘(σ(α̃ + ρ)− ρ−̟1) =

{

2r−1−2ℓ(σ) if σ contains no sr factor

2r−2ℓ(σ) if σ contains an sr factor.

Then we can prove the following result regarding the q-multiplicity, Equation 6, of the weight ̟1 in the
adjoint representation of the Lie algebra of Type B.

Theorem 8.8. In Type B, mq(α̃,̟1) = qr.
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Notice that Corollary 8.7 follows from the fact that ℘ = ℘q|q=1. This same fact along with Theorem 8.8
implies that the multiplicity of the weight ̟1 in the adjoint representation of the Lie algebra of Type B is
1, as we expected.

Proof of Theorem 8.8. By Theorem 8.3 we have that

mq(α̃,̟) =
∑

σ∈Br(α̃,̟1)

with no sr factor

(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ−̟1) +
∑

σ∈Br(α̃,̟1)

with an sr factor

(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ−̟1).

By Lemma 8.5 and Proposition 8.6 we can compute the sums as follows

∑

σ∈Br(α̃,̟1)

with no sr factor

(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ−̟1) =

⌊ r−3

2 ⌋
∑

k=0

(−1)k
(

r − 3− k

k

)

q1+k(1 + q)r−1−2k

and

∑

σ∈Br(α̃,̟1)

with an sr factor

(−1)ℓ(σ)℘q(σ(α̃+ ρ)− ρ−̟1) =

⌊ r−4

2 ⌋
∑

k=0

(−1)1+k

(

r − 4− k

k

)

q1+k(1 + q)r−2−2k.

By Proposition 3.3 in [5], observe that

⌊ r−3

2 ⌋
∑

k=0

(−1)k
(

r − 3− k

k

)

q1+k(1 + q)r−1−2k = q2
r−2
∑

i=1

qi

and
⌊ r−4

2 ⌋
∑

k=0

(−1)1+k

(

r − 4− k

k

)

q1+k(1 + q)r−2−2k = −q2
r−3
∑

i=1

qi.

Therefore

mq(α̃,̟) = q2
r−2
∑

i=1

qi − q2
r−3
∑

i=1

qi = qr.

Now we consider the case λ = α̃ and µ = ̟2 in the Lie algebra of Type C.

Theorem 8.9. Let σ ∈ W . Then σ ∈ C(α̃,̟2) if and only if σ = 1.

Proof. Recall that in the Type Cr case the highest root is α̃ = 2α1 + · · ·+2αr−1 +αr and ̟2 = α1 +2α2 +
· · ·+ 2αr−1 + αr = α̃− α1.

(⇒) : Let σ ∈ Cr(α̃,̟2). If σ = 1, then we are done. So suppose σ is not the identity. Now observe that
by Lemmas 3.1 and 3.2

s1(2α̃+ 2ρ)− 2ρ− 2̟2 = (2α̃− 4α1) + (2ρ− 2α1)− 2ρ− 2(α̃− α1) = −4α1

and for any 2 ≤ i ≤ r we have that

si(2α̃+ 2ρ)− 2ρ− 2̟2 = 2α̃+ (2ρ− 2αi)− 2ρ− 2(α̃− α1) = 2α1 − 2αi.

So σ cannot contain any factors s1, . . . , sr. Thus σ must be the identity.
(⇐) : Observe that 1(α̃+ ρ)− ρ−̟2 = α̃+ ρ− ρ− (α̃− α1) = α1, hence 1 ∈ Cr(α̃,̟2).
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Corollary 8.10. In Type C, mq(α̃,̟2) = q.

This follows directly from Theorem 8.9 which implies that mq(α̃,̟2) = ℘q(1(α̃+ρ)−ρ−̟2) = ℘q(α1) = q.
Thus, by setting q = 1, we have that the multiplicity of the weight ̟2 in the adjoint representation of the
Lie algebra of Type C is 1.

9 A set of open problems

As stated before computing the values of Kostant’s partition function is very difficult. In order to provide
a combinatorial proof of the result of Kostant regarding the exponents of the classical Lie algebras of type
B, C and D one needs to compute the value of the q−analog of Kostant’s partition function. This is a
non-trivial matter. We thus ask the following questions.

Question 9.1. For any Lie Type: Let α̃ denote the highest root. Can a closed formula for the value of the
partition function on the highest root be given? Namely, is there a closed formula for the value of ℘(α̃)?
Moreover, can a closed formula for the q-analog be given, i.e. ℘q(α̃)?

The answer to the Type A case is found by setting q = 1 in Proposition 3.2, in [5]. Thus, if σ ∈ Ar(α̃, 0),
then ℘(σ(α̃ + ρ) − ρ) = 2r−1−2ℓ(σ). We believe that a generating function can be found for the values of
℘(α̃) at any rank when α̃ is the highest root of the Lie algebras of Type B and C. The generating functions
associated to the sequences

1, 3, 11, 40, 145, 525, 1900, 6875, . . .

and
1, 3, 10, 35, 125, 450, 1625, 5875, . . . . ,

were given in [2] as the number of multiplex juggling sequences8 of length n, base state < 1, 1 > and hand
capacity 2, and the number of periodic multiplex juggling sequences9 of length n with base state < 2 >,
respectively. We list these generating functions in Table 5.

Type Generating function for ℘(α̃)

B x−2x2+x3

1−5x+5x2

C x−2x2

1−5x+5x2

Table 5: Generating functions for the value of ℘(α̃)

This would not be the first time that the mathematics of juggling provide insight into such computations.
For example, Ehrenborg and Readdy used juggling patterns as an application to compute q-analogs. In
particular they used juggling patterns to compute the Poincaré series of the affine Weyl group Ãd−1, see [3].

Problem 9.2. Verify that the generating functions given in Table 5 are the actual generating functions for
the values of Kostant’s partition function on the highest root for Lie algebras of Type B and C, respectively.

Other questions we pose deal with the Weyl alternations sets as described in this paper.

Question 9.3. For each positive number k, what are the cardinalities of the sets:

Bk
r = {σ ∈ Br(α̃, 0) : ℓ(σ) = k},

Ck
r = {σ ∈ Cr(α̃, 0) : ℓ(σ) = k},

Dk
r = {σ ∈ Dr(α̃, 0) : ℓ(σ) = k}?

8OEIS sequence A136775.
9OEIS sequence A081567.

24

http://oeis.org/A136775
http://oeis.org/A081567


Question 9.4. If σ is an element of the Weyl alternation set B(α̃, 0), C(α̃, 0), or D(α̃, 0) as computed in
Theorems 4.5, 5.5, or 6.4, respectively, then can a closed formula be provided for the value of the q-analog
of Kostant’s partition function: ℘q(σ(α̃+ ρ)− ρ)?

Notice that an answer to Question 9.4 would immediately provide the values of Kostant’s partition func-
tion on σ(α̃+ ρ)− ρ for any element σ of a Weyl alternation set, since the evaluation of ℘q at q = 1 recovers
the original partition function values.

By answering Questions 9.3 and 9.4 one can provide a purely combinatorial proof of Kostant’s result
regarding the exponents of the respective Lie algebra. That is, if g is a classical Lie algebra of rank r with
highest root α̃, an answer to the previous questions will yield a purely combinatorial proof that

mq(α̃, 0) =

r
∑

i=1

qei ,

where e1, · · · , er are the exponents of g.

These are only a few of the many open questions in this particular area. In fact, sometimes simply deter-
mining whether the multiplicity is positive when using Kostant’s weight multiplicity formula is very difficult.
Therefore answering questions regarding the support of the multiplicity formula as well as computing closed
formulas for the partition function and it’s q-analog provide many paths for new research.

10 Appendix

To aid in answering some of the open problems listed above, this Appendix provides data on the alternation
set and Kostant’s partition function for classical Lie algebras.
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Table 6: Data for Lie algebra of Type B for ranks 2, 3, 4, and 5.

σ ∈ Br ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 2
1 0 12 q(q2 + q + 1) 3
s1 1 02 q2 1

mq(α̃, 0) =
∑

σ∈B2
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3

Rank: r = 3
1 0 122 q(q4 + 2q3 + 4q2 + 3q + 1) 11
s3 1 121 q2(q2 + 2q + 2) 5
s2 1 102 q3 1
s1 1 022 q2(q2 + q + 2) 4
s1s3 2 021 q2(q + 1) 2

mq(α̃, 0) =
∑

σ∈B3
(−1)ℓ(σ)℘q(σ(α̃+ ρ)− ρ) = q1 + q3 + q5

Rank: r = 4
1 0 1222 q(q6 + 3q5 + 8q4 + 11q3 + 11q2 + 5q + 1) 40
s1 1 0222 q2(q2 + q + 1)(q2 + q + 3) 15
s2 1 1022 q3(q2 + q + 2) 4
s3 1 1212 q2(q2 + q + 1)(q2 + 2q + 2) 15
s4 1 1221 q2(q + 1)(q3 + 2q2 + 4q + 2) 18
s1s3 2 0212 q2(q + 1)(q2 + q + 1) 6
s1s4 2 0221 q2(q3 + 2q2 + 3q + 1) 7
s2s4 2 1021 q3(q + 1) 2
s3s4 2 1201 q3(q + 1) 2
s1s3s4 3 0201 q3 1

mq(α̃, 0) =
∑

σ∈B4
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7

Rank: r = 5
1 0 12222 q(q8 + 4q7 + 13q6 + 25q5 + 37q4 + 35q3 + 22q2 + 7q + 1) 145
s1 1 02222 q2(q6 + 3q5 + 9q4 + 13q3 + 16q2 + 9q + 4) 55
s2 1 10222 q3(q2 + q + 1)(q2 + q + 3) 15
s3 1 12122 q2(q2 + 2q + 2)(q4 + 2q3 + 4q2 + 3q + 1) 55
s4 1 12212 q2(q + 1)(q2 + q + 1)(q3 + 2q2 + 4q + 2) 54
s5 1 12221 q2(q2 + 2q + 2)(q4 + 2q3 + 5q2 + 4q + 1) 65
s1s3 2 02122 q2(q + 1)(q4 + 2q3 + 4q2 + 3q + 1) 22
s1s4 2 02212 q2(q2 + q + 1)(q3 + 2q2 + 3q + 1) 21
s1s5 2 02221 q2(q5 + 3q4 + 7q3 + 8q2 + 5q + 1) 25
s2s4 2 10212 q3(q + 1)(q2 + q + 1) 6
s2s5 2 10221 q3(q3 + 2q2 + 3q + 1) 7
s3s4 2 12102 q4(q2 + 2q + 2) 5
s3s5 2 12121 q3(q2 + 2q + 2)2 25
s4s3 2 12012 q3(q + 1)(q2 + q + 1) 6
s4s5 2 12201 q3(q3 + 2q2 + 3q + 1) 7
s1s3s4 3 02102 q4(q + 1) 2
s1s3s5 3 02121 q3(q + 1)(q2 + 2q + 2) 10
s1s4s3 3 02012 q3(q2 + q + 1) 3
s1s4s5 3 02201 q3(q2 + q + 1) 3
s2s4s5 3 10201 q4 1
s3s4s3 3 12002 q4(q + 1) 2
s1s3s4s3 4 02002 q4 1

mq(α̃, 0) =
∑

σ∈B5
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7 + q9
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Table 8: Data for Lie algebra of Type B of rank 6.

σ ∈ Br ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 6
1 0 122222 q(q10 + 5q9 + 19q8 + 46q7 + 87q6 + 118q5 + 120q4 + 82q3 + 37q2 + 9q + 1) 525
s1 1 022222 q2(q4 + 2q3 + 4q2 + 2q + 1)(q4 + 2q3 + 6q2 + 6q + 5) 200
s2 1 102222 q3(q6 + 3q5 + 9q4 + 13q3 + 16q2 + 9q + 4) 55
s3 1 121222 q2(q2 + 2q + 2)(q6 + 3q5 + 8q4 + 11q3 + 11q2 + 5q + 1) 200
s4 1 122122 q2(q + 1)(q3 + 2q2 + 4q + 2)(q4 + 2q3 + 4q2 + 3q + 1) 198
s5 1 122212 q2(q2 + q + 1)(q2 + 2q + 2)(q4 + 2q3 + 5q2 + 4q + 1) 195
s6 1 122221 q2(q8 + 5q7 + 17q6 + 37q5 + 58q4 + 61q3 + 40q2 + 14q + 2) 235
s1s3 2 021222 q2(q + 1)(q6 + 3q5 + 8q4 + 11q3 + 11q2 + 5q + 1) 80
s1s4 2 022122 q2(q3 + 2q2 + 3q + 1)(q4 + 2q3 + 4q2 + 3q + 1) 77
s1s5 2 022212 q2(q2 + q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1) 75
s1s6 2 022221 q2(q7 + 4q6 + 12q5 + 21q4 + 26q3 + 18q2 + 7q + 1) 90
s2s4 2 102122 q3(q + 1)(q4 + 2q3 + 4q2 + 3q + 1) 22
s2s5 2 102212 q3(q2 + q + 1)(q3 + 2q2 + 3q + 1) 21
s2s6 2 102221 q3(q5 + 3q4 + 7q3 + 8q2 + 5q + 1) 25
s3s4 2 121022 q4(q2 + q + 2)(q2 + 2q + 2) 20
s3s5 2 121212 q3(q2 + q + 1)(q2 + 2q + 2)2 75
s3s6 2 121221 q3(q + 1)(q2 + 2q + 2)(q3 + 2q2 + 4q + 2) 90
s4s3 2 120122 q3(q + 1)(q4 + 2q3 + 4q2 + 3q + 1) 22
s4s5 2 122102 q4(q + 1)(q3 + 2q2 + 4q + 2) 18
s4s6 2 122121 q3(q + 1)(q2 + 2q + 2)(q3 + 2q2 + 4q + 2) 90
s5s4 2 122012 q3(q2 + q + 1)(q3 + 2q2 + 3q + 1) 21
s5s6 2 122201 q3(q5 + 3q4 + 7q3 + 8q2 + 5q + 1) 25
s1s3s4 3 021022 q4(q + 1)(q2 + q + 2) 8
s1s3s5 3 021212 q3(q + 1)(q2 + q + 1)(q2 + 2q + 2) 30
s1s3s6 3 021221 q3(q + 1)2(q3 + 2q2 + 4q + 2) 36
s1s4s3 3 020122 q3(q4 + 2q3 + 4q2 + 3q + 1) 11
s1s4s5 3 022102 q4(q3 + 2q2 + 3q + 1) 7
s1s4s6 3 022121 q3(q2 + 2q + 2)(q3 + 2q2 + 3q + 1) 35
s1s5s4 3 022012 q3(q2 + q + 1)2 9
s1s5s6 3 022201 q3(q4 + 2q3 + 4q2 + 2q + 1) 10
s2s4s5 3 102102 q5(q + 1) 2
s2s4s6 3 102121 q4(q + 1)(q2 + 2q + 2) 10
s2s5s4 3 102012 q4(q2 + q + 1) 3
s2s5s6 3 102201 q4(q2 + q + 1) 3
s3s4s3 3 120022 q4(q + 1)(q2 + q + 2) 8
s3s4s6 3 121021 q4(q + 1)(q2 + 2q + 2) 10
s3s5s4 3 120102 q5(q + 1) 2
s4s3s6 3 120121 q4(q + 1)(q2 + 2q + 2) 10
s4s5s4 3 122002 q4(q3 + 2q2 + 3q + 1) 7
s4s5s6 3 121201 q4(q + 1)(q2 + 2q + 2) 10
s1s3s4s3 4 020022 q4(q2 + q + 2) 4
s1s3s4s6 4 021021 q4(q + 1)2 4
s1s3s5s4 4 020102 q5 1
s1s4s3s6 4 020121 q4(q2 + 2q + 2) 5
s1s4s5s4 4 022002 q4(q2 + q + 1) 3
s1s4s5s6 4 021201 q4(q + 1)2 4
s2s4s5s4 4 102002 q5 1
s3s4s3s6 4 120021 q4(q + 1)2 4
s1s3s4s3s6 5 020021 q4(q + 1) 2

mq(α̃, 0) =
∑

σ∈B6
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7 + q9 + q1127



Table 10: Data for Lie algebra of Type C for ranks 2, 3, 4, and 5.

σ ∈ Cr ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 2
1 0 21 q(q2 + q + 1) 3
s1 1 20 q2 1

mq(α̃, 0) =
∑

σ∈C2
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3

Rank: r = 3
1 0 221 q(q4 + 2q3 + 4q2 + 2q + 1) 10
s2 1 211 q2(q + 1)2 4
s3 1 220 q2(q2 + q + 1) 3

mq(α̃, 0) =
∑

σ∈C3
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5

Rank: r = 4
1 0 2221 q(q6 + 3q5 + 8q4 + 10q3 + 9q2 + 3q + 1) 35
s2 1 2121 q2(q + 1)(q3 + 2q2 + 3q + 1) 14
s3 1 2211 q2(q + 1)(q3 + 2q2 + 3q + 1) 14
s4 1 2220 q2(q4 + 2q3 + 4q2 + 2q + 1) 10
s2s3 2 2011 q3(q + 1) 2
s3s2 2 2101 q3(q + 1) 2
s2s4 2 2120 q3(q + 1)2 4
s2s3s2 3 2001 q3 1

mq(α̃, 0) =
∑

σ∈C4
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7

Rank: r = 5
1 0 22221 (q8 + 4q7 + 13q6 + 24q5 + 34q4 + 28q3 + 16q2 + 4q + 1)q 125
s2 1 21221 (q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 50
s3 1 22121 (q3 + 2q2 + 3q + 1)2q2 49
s4 1 22211 (q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 50
s5 1 22220 (q6 + 3q5 + 8q4 + 10q3 + 9q2 + 3q + 1)q2 35
s2s3 2 20121 (q3 + 2q2 + 3q + 1)q3 7
s3s2 2 21021 (q + 1)(q2 + q + 1)q3 6
s2s5 2 21220 (q + 1)(q3 + 2q2 + 3q + 1)q3 14
s2s4 2 21211 (q2 + 2q + 2)(q + 1)2q3 20
s3s4 2 22011 (q + 1)(q2 + q + 1)q3 6
s4s3 2 22101 (q3 + 2q2 + 3q + 1)q3 7
s3s5 2 22120 (q + 1)(q3 + 2q2 + 3q + 1)q3 14
s2s3s5 3 20120 (q + 1)q4 2
s3s2s5 3 21020 (q + 1)q4 2
s2s3s2 3 20021 (q2 + q + 1)q3 3
s3s4s3 3 22001 (q2 + q + 1)q3 3
s2s4s3 3 20101 q4 1
s2s3s2s5 4 20020 q4 1

mq(α̃, 0) =
∑

σ∈C5
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7 + q9
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Table 12: Data for Lie algebra of Type C of rank 6.

σ ∈ Cr ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 6
1 0 222221 (q10 + 5q9 + 19q8 + 45q7 + 83q6 + 106q5 + 100q4 + 60q3 + 25q2 + 5q + 1)q 450
s2 1 212221 (q + 1)(q7 + 4q6 + 12q5 + 21q4 + 26q3 + 18q2 + 7q + 1)q2 180
s3 1 221221 (q3 + 2q2 + 3q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 175
s4 1 222121 (q3 + 2q2 + 3q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 175
s5 1 222211 (q + 1)(q7 + 4q6 + 12q5 + 21q4 + 26q3 + 18q2 + 7q + 1)q2 180
s6 1 222220 0q1 + 1q2 + 4q3 + 16q4 + 28q5 + 34q6 + 24q7 + 13q8 + 4q9 + 1q10 125
s2s3 2 201221 (q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q3 25
s2s4 2 212121 (q + 1)(q2 + 2q + 2)(q3 + 2q2 + 3q + 1)q3 70
s2s5 2 212211 (q3 + 2q2 + 4q + 2)(q + 1)3q3 72
s2s6 2 212220 (q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q3 50
s3s2 2 210221 (q + 1)(q4 + 2q3 + 4q2 + 2q + 1)q3 20
s3s4 2 220121 (q2 + q + 1)(q3 + 2q2 + 3q + 1)q3 21
s3s5 2 221211 (q + 1)(q2 + 2q + 2)(q3 + 2q2 + 3q + 1)q3 70
s3s6 2 221220 (q3 + 2q2 + 3q + 1)2q3 49
s4s3 2 221021 (q2 + q + 1)(q3 + 2q2 + 3q + 1)q3 21
s4s5 2 222011 (q + 1)(q4 + 2q3 + 4q2 + 2q + 1)q3 20
s4s6 2 222120 (q + 1)(q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q3 50
s5s4 2 222101 (q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q3 25
s2s3s2 3 200221 (q4 + 2q3 + 4q2 + 2q + 1)q3 10
s2s3s5 3 201211 (q + 1)(q2 + 2q + 2)q4 10
s2s3s6 3 201220 (q3 + 2q2 + 3q + 1)q4 7
s2s4s5 3 212011 (q + 1)3q4 8
s2s4s6 3 212120 (q2 + 2q + 2)(q + 1)27q4 20
s2s5s4 3 212101 (q + 1)(q2 + 2q + 2)q4 10
s3s4s3 3 220021 (q2 + q + 1)2q3 9
s2s4s3 3 201021 (q2 + q + 1)q4 3
s3s2s5 3 210211 (q + 1)3q4 8
s3s4s6 3 220120 (q + 1)(q2 + q + 1)q4 6
s3s2s6 3 210220 (q + 1)(q2 + q + 1)q4 6
s4s5s4 3 222001 (q4 + 2q3 + 4q2 + 2q + 1)q3 10
s3s5s4 3 220101 (q2 + q + 1)q4 3
s4s3s6 3 221020 (q3 + 2q2 + 3q + 1)q4 7
s2s3s2s6 4 200220 (q2 + q + 1)q4 3
s2s3s2s5 4 200211 (q + 1)2q4 4
s2s4s5s4 4 212001 (q + 1)2q4 4
s3s4s3s6 4 220020 (q2 + q + 1)q4 3
s2s4s3s6 4 201020 q5 1

mq(α̃, 0) =
∑

σ∈C6
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q5 + q7 + q9 + q11
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Table 14: Data for Lie algebra of Type D for ranks 4 and 5.

σ ∈ Dr ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 4
1 0 1211 (q4 + 3q3 + 6q2 + 4q + 1)q 15
s1 1 0211 (q2 + 2q + 2)q2 5
s2 1 1011 q3 1
s3 1 1201 (q2 + 2q + 2)q2 5
s4 1 1210 (q2 + 2q + 2)q2 5
s1s3 2 0201 (q + 1)q2 2
s1s4 2 0210 (q + 1)q2 2
s3s4 2 1200 (q + 1)q2 2
s1s3s4 3 0200 q2 1

mq(α̃, 0) =
∑

σ∈D4
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + 2q3 + q5

Rank: r = 5
1 0 12211 (q6 + 4q5 + 11q4 + 17q3 + 15q2 + 6q + 1)q 55
s1 1 02211 (q4 + 3q3 + 7q2 + 6q + 3)q2 20
s2 1 10211 (q2 + 2q + 2)q3 5
s3 1 12111 (q2 + 2q + 2)(q + 1)2q2 20
s4 1 12201 (q + 1)(q3 + 2q2 + 4q + 2)q2 18
s5 1 12210 (q + 1)(q3 + 2q2 + 4q + 2)q2 18
s3s1 2 02111 (q + 1)3q2 8
s3s4 2 12001 (q + 1)q3 2
s3s5 2 12010 (q + 1)q3 2
s4s1 2 02201 (q3 + 2q2 + 3q + 1)q2 7
s4s2 2 10201 (q + 1)q3 2
s5s1 2 02210 (q3 + 2q2 + 3q + 1)q2 7
s5s2 2 10210 (q + 1)q3 2
s5s4 2 12200 (q3 + 2q2 + 3q + 1)q2 7
s3s4s1 3 02001 q3 1
s3s5s1 3 02010 q3 1
s5s4s1 3 02200 (q2 + q + 1)q2 3
s5s4s2 3 10200 q3 1

mq(α̃, 0) =
∑

σ∈D5
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + q4 + q5 + q7
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Table 16: Data for Lie algebra of Type D of rank 6.

σ ∈ Dr ℓ(σ) String ℘q(σ(α̃ + ρ)− ρ) ℘q|q=1

Rank: r = 6
1 0 122211 (q8 + 5q7 + 17q6 + 36q5 + 54q4 + 50q3 + 28q2 + 8q + 1)q 200
s1 1 022211 (q2 + 2q + 2)(q4 + 2q3 + 6q2 + 4q + 2)q2 75
s2 1 102211 (q4 + 3q3 + 7q2 + 6q + 3)q3 20
s3 1 121211 (q2 + 2q + 2)(q4 + 3q3 + 6q2 + 4q + 1)q2 75
s4 1 122111 (q3 + 2q2 + 4q + 2)(q + 1)3q2 72
s5 1 122201 (q2 + 2q + 2)(q4 + 2q3 + 5q2 + 4q + 1)q2 65
s6 1 122210 (q2 + 2q + 2)(q4 + 2q3 + 5q2 + 4q + 1)q2 65
s3s1 2 021211 (q + 1)(q4 + 3q3 + 6q2 + 4q + 1)q2 30
s3s4 2 120111 (q + 1)3q3 8
s4s1 2 022111 (q3 + 2q2 + 3q + 1)(q + 1)2q2 28
s4s2 2 102111 (q + 1)3q3 8
s4s3 2 121011 (q2 + 2q + 2)q4 5
s4s5 2 122001 (q3 + 2q2 + 3q + 1)q3 7
s4s6 2 122010 (q3 + 2q2 + 3q + 1)q3 7
s5s1 2 022201 (q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 25
s5s2 2 102201 (q3 + 2q2 + 3q + 1)q3 7
s5s3 2 121201 (q2 + 2q + 2)2q3 25
s6s1 2 022210 (q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 25
s6s2 2 102210 (q3 + 2q2 + 3q + 1)q3 7
s6s3 2 121210 (q2 + 2q + 2)2q3 25
s6s5 2 122200 (q5 + 3q4 + 7q3 + 8q2 + 5q + 1)q2 25
s3s4s1 3 020111 (q + 1)2q3 4
s3s4s3 3 120011 (q + 1)q4 2
s4s3s1 3 021011 (q + 1)q4 2
s4s5s1 3 022001 (q2 + q + 1)q3 3
s4s5s2 3 102001 q4 1
s4s6s1 3 022010 (q2 + q + 1)q3 3
s4s6s2 3 102010 q4 1
s5s3s1 3 021201 (q + 1)(q2 + 2q + 2)q3 10
s6s3s1 3 021210 (q + 1)(q2 + 2q + 2)q3 10
s6s5s1 3 022200 (q4 + 2q3 + 4q2 + 2q + 1)q2 10
s6s5s2 3 102200 (q2 + q + 1)q3 3
s6s5s3 3 121200 (q + 1)(q2 + 2q + 2)q3 10
s3s4s3s1 4 020011 q4 1
s6s5s3s1 4 021200 (q + 1)2q3 4

mq(α̃, 0) =
∑

σ∈D6
(−1)ℓ(σ)℘q(σ(α̃ + ρ)− ρ) = q1 + q3 + 2q5 + q7 + q9
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