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THE p–ADIC ORDER OF POWER SUMS,

THE ERDŐS –MOSER EQUATION, AND BERNOULLI NUMBERS

JONATHAN SONDOW AND EMMANUEL TSUKERMAN

Abstract. The Erdős–Moser equation is a Diophantine equation proposed more than 60
years ago which remains unresolved to this day. In this paper, we consider the problem
in terms of divisibility of power sums and in terms of certain Egyptian fraction equations.
As a consequence, we show that solutions must satisfy strong divisibility properties and
a restrictive Egyptian fraction equation. Our studies lead us to results on the Bernoulli
numbers and allow us to motivate Moser’s original approach to the problem.
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1. Introduction

For m ∈ N and n ∈ Z, define the power sum

Sn(m) :=

m
∑

j=1

jn = 1n + 2n + · · ·+mn

and set Sn(0) := 0. The Erdős–Moser equation is the Diophantine equation

(1) Sn(m) = (m+ 1)n.

Erdős and Moser [24] conjectured that the only solution is the trivial solution 1 + 2 = 3,
that is, (m,n) = (2, 1). See Moree’s surveys “A top hat for Moser’s four mathemagical
rabbits” [23] and [21], as well as Guy’s discussion in [12, Section D7].

The generalized Erdős–Moser equation is the Diophantine equation

(2) Sn(m) = a(m+ 1)n.

Moree [20] conjectured that the only solution is the trivial solution

1 + 2 + 3 + · · ·+ 2a = a(2a+ 1),

that is, (m,n) = (2a, 1).
In this paper, we consider the equations from two angles: as problems on the divisibility

of power sums and as problems on Egyptian fraction equations. In the final two sections,
we consider implications of our results to the Bernoulli numbers, and motivate Moser’s
“mathemagical rabbits.”
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2. Main Results

For q ∈ Z and prime p, the p-adic order of q is the exponent vp(q) of the highest power of
p that divides q:

vp : Z → N ∪ {0,∞}, vp(q) := sup
pd|q

d.

We note that the domain of definition of vp can be extended to the p-adic integers Zp ⊃ Z
by considering the digits of the base p expansion.

We also define a map

Vp : Zp → N ∪ {0,∞}, Vp(m) := vp(m− ⌊
m

p
⌋) + 1.

This function can be interpreted as follows: Vp(m) counts the number of equal p-digits at
the end of the base p expansion of m ∈ Zp. That is, if we write m in base p as

m = . . . ak . . . a1a0p =
∞
∑

i=0

aip
i,

and let

h = sup{i ∈ N ∪ {0} : ai = aj ∀ 0 ≤ j ≤ i},

then Vp(m) = h+ 1.

Theorem 4. Let p be an odd prime and let m be a positive integer.

(i). In case m ≡ 0 or −1 (mod p), we have

vp(Sn(m))

{

= vp(Sp−1(m)) = Vp(m)− 1 if p− 1 | n,

≥ Vp(m) if p− 1 ∤ n.

(ii). In case m ≡ p−1
2

(mod p), we have

vp(Sn(m))

{

= vp(Sp−1(m)) = Vp(m)− 1 if n is even,

≥ Vp(m) if n is odd.

As a result, we prove:

Theorem 6. Let p be an odd prime.

(i). In the generalized Erdős–Moser equation, if p | m+ 1, then p− 1 ∤ n.
(ii). In the Erdős–Moser equation, if p | m, then p−1 | n and p2 | m+p. Also, if p | m− p−1

2
,

then p− 1 | n and m ≡ −(p+ 1
2
) (mod p2).

Next we consider Egyptian fraction equations of the following form. For a given positive
integer n, we seek an integer d so that the congruence

∑

p|n

1

p
+

d

n
≡ 1 (mod 1)(3)

holds. Integers n for which d ≡ ±1 (mod n) are closely related to Giuga numbers and
primary pseudoperfect numbers. Moreover, d as a function of n can be seen as an arithmetic
derivative of n and is related to the arithmetic derivative considered in [3, 8, 27]. By studying
these equations, we prove:
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Theorem 12. Let (m,n) be a nontrivial solution to the Erdős–Moser equation.

(i). The pair (n, d) = (m− 1, 2n − 1−X) satisfies congruence (3), where

X :=
∑

p|m−1,
p−1∤n

m− 1

p
.

(ii). If p | m− 1, then n = p− 1 + k · ordp(2) for some k ≥ 0.
(iii). Given p | m− 1, if pe | m− 1 with e ≥ 1, then pe−1 | 2n − 1.
(iv). Given p | m− 1, if p− 1 | n and pe | 2n− 1 with e ≥ 1, then pe+1 | m− 1; in particular,

p2 | m− 1.

As an application, combining this with the result of [21] that 35 | n, we see that if (m,n) is
a solution of the Erdős–Moser equation with m ≡ 1 (mod 3), then in fact m ≡ 1 (mod 37).

3. Power Sums

In all the formulas of this paper, the letter p denotes a prime number, unless “integer p”
is specified.

For m ∈ N and n ∈ Z, define the power sum

Sn(m) :=
m
∑

j=1

jn = 1n + 2n + · · ·+mn

and set Sn(0) := 0. Fixing a prime p, we define the restricted power sum S∗
n(0) := 0 and

S∗
n(m) = S∗

n(m, p) :=
m
∑

j=1,
(j,p)=1

jn,

obtained from Sn(m) by removing the terms jn with j divisible by p. (Compare [10, equation
(2.1)].) For example, Sn(p) − pn = Sn(p − 1) = S∗

n(p − 1) = S∗
n(p) and, by induction on

d ∈ N,

Sn(p
d) = S∗

n(p
d) + pnS∗

n(p
d−1) + p2nS∗

n(p
d−2) + · · ·+ pdnS∗

n(p
0).(4)

We now prove the linearity of certain restricted and unrestricted power sums upon reduc-
tion modulo prime powers.

Lemma 1. If p is a prime, d, q ∈ N, N ∈ Z, m1 ∈ pdN ∪ {0}, and m2 ∈ N ∪ {0}, then

S∗
n(qm1 +m2) ≡ qS∗

n(m1) + S∗
n(m2) (mod pd).

Furthermore, the congruence also holds with all S∗
n replaced by the unrestricted sum Sn.

Proof. Note first that

S∗
n(qp

d) =

pdq
∑

k=1,
(k,p)=1

kn =

q−1
∑

j=0

pd
∑

k=1,
(k,p)=1

(pdj + k)n ≡ q

pd
∑

k=1,
(k,p)=1

kn ≡ qS∗
n(p

d) (mod pd).
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Since m1 ∈ pdN ∪ {0}, we therefore have

S∗
n(qm1 +m2) =

qm1+m2
∑

k=1,
(k,p)=1

kn =

qm1
∑

k=1,
(k,p)=1

kn +

m2
∑

j=1,
(j,p)=1

(qm1 + j)n

≡ qS∗
n(m1) + S∗

n(m2) (mod pd),

as desired. The proof in the unrestricted case is similar. �

Theorem 1. Let p be an odd prime, and assume d, q ∈ N and n ∈ Z. Then

S∗
n(p

dq) ≡

{

−pd−1q (mod pd) if p− 1 | n,

0 (mod pd) if p− 1 ∤ n.

Proof. By Lemma 1, it suffices to prove the theorem in the special case where q = 1. Let
φ(n) denote Euler’s totient function. Since

S∗
0(p

d) = φ(pd) = pd−1(p− 1) ≡ −pd−1 (mod pd)

and p− 1 | 0, the result holds when n = 0.
Now assume n 6= 0. As d > 0 and p is an odd prime, pd has a primitive root g. Then g

has multiplicative order φ(pd) modulo pd, and gn 6= 1. Hence S∗
n(p

d) is congruent to

S∗
n(p

d) =

pd
∑

j=1,
(j,p)=1

jn ≡

φ(pd)−1
∑

i=0

(gi)n ≡

φ(pd)−1
∑

i=0

(gn)i ≡
gnφ(p

d) − 1

gn − 1
(mod pd).

We now consider the case n > 0. If p − 1 | n, then Fermat’s Little Theorem implies
gn = 1 + kp, for some k > 0. Hence

S∗
n(p

d) ≡
(1 + kp)φ(p

d) − 1

(1 + kp)− 1
≡

φ(pd)kp+
(

φ(pd)
2

)

(kp)2 + · · ·+ (kp)φ(p
d)

kp
≡ φ(pd) (mod pd).

Thus S∗
n(p

d) ≡ −pd−1 (mod pd), as desired. This proves the result when p− 1 | n.

If p− 1 ∤ n, then a fortiori φ(pd) ∤ n, and so gn 6≡ 1 (mod p). As gφ(p
d) ≡ 1 (mod pd),

S∗
n(p

d) ≡
gnφ(p

d) − 1

gn − 1
≡ 0 (mod pd).

This proves the result when p− 1 ∤ n, and the proof of the case n > 0 is complete.

The case n < 0 follows, because another primitive root of pd is gφ(p
d)−1 ≡ g−1 (mod pd),

and so S∗
n(p

d) ≡ S∗
−n(p

d) (mod pd). This completes the proof of the theorem. �

In the following application of Theorem 1, the case d = q = 1 is classical. (For a recent
elementary proof of that case, as well as a survey of other proofs and applications of it,
see [16].)

Corollary 2. Let p be an odd prime and n, d, q ∈ N. Then

1n + 2n + · · ·+ (pdq)n ≡

{

−pd−1q (mod pd) if p− 1 | n,

0 (mod pd) if p− 1 ∤ n.

In particular, Sn(p
dq) ≡ 0 (mod p) if d > 1 or p > n+ 1.
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Proof. By the linearity of Lemma 1, it suffices to prove the result when q = 1. In case n = 1,
then p − 1 ∤ n and Sn(p

d) = pd(pd + 1)/2 ≡ 0 (mod pd), verifying this case. For n > 1, we
reduce both sides of equation (4) modulo pd, then apply Theorem 1 to each term on the
right-hand side, obtaining Sn(p

d) ≡ S∗
n(p

d) (mod pd). The corollary follows. �

For example, taking q = p gives

Sn(p
d+1) ≡ 0 (mod pd),

whether or not p− 1 divides n. For instance, S2(9) = 285 ≡ 0 (mod 3) and S1(9) = 45 ≡ 0
(mod 3).

On the other hand, taking q = 1 and replacing d with d+ 1 in Corollary 2 gives

p− 1 | n =⇒ Sn(p
d+1) 6≡ 0 (mod pd+1).

For example, S2(9) = 285 6≡ 0 (mod 9).

Corollary 3. For n ∈ N,

prime p ≥ n+ 2 =⇒
1

1n
+

1

2n
+ · · ·+

1

(p− 1)n
≡ 0 (mod p).

Proof. The sum is S−n(p−1) = S∗
−n(p), and the formula follows from Theorem 1 by replacing

n with −n and setting d = q = 1. �

Taking n = 1, the congruence S−1(p − 1) ≡ 0 actually holds modulo p2, if p ≥ 5, by
Wolstenholme’s theorem [29, 18].

The following theorem provides us with additional information about the divisibility of
power sums.

Proposition 4. Given integers p, q ≥ 1, n ≥ 0, and d ≥ c ≥ 0, set δ = d− c. Then

Sn(p
dq) = pδqSn(p

c) +
n
∑

k=1

(

n

k

)

pck(Sk(p
δq)− (pδq)k)Sn−k(p

c).

Proof. We have

Sn(p
dq) =

pδq−1
∑

j=0

pc
∑

i=1

(jpc + i)n =

pδq−1
∑

j=0

pc
∑

i=1

(

in +
n
∑

k=1

(

n

k

)

(jpc)kin−k

)

=

pδq−1
∑

j=0

pc
∑

i=1

in +
n
∑

k=1

(

n

k

)

pck
pδq−1
∑

j=0

jk
pc
∑

i=1

in−k.

Using
∑pδq−1

j=0 jk = Sk(p
δq)− (pδq)k, the desired formula follows. �

Corollary 5. For any prime p ≥ 5 and integer n ≥ 0, the following congruence holds:

Sn(p
2) ≡ pSn(p) + pnSn−1(p)(S1(p)− p) (mod p3).

Proof. If n = 0 or 1, it is easy to verify the congruence. Now, assume that n ≥ 2 and set
d = 2 and c = 1 in Theorem 4. Then

Sn(p
2) = pSn(p) +

n
∑

k=1

(

n

k

)

pk(Sk(p)− pk)Sn−k(p)

≡ pSnp+ np(S1(p)− p)Sn−1(p) +

(

n

2

)

p2(S2(p)− p2)Sn−2(p) (mod p3).
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Since p ≥ 5 implies that S2(p) is divisible by p, the proof is complete. �

Corollary 5 fails with p = 3. Indeed, take n = 1. Then Sn(p
2) = S1(9) = 45, whereas

pSn(p) + pnSn−1(p)(S1(p)− p) equals

3S1(3) + 3S2(3)(S1(3)− 3) = 18 + 3 · 14(6− 3) = 144 6≡ 45 (mod 33).

Recall that Pascal’s identity is

(5)

n−1
∑

k=0

(

n

k

)

Sk(a) = (a+ 1)n − 1,

valid for a ≥ 0 and n ≥ 1 (see, e.g., [16]). Here is an analog for even exponents.

Theorem 2 (A Pascal identity for even exponents). For any integer a ≥ 0 and even n ≥ 2,

(n−2)/2
∑

k=0

(

n

2k

)

S2k(a) =
1

2
((a + 1)n − (an + 1)) .

Proof. Since n is even, the Binomial Theorem gives

Sn(a+ 1) + Sn(a− 1)− 1 =

a
∑

j=1

((1 + j)n + (1− j)n) =

a
∑

j=1

n
∑

k=0

(

n

k

)

jk(1 + (−1)k)

= 2
a
∑

j=1

n/2
∑

k=0

(

n

2k

)

j2k = 2

n/2
∑

k=0

(

n

2k

) a
∑

j=1

j2k.

Using Sn(m) =
∑m

j=1 j
n = Sn(m− 1) +mn, we can write this as

2Sn(a) + (a + 1)n − an − 1 = 2

n/2
∑

k=0

(

n

2k

)

S2k(a).

As n ≥ 2, subtracting 2Sn(a) from both sides and then dividing by 2 yields the desired
formula. �

For an application of Pascal’s identity to Bernoulli numbers, see Section 5.

Theorem 3. Let p be an odd prime and let m and n be positive integers.

(i). For some integer d ≥ 1, we can write

m = qpd + r
pd − 1

p− 1
= qpd + rpd−1 + rpd−2 + · · ·+ rp0,

where r ∈ {0, 1, . . . , p− 1} and 0 ≤ q 6≡ r ≡ m (mod p).
(ii). In case m ≡ 0 (mod p), we have

Sn(m) ≡

{

−pd−1q (mod pd) if p− 1 | n,

0 (mod pd) if p− 1 ∤ n.

(iii). In case m ≡ −1 (mod p), we have

Sn(m) ≡

{

−pd−1(q + 1) (mod pd) if p− 1 | n,

0 (mod pd) if p− 1 ∤ n.
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(iv). In case m ≡ p−1
2

(mod p), we have

Sn(m) ≡







−pd−1

(

q +
1

2

)

(mod pd) if p− 1 | n,

0 (mod pd) if p− 1 ∤ n and n is even.

Proof. Since m > 0, we can write it in base p asm = akak−1 . . . adad−1 . . . a1a0p with a leading
zero ak = 0, all ai ∈ {0, 1, . . . , p − 1}, and r := a0 = a1 = · · · = ad−1 6= ad, where d ≥ 1.

Then m = qpd + r pd−1
p−1

, where 0 ≤ q =
∑k−d

i=0 ad+ip
i ≡ ad 6≡ r ≡ m (mod p), proving (i).

If m ≡ 0 (mod p), then r = 0. Hence m = pdq, and Corollary 2 implies (ii).
Reducing binomials of the form (qpd + j)n modulo pd shows that

Sn(m) = Sn

(

qpd + r
pd − 1

p− 1

)

≡ Sn(qp
d) + Sn

(

r
pd − 1

p− 1

)

(mod pd),

and Corollary 2 computes the term Sn(qp
d) modulo pd. It remains to compute the last term

modulo pd in case m ≡ −1 or p−1
2

(mod p).
If m ≡ −1 (mod p), then r = p− 1. Now,

Sn

(

r
pd − 1

p− 1

)

= Sn(p
d − 1) = Sn(p

d)− pdn ≡ Sn(p
d) (mod pd),

and another application of Corollary 2 yields (iii).
Finally, if m ≡ p−1

2
(mod p), then r = p−1

2
and

Sn

(

r
pd − 1

p− 1

)

= Sn

(

pd − 1

2

)

.

To compute the latter modulo pd when n is even, we write

Sn(p
d − 1) =

(pd−1)/2
∑

k=1

(

kn + (pd − k)n
)

≡ 2Sn

(

pd − 1

2

)

(mod pd).

Since Sn(p
d − 1) ≡ Sn(p

d) (mod pd), we get

n even =⇒ Sn

(

pd − 1

2

)

≡
1

2
Sn(p

d) (mod pd),

and a final application of Corollary 2 gives (iv). �

Definition 1. For q ∈ Z and prime p, the p-adic order of q is the exponent vp(q) of the
highest power of p that divides q:

vp : Z → N ∪ {0,∞}, vp(q) := sup
pd|q

d.

The function vp(·) is totally additive: vp(x · y) = vp(x) + vp(y) for any x and y. Note that
vp(q) ∈ N ∪ {0} for q 6= 0, and vp(0) = ∞.

For the next result, we will find it useful to write a positive integer m in a certain nice
form which allows us to determine the least d for which Sn(m) (mod pd) is not zero for n
divisible by p − 1. More generally, we let m lie in the p-adic integers Zp and note that vp
can be defined on Zp by considering the digits of the base p expansion.
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Definition 2. Define a map Vp : Zp → N ∪ {0,∞} by

Vp(m) := vp(m− ⌊
m

p
⌋) + 1.

This function can be interpreted as follows: Vp(m) counts the number of equal p-digits at
the end of the base p expansion of m ∈ Zp.

Lemma 6. Write m ∈ Zp in base p as

m = . . . ak . . . a1a0p =

∞
∑

i=0

aip
i,

with ai ∈ {0, 1, . . . , p− 1} for each i. Let

h = sup{i ∈ N ∪ {0} : ai = aj ∀ 0 ≤ j ≤ i}.

Then Vp(m) = h+ 1.

Proof. Indeed,

m− ⌊
m

p
⌋ =

∞
∑

i=0

aip
i −

∞
∑

i=0

ai+1p
i.

If h = ∞ then the result follows. Assume then that h is finite. For each of the indices
i = 1, 2, . . . , h − 1, we have ai = ai+1. For the index i = h, by assumption ah 6= ah+1.
Therefore vp(m− ⌊m

p
⌋) = h. �

A few comments regarding Vp are in order. From Lemma 6, we see that Vp(m) = ∞
exactly when all base p digits of m are the same. The values of m ∈ Zp for which this occurs
are

m = −
r

p− 1
= . . . rrrp =

∞
∑

i=0

rpi

for r ∈ {0, 1, . . . , p− 1}. In particular, this is the case for m = −1, 0, and −1
2
when p is odd.

Let Vp(m) = d. Then, as in Theorem 3, we may write m = qpd + a0
∑d−1

k=0 p
k with

0 ≤ q 6≡ a0 (mod p).

Remark 7. If m ≡ −1 (mod p), then the equalities Vp(m) = Vp(m + 1) = vp(m + 1) hold.
Indeed, write m in base p as

m = . . . ah(p− 1)(p− 1) . . . (p− 1)p,

with ah 6= p − 1 so that Vp(m) = h. Notice that ah 6= p− 1 implies vp(m + 1) = h because
m+ 1 = . . . ah+1(ah + 1)00 . . . 0p, since ah < p− 1. Thus Vp(m) = Vp(m+ 1) = vp(m+ 1).

Theorem 4. Let p be an odd prime and let m be a positive integer.

(i). In case m ≡ 0 or −1 (mod p), we have

vp(Sn(m))

{

= vp(Sp−1(m)) = Vp(m)− 1 if p− 1 | n,

≥ Vp(m) if p− 1 ∤ n.

(ii). In case m ≡ p−1
2

(mod p), we have

vp(Sn(m))

{

= vp(Sp−1(m)) = Vp(m)− 1 if n is even,

≥ Vp(m) if n is odd.
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Proof. This follows immediately from Theorem 3. �

As an example, take p = 3 and m = 12223 in base 3. In particular, there are three copies
of 2 at the end, so we know that V3(m) = 3. By Theorem 4, for any even n,

v3(Sn(m)) = v3(S2(m)) = V3(m)− 1 = 2.

As m = 53, this agrees with the fact that S2(53) = 53 ·54(2 ·53+1)/6 = 51039 = 32 ·53 ·107.
We note that Theorem 4 is tight. Indeed, take p = 5 and n = 8, so that p − 1 | n.

Besides m ≡ 0, (p − 1)/2, p − 1 (mod p), consider the remaining two congruence classes,
namely m ≡ 1, 3 (mod 5). First, take m = 6 ≡ 1 (mod 5). We then have S4(6) = 2275 ≡ 0
(mod 25), whereas S8(6) = 2142595 ≡ 20 (mod 25). Now take m = 18 ≡ 3 (mod 5). Then
S4(18) = 432345 ≡ 20 (mod 25), whereas S8(18) = 27957167625 ≡ 0 (mod 25). Thus in
both cases vp(Sn(m)) 6= vp(Sp−1(m)).

As an application, we obtain a simple proof of the following classical result.

Corollary 8. For even n, the polynomial in Q[x] interpolating Sn(x) is divisible by the

product x(x+ 1)(2x+ 1).

Proof. Fix an odd prime p. First, consider the sequence xi = pi, for i = 1, 2, . . .. We have
vp(xi) = i, so that xi → 0 p-adically. On the other hand, vp(Sn(xi)) ≥ Vp(xi)− 1 = i− 1 by
Theorem 4. Therefore Sn(xi) → 0 p-adically. By continuity, x = 0 is a root of Sn(x).

Similarly, consider the sequence xi =
∑i

j=0(p − 1)pj, for i = 1, 2, . . .. This sequence

converges p-adically to −1. Theorem 4 gives vp(Sn(xi)) ≥ Vp(xi) − 1 = i − 1. Therefore,
x = −1 is a root of Sn(x).

Finally, the sequence xi =
∑i

j=0
p−1
2
pj , which converges p-adically to −1/2, shows that

x = −1/2 is a root of Sn(x). �

The next result gives two special cases of Theorem 4.

Corollary 9. Let m and n be positive integers.

(i). The 3-adic order of S2n(m) equals

v3(S2n(m)) = v3(m(m+ 1)(2m+ 1)/3) = V3(m)− 1.

(ii). If m ≡ 0, 2, or 4 (mod 5), then the 5-adic order of S4n(m) equals

v5(S4n(m)) = v5(m(m+ 1)(2m+ 1)(3m2 + 3m− 1)/5) = V5(m)− 1.

Proof. Take p = 3 and 5 in Theorem 4, and use the formulas S2(m) = m(m+ 1)(2m+ 1)/6
and S4(m) = m(m+ 1)(2m+ 1)(3m2 + 3m− 1)/30, respectively. �

We recall an analogous result for the prime 2. (The result is not used in this paper.)

Theorem 5 (MacMillan and Sondow [17]). For any positive integers m and n, the 2-adic
order of Sn(m) equals

v2(Sn(m)) =

{

v2(m(m+ 1)/2) if n = 1 or n is even,

2v2(m(m+ 1)/2) if n ≥ 3 is odd.

As an application of our results to the the Erdős–Moser equation, we have the following
theorem. Part (i) is due to Moree [20, Proposition 9].
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Theorem 6. Let p be an odd prime.

(i). In the generalized Erdős–Moser equation, if p | m+ 1, then p− 1 ∤ n.
(ii). In the Erdős–Moser equation, if p | m, then p−1 | n and p2 | m+p. Also, if p | m− p−1

2
,

then p− 1 | n and m ≡ −(p+ 1
2
) (mod p2).

Proof. (i). Assume that m ≡ −1 (mod p). Then by Remark 7 we have Vp(m) = vp(m+ 1).
If p− 1 | n, then using Theorem 4 and applying vp to both sides of equation (2) gives

Vp(m)− 1 = vp(Sn(m)) = vp(a) + nvp(m+ 1) = vp(a) + nVp(m),

contradicting vp ≥ 0 and Vp ≥ 0. Therefore p− 1 ∤ n.
(ii). If p | m, write m = pdq, with d > 0 and p ∤ q. Reducing both sides of (1) modulo pd,
we deduce that Sn(m) ≡ 1 (mod pd). Hence, by Theorem 3, we must have p− 1 | n and

Sn(m) ≡ −pd−1q (mod pd).

Thus −m
p
= −pd−1q ≡ 1 (mod pd). Since d ≥ 1, this implies m ≡ −p (mod p2).

If m ≡ p−1
2

(mod p), write m = adp
d + pd−1

2
. Reducing both sides of (1) modulo pd, we

see that

Sn(m) ≡

(

pd + 1

2

)n

(mod pd).

By Theorem 3, we see that p− 1 | n and

−pd−1(ad + 2−1) ≡

(

pd + 1

2

)n

≡ (2−1)n (mod pd).

Hence d = 1. Using the fact that the multiplicative order of any element of (Z/pZ)∗ divides
p− 1, we obtain ad ≡ −1− 2−1 (mod p). Therefore m ≡ −p− 2−1 (mod p2). �

Theorem 7. (i). Any non-trivial solution of the generalized Erdős–Moser equation must

have m ≡ 0 or 4 (mod 6). Furthermore, if m ≡ 4 (mod 5), then n ≡ 2 (mod 4).
(ii). Any non-trivial solution of the Erdős–Moser equation must have m ≡ 6 or 10 (mod 18).

Proof. (i). By [20, 24] (see also [17]), any non-trivial solution of (2) has m ≡ n ≡ 0 (mod 2).
Since n is even, Theorem 6 part (i) implies m 6≡ 2 (mod 3). Hence m ≡ 0 or 4 (mod 6),
proving the first part of (i). The second part follows from Corollary 9 part (ii).
(ii). Since n is even, we can apply Corollary 9 part (i) to equation (1), yielding

v3(m(m+ 1)(2m+ 1))− 1 = nv3(m+ 1),

that is,
v3(m) + v3(2m+ 1) = 1 + (n− 1)v3(m+ 1).

It follows that m ≡ 1, 3, 6, or 7 (mod 9).
According to [23, Equations 6, 10, 12, 13], in any solution (m,n) of the Erdős–Moser

equation, m, m+2
2

, 2m + 1, and 2m + 3 are all square-free. Also, Moree [21, Theorem 1],
whose m is our m + 1, showed that our m ≡ 0 (mod 2). The condition that 2m + 3 is
square-free eliminates the case m ≡ 3 (mod 9). In the case m ≡ 7 (mod 9), the Chinese
Remainder Theorem would imply m ≡ 34 (mod 72), contradicting the square-freeness of

m+ 2

2
≡ 18 (mod 36).

Therefore m ≡ 1 or 6 (mod 9). Since m is even, it follows that m ≡ 6 or 10 (mod 18). �
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4. Egyptian Fraction Equations

Fix a positive integer n. The congruence
∑

p|n

1

p
+

d

n
≡ 1 (mod 1)(6)

is equivalent to the congruence

d ≡ −
∑

p|n

n

p
(mod n).(7)

In particular, there are always integer solutions d.

Definition 3. We denote one solution of (6) by

d(n) := −
∑

p|n

n

p
.(8)

If n is composite and d(n) ≡ −1 (mod n), then n is called a Giuga number.

In other words, a Giuga number is a composite number n satisfying the Egyptian fraction

condition
∑

p|n

1

p
−

1

n
∈ N.

All known Giuga numbers n in fact satisfy the Egyptian fraction equation
∑

p|n

1

p
−

1

n
= 1,

which holds if and only if d(n) = −1 − n. In that case, we call n a strong Giuga number.
The first few (strong) Giuga numbers are [4], [19], [25, Sequence A007850]

n = 30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, . . . .

Definition 4. If n > 1 and d(n) = 1− n, then n is called a primary pseudoperfect number.

Equivalently, Butske, Jaje, and Mayernik [6] define a primary pseudoperfect number to be

a solution n > 1 to the Egyptian fraction equation
∑

p|n

1

p
+

1

n
= 1.

It follows from Definition 3 that if d(n) ≡ ±1 (mod n), then n is square-free. In particular,
all Giuga and primary pseudoperfect numbers are square-free.

The primary pseudoperfect numbers with k ≤ 8 (distinct) prime factors are [6, Table 1],
[25, Sequence A054377]

nk = 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086.

Each nk has exactly k (distinct) prime factors, k = 1, 2, 3, 4, 5, 6, 7, 8. Moreover, the nk are
the only known solutions to the congruence d(n) ≡ 1 (mod n).

In some cases the next result can be used to generate new Giuga and primary pseudoperfect
numbers from given ones. Part (i) is from [28] and part (iii) is a special case of Brenton and
Hill [5, Proposition 12] (see also [6, Lemma 4.1]).
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Theorem 8. (i). Assume n+1 is an odd prime. Then n is a primary pseudoperfect number

if and only if n(n + 1) is also a primary pseudoperfect number.

(ii). Assume n − 1 is a prime. Then n is a primary pseudoperfect number if and only if

n(n− 1) is a strong Giuga number.

(iii). Assume n2 + 1 = FG, where n + F and n + G are prime. Then n is a primary

pseudoperfect number if and only if n(n+F )(n+G) is also a primary pseudoperfect number.

(iv). Assume n2 − 1 = FG, where n + F and n + G are prime. Then n is a primary

pseudoperfect number if and only if n(n+ F )(n+G) is a strong Giuga number.

Proof. In the proof of (i), (ii), take all ± signs to be +, or all to be −, and likewise in the
proof of (iii), (iv).
(i), (ii). We can write

∑

p|n

1

p
+

1

n
=
∑

p|n

1

p
+

1

n± 1
+

(

1

n
−

1

n± 1

)

=
∑

p|n(n±1)

1

p
±

1

n(n± 1)
,

as n± 1 is prime. This implies (i) and (ii).
(iii), (iv). Since n2±1 = f 2 has no solutions in positive integers, the primes n+F and n+G
are distinct. Setting M := n(n + F )(n+G), we therefore have

∑

p|M

1

p
±

1

M
=
∑

p|n

1

p
+

1

n+ F
+

1

n+G
±

1

M
=
∑

p|n

1

p
+

n(n + F ) + n(n+G)± 1

M

=
∑

p|n

1

p
+

1

n
,

because n2 ± 1 = FG implies n(n + F ) + n(n +G)± 1 = (n+ F )(n +G). This proves (iii)
and (iv). �

Example 1. For examples of (i), let n be one of the four primary pseudoperfect numbers

2, 6 = 2 · 3, 42 = 2 · 3 · 7, 47058 = 2 · 3 · 11 · 23 · 31.

Then the primes n+ 1 = 3, 7, 43, 47059 yield the primary pseudoperfect numbers

n(n+ 1) = 6, 42, 1806, 2214502422

For (ii), if n = 6, 42, or 47058, then n− 1 = 5, 41, or 47057 is prime, and the products

n(n− 1) = 30, 1722, 2214408306

are strong Giuga numbers.

Notice here the three pairs of twin primes

(n− 1, n+ 1) = (5, 7), (41, 43), (47057, 47059).

Is this more than just a coincidence? In other words:

Question 1. Let n > 2 be a primary pseudoperfect number. Is n − 1 prime if and only if
n+1 is prime? Equivalently (by Theorem 8), is n(n− 1) a strong Giuga number if and only
if n(n + 1) is a primary pseudoperfect number?
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Example 2. The only known example of Theorem 8 part (iii) begins with the primary
pseudoperfect number

n6 = 2214502422 = 2 · 3 · 11 · 23 · 31 · 47059.

Factoring

n2
6 + 1 = 4904020977043866085 = 2839805 · 1726886521097 =: F+ ·G+

leads to the primes n6+F+ and n6+G+ and then to the largest known primary pseudoperfect
number

n8 = n6(n6 + F+)(n6 +G+) = 2 · 3 · 11 · 23 · 31 · 47059 · 2217342227 · 1729101023519

= 8490421583559688410706771261086.

The number n6 also provides an example of (iv). Namely, the factorization

n2
6 − 1 = 4904020977043866083 = 45193927 · 108510618629 =: F− ·G−

yields the primes n6 + F− and n6 +G− and hence the strong Giuga number

n6(n6 + F−)(n6 +G−) = 2 · 3 · 11 · 23 · 31 · 47059 · 2259696349 · 110725121051

= 554079914617070801288578559178.

Another example of (iv) begins with n8 and ends with the largest known (strong) Giuga
number
2 · 3 · 11 · 23 · 31 · 47059 · 2217342227 · 1729101023519 · 58254480569119734123 · 8491659218261819498490029296021

= 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818541298976556403,

discovered by R. Girgensohn [4].

Proposition 10. An ordered pair (n, d) is a solution to the congruence (6) if and only if

(9) p | n =⇒ d ≡ −
n

p
(mod pvp(n)).

In that case, let p be a prime factor of n and e ∈ N. Then pe divides n if and only if pe−1

divides d. In particular, n is square-free if and only if n and d are coprime.

Proof. If (n, d) is a solution, then (7) reduced modulo pvp(n) implies (9). The converse follows
from the Chinese Remainder Theorem, and we infer the proposition. �

The next theorem gives three properties of the function n 7→ d(n). The first is a power
rule. The second shows that the function n 7→ d(n) satisfies Leibnitz’s product rule, but
only on coprime integers; in other words, it is “Leibnitzian,” but not “totally Leibnitzian.”
The third is an analog of the quotient rule.

Theorem 9. (i). For k, n ∈ N, we have d(nk) = nk−1d(n).
(ii). Given M,n ∈ N, denote their greatest common divisor by G := gcd(M,n) and their

least common multiple by L := lcm(M,n). Then

d(Mn) = Md(n) + nd(M)− Ld(G).

In particular,

gcd(M,n) = 1 =⇒ d(Mn) = Md(n) + nd(M).

(iii). Let a and b be positive integers with b | a. Set γ := gcd(b, a/b). Then

d
(a

b

)

=
bd(a)− ad(b)

b2
+

a/b

γ
d(γ).
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In particular, when γ = 1 we have the standard quotient rule.

Proof. (i). By Definition 3,

d(nk) = −
∑

p|nk

nk

p
= −nk−1

∑

p|n

n

p
= nk−1d(n).

(ii). Since G = gcd(M,n),
∑

p|Mn

1

p
=
∑

p|M

1

p
+
∑

p|n

1

p
−
∑

p|G

1

p
.

Multiplying through by −Mn, we write the result as

d(Mn) = −
∑

p|Mn

Mn

p
= −n

∑

p|M

M

p
−M

∑

p|n

n

p
+

Mn

G

∑

p|G

G

p
.

Since L = Mn/G, the first conclusion follows. If G = 1, then
∑

p|G
1
p
= 0, and we get the

product rule.
(iii). By part (ii),

d(a) = d
(

b
a

b

)

=
a

b
d(b) + bd

(a

b

)

−
a

γ
d(γ).

Dividing by b and solving for d(a
b
) yields (iii). �

For a prime p, Definition 3 gives

d(p) = −
p

p
= −1(10)

On the other hand, the arithmetic derivative [3, 8, 27] of p is defined as p′ = 1, and that of
a product ab is defined as (ab)′ = ab′ + ba′. (Also, 0′ := 1′ := 0.) Thus, for square-free n > 1,
both d(n) and the arithmetic derivative n′ can be calculated by applying Leibnitz’s product
rule to the prime factorization of n. Therefore,

(11) n > 1 square-free =⇒ d(n) = −n′.

In 2010 Lava [2, p. 129] conjectured that Giuga numbers are the solutions of the differential
equation n′ = n + 1. Grau and Oller-Marcén [11] proved in 2011 that Giuga numbers are
the solutions of the differential equation n′ = an + 1, with a ∈ N.

The following result shows that if k and n are Giuga numbers or primes, then the product
kn cannot be a Giuga number, and that the product of two primary pseudoperfect numbers
cannot be another one. (In contrast, the product of a primary pseudoperfect number and a
prime can be either a primary pseudoperfect number, e.g., 6 · 7 = 42, or a Giuga number,
e.g., 6 · 5 = 30, or neither, e.g., 6 · 11 = 66—compare Theorem 8.)

Theorem 10. The product of two integers each of which is either a Giuga number or a

prime is never a Giuga number, and the product of two primary pseudoperfect numbers is

never a primary pseudoperfect number.

Proof. We show more generally that, if M > 1 and n > 1 are coprime integers satisfying

d(M) ≡ ǫ (mod M) and d(n) ≡ ǫ (mod n), where ǫ = ±1, then d(Mn) 6≡ ǫ (mod Mn).
Indeed, Theorem 9 part (ii) gives

d(Mn) = Md(n) + nd(M) ≡ ǫ(M + n) (mod Mn)
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and it follows that the congruence d(Mn) ≡ ǫ (mod Mn) holds only if M = 1 or n = 1,
a contradiction. �

Proposition 11. Given a positive integer n, let P be the set of its distinct prime divisors,

and let Q and R be subsets of P satisfying Q∪R = P and Q ∩R = ∅. Suppose that (n, dQ)
and (n, dR) satisfy the congruences

∑

p∈Q

1

p
+

dQ
n

≡ 1 ≡
∑

p∈R

1

p
+

dR
n

(mod 1).

Then dQ and dR are related by dQ + dR = d, where (n, d) is a solution to congruence (6).

Proof. We have

d = dQ + dR ≡ −
∑

p∈Q

n

p
−
∑

p∈R

n

p
≡ −

∑

p∈P

n

p
≡ −

∑

p|n

n

p
(mod n)

and the result follows. �

An interesting variation on the Egyptian fraction equation (6) is obtained by replac-
ing the integers in the definition with polynomials having integer coefficients. Let n(x) =
p1(x)p2(x) · · · pm(x) ∈ Z[x], with pi(x) ∈ Z[x] primitive and irreducible in Q[x] for each i.
From now on, we will assume that polynomials denoted by p(x) are prime in this sense. We
seek d(x) ∈ Z[x] such that

∑

p(x)|n(x)

1

p(x)
+

d(x)

n(x)
≡ 1 (mod 1).(12)

As before, solutions are given by

d(x) ≡ −
∑

p(x)|n(x)

n(x)

p(x)
(mod n(x)).

Example 3. Take n(x) = p1(x)p2(x)p3(x), where the polynomials p1(x) = x, p2(x) = −2x+1
and p3(x) = −2x− 1 are prime. Then

1

x
+

1

−2x+ 1
+

1

−2x− 1
+

d(x)

x(−2x+ 1)(−2x− 1)
=

−1 + d(x)

x(−2x+ 1)(−2x− 1)
.

Consequently, d(x) ≡ 1 (mod n(x)) is a solution to (12). Thus, taking x = p for some prime
p ∈ Z, if −2p + 1 and −2p − 1 are also prime, then n(p) satisfies an equation akin to that
of a primary pseudoperfect number, although the primes may be negative. For instance,
we may take p = 19, −2p + 1 = −37 and −2p − 1 = −39 to conclude that the number
27417 = 19×−37 ×−39 is almost primary pseudoperfect:

1

19
+

1

−37
+

1

−39
+

1

27417
= 0.

To prove the square-freeness of m, m+2
2

, 2m + 1, and 2m + 3, Moser [24] showed that if
(m,n) is a solution of the Erdős–Moser equation, then (m, 1), (m + 2, 2), (2m + 1, 2) and
(2m + 3, 4) are solutions (n, d) to the congruence (6). We now aim to find an additional
solution of the form (n, d) = (m− 1, x).

We employ the Carlitz-von Staudt Theorem [7, Theorem 4], as corrected by Moree [23,
Theorem 3].
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Theorem 11 (Carlitz-von Staudt). Let n and m be positive integers. Then

Sn(m) ≡















−
∑

p|m+1,
p−1|n

m+ 1

p
(mod m+ 1) if n is even,

0 (mod m(m+ 1)/2) if n is odd.

Proof of the first case. When n is even, apply Corollary 2 to each factor pvp(m+1) of m + 1
and use the Chinese Remainder Theorem. �

Theorem 12. Let (m,n) be a nontrivial solution to the Erdős–Moser equation.

(i). Let

X :=
∑

p|m−1,
p−1∤n

m− 1

p
.

The pair (n, d) = (m− 1, 2n − 1−X) satisfies congruence (6).
(ii). If p | m− 1, then n = p− 1 + k · ordp(2) for some k ≥ 0.
(iii). Given p | m− 1, if pe | m− 1 with e ≥ 1, then pe−1 | 2n − 1.
(iv). Given p | m− 1, if p− 1 | n and pe | 2n− 1 with e ≥ 1, then pe+1 | m− 1; in particular,

p2 | m− 1.

Proof. (i). Rearranging the Erdős–Moser equation, we have

Sn(m− 2) = (m+ 1)n −mn − (m− 1)n ≡ 2n − 1 (mod m− 1).

As in the proof of Theorem 7, the hypothesis implies n is even. Hence, by the Carlitz-von
Staudt Theorem,

−
∑

ℓ|m−1,
ℓ−1|n

m− 1

ℓ
≡ 2n − 1 (mod m− 1),

where ℓ denotes a prime. By Proposition 11, this proves (i).
(ii). If p | m− 1, but p− 1 ∤ n, then reducing both sides modulo p yields 2n ≡ 1 (mod p), so
that n is a multiple of ordp(2). Recall that ordp(2) | p− 1. It follows that if p | m− 1, then
n is a multiple of ordp(2).

We now show that n ≥ p− 1. We refer to [22, Lemma 6], a result of Moser, which states
that 3n ≥ 2m. This implies that n ≥ p− 1 and proves (ii).
(iii). By Proposition 10,

pe | m− 1 =⇒ pe−1 | 2n − 1−X.

Since X ≡ 0 (mod pe−1), result (iii) follows.
(iv). Finally, assume that p − 1 | n. We proceed by induction on e ≥ 1. For the base case
e = 1, since p−1 | n and p | m−1, we have 2n−1−X ≡ 0 (mod p). By Proposition 10, the
base case follows. Now assume (iv) for e ≥ 1. Then since m− 1 ≡ 0 (mod pe) and p− 1 | n,
we get 2n − 1−X ≡ 0 (mod pe). By Proposition 10, the induction is complete. �

Corollary 12. If (m,n) is a solution of the Erdős–Moser equation with m ≡ 1 (mod 3),
then in fact m ≡ 1 (mod 37).

Proof. It is known [21] that n is divisible by 28 · 35. Therefore φ(36) | n, and it follows that
2n − 1 ≡ 0 (mod 36). Now Theorem 12 part (iv) implies 37 | m− 1. �
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5. Bernoulli numbers

In this section, we apply some of the results of previous sections to study the Bernoulli

numbers B0, B1, B2, B3, B4, . . . = 1,−1/2, 1/6, 0,−1/30, . . . .

Corollary 13. For n ≥ 1 and every positive integer m ≤ n, we have the relation

n−1
∑

k=m−1

(−1)k
(

n

k

)(

k + 1

m

)

Bk+1−m

k + 1
= (−1)m+1

(

n

m

)

.

Proof. By Bernoulli’s formula (see, e.g., Conway and Guy [9, pp. 106–109]), the polynomial

(13) Pn(x) :=
1

n + 1

n
∑

j=0

(−1)j
(

n+ 1

j

)

Bjx
n+1−j

satisfies

(14) Sn(a) = Pn(a)

for any positive integers n and a. Substituting this into Pascal’s identity (5), we expand the
right-hand side and get

n−1
∑

k=0

(

n

k

)

1

k + 1

k
∑

j=0

(−1)j
(

k + 1

j

)

Bja
k+1−j =

n
∑

m=1

(

n

m

)

am.

Setting n = k + 1− j, we can write this as

n−1
∑

k=0

k+1
∑

n=1

(−1)k+1−n

(

n

k

)(

k + 1

n

)

Bk+1−n

k + 1
an =

n
∑

m=1

(

n

m

)

am.

Since this holds for all a > 0, we may equate coefficients when n = m, and the desired
formula follows. �

In particular, the case m = 1 is

n−1
∑

k=0

(−1)k
(

n

k

)

Bk = n.

Since B1 = −1/2 and B2n+1 = 0 for n > 0, this case is equivalent to

(15)
n−1
∑

k=0

(

n

k

)

Bk = 0,

which is the standard recursion for the Bernoulli numbers. Thus, Corollary 13 is a general-
ization of this recursion.

As a numerical example, take n = 8 and m = 3:

6
∑

k=2

(−1)k
(

8

k

)(

k + 1

m

)

Bk−2

k + 1
=

28

3
B0 − 56B1 + 140B2 −

560

3
B3 + 140B4

=
28

3
+ 28 +

70

3
− 0−

14

3
= 56 =

(

8

3

)

,

as predicted.
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Corollary 14. Let n ≥ 2 be even and let m < n be a positive integer. Then

(n−2)/2
∑

k=⌈(m−1)/2⌉

(

n

2k

)(

2k + 1

m

)

B2k+1−m

2k + 1
= (−1)m+1 1

2

(

n

m

)

,

where ⌈.⌉ denotes the ceiling function.

Proof. We follow the steps in the previous proof, except that instead of Pascal’s identity we
use its analog for even exponents, Theorem 2. Details are omitted. �

For example, again take n = 8 and m = 3:

3
∑

k=1

(

8

2k

)(

2k + 1

3

)

B2k−2

2k + 1
=

28

3
B0 + 140B2 + 140B4

=
28

3
+

70

3
−

14

3
= 28 =

1

2

(

8

3

)

,

also as predicted.
Comparing the numerical examples for Corollaries 13 and 14, one sees that Corollary 14

follows from Corollary 13, together with the standard recursion (15) solved for B1.
Let us now adopt Kellner’s notation [14] and write the Bernoulli numbers as

Bk =
nk

Dk

in lowest terms with Dk > 0. Thus,

n0

D0
=

1

1
,
n1

D1
=

−1

2
,
n3

D3
=

n5

D5
=

n7

D7
=

n9

D9
= · · · =

0

1
,

and
n2n

D2n

=
1

6
,
−1

30
,
1

42
,
−1

30
,
5

66
,
−691

2730
,
7

6
,
−3617

510
,
43867

798
,
−174611

330
,
854513

138
,
−236364091

2730
, . . . ,

for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , respectively.
Recall that the von Staudt-Clausen Theorem states that, for n ≥ 1,

(16)
∑

p−1|2n

1

p
+B2n ≡ 1 (mod 1).

As a consequence, the denominator of B2n is the square-free number D2n =
∏

p−1|2n p. Then

multiplying (16) by D2n gives

n2n ≡ −
∑

p|D2n

D2n

p
(mod D2n).

It now follows from the definition of d(n) in (8) that the numerator of B2n satisfies

n2n ≡ d(D2n) (mod D2n).

Theorem 13. Let n and k be positive integers. For the difference B2nk −B2n,

(i). the denominator equals

denom(B2nk −B2n) =
D2nk

D2n
∈ N,
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(ii). and the numerator satisfies the congruence

numer(B2nk − B2n) ≡ d(denom(B2nk − B2n)) (mod denom(B2nk − B2n)).

Proof. (i). For any m ∈ N, the von Staudt-Clausen Theorem gives B2m = Am −
∑

p−1|2m
1
p
,

where Am ∈ Z. Hence

B2nk −B2n = Ank −An −





∑

p−1|2nk

1

p
−
∑

p−1|2n

1

p



 = Ank −An −
∑

p−1|2nk,
p−1∤2n

1

p
.(17)

Therefore,

denom(B2nk − B2n) =
∏

p−1|2nk,
p−1∤2n

p =

∏

p−1|2nk p
∏

p−1|2n p
=

D2nk

D2n
∈ N.

(ii). Writing P
Q
:= B2nk − B2n, we have, by part (i) and equation (17),

∑

p|Q

1

p
+

P

Q
=

∑

p−1|2nk,
p−1∤2n

1

p
+

P

Q
≡ 1 (mod 1).

Since d(Q) = −
∑

p|Q
Q
p
, we obtain P ≡ d(Q) (mod Q), proving (ii). �

For example, taking n = 1 and k = 12, we have

B24 − B2 =
−236364091

2730
−

1

6
=

−39394091

455
.

From Theorem 9 part (ii) and equation (10), we compute that d of the denominator equals

d(455) = d(5 · 7 · 13) = −5 · 7− 5 · 13− 7 · 13 = −191.

These calculations agree with (i) and (ii), which in this example state that

denom(B24 − B2) =
D24

D2
=

2730

6
= 455

and that −39394091 ≡ d(455) (mod 455).

Here is a result due to Agoh [1] (see also [4, pp. 41, 49] and [13]).

Theorem 14 (Agoh). The following statements about a positive integer n are equivalent:

(i). p | (n
p
− 1), for each prime factor p of n.

(ii). Sn−1(n− 1) ≡ −1 (mod n).
(iii). nBn−1 ≡ −1 (mod n).

We prove a related result, using a theorem of Kellner.

Theorem 15. (i). Let n and d be positive integers, with n square-free. Then p | (n
p
+ d), for

each prime factor p of n, if and only if Sφ(n)(n) ≡ d (mod n).
(ii). For any positive integer n, we have the congruence

Sφ(n)(n) ≡ nBφ(n) (mod n).
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Proof. (i). The statement holds for n = 1. Now take n > 2, let p be a prime factor of n, and
set n = pq. Then using Lemma 1 we have

n
∑

j=1

jφ(n) ≡ q

p
∑

j=1

jφ(n) ≡ q

p−1
∑

j=1

jφ(n) (mod p).

Since n is square-free, gcd(p, q) = 1 and so φ(n) = φ(p)φ(q). Thus φ(n) is divisible by
φ(p) = p− 1, and hence by Fermat’s little theorem,

q

p−1
∑

j=1

jφ(n) ≡ q(p− 1) ≡ −q (mod p).

As q = n/p, we get

(18) prime p | n =⇒
n
∑

j=1

jφ(n) ≡ −
n

p
(mod p).

To prove (i), assume first that p | (n
p
+ d) for all primes p | n, so that −n

p
≡ d (mod p).

Together with (18) and the square-freeness of n, this implies that
∑n

j=1 j
φ(n) ≡ d (mod n).

Conversely, if the latter holds, then (18) yields −n
p
≡ d (mod p). This proves (i).

(ii). It is easy to see that (ii) holds if n = 1 or 2. Now take n ≥ 3 and recall that then
φ(n) is even. For any n,m ∈ N with n even, Kellner [13, Theorem 1.2] proved that

Sn(m) ≡ (m+ 1)Bn (mod m+ 1).

Setting n = φ(n) and m = n− 1, part (ii) follows. �

When n > 3 is prime, we can improve part (ii) to a supercongruence.

Theorem 16. If p > 3 is prime, then

Sp−1(p) ≡ pBp−1 (mod p3).

Proof. Bernoulli’s formula (14) gives Sp−1(p − 1) = Pp−1(p − 1). For prime p > 3, the von
Staudt-Clausen Theorem (16) implies that Pp−1(p − 1) ≡ pBp−1 (mod p3) (for details, see
the proof of [26, Theorem 1], where Pp−1(p − 1) is written symbolically as (B + p)p/p). As
Sp−1(p) ≡ Sp−1(p− 1) (mod p3), this proves the theorem. �

6. Moser’s Mathemagical Rabbits

In this section, we reveal some of the magic behind Moser’s “mathemagical rabbits” [23].
In particular, we give a hint as to why one could expect m, m+2

2
, 2m+ 1, and 2m+ 3 to be

square-free. Consider the generalized Erdős–Moser equation:

Sn(m) = a(m+ 1)n ⇐⇒ (a+ 1)Sn(m) = aSn(m+ 1).

Let Pn(x) ∈ Q[x] denote the polynomial interpolating Sn in (13). Then

(a+ 1)Pn(m) = aPn(m+ 1).

Let Ln ∈ Q satisfy the conditions that

LnPn(x) ∈ Z[x]
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and that the greatest common divisor of the coefficients of LnPn(x) is 1. Set Qn(x) :=
LnPn(x). Then

(a + 1)Qn(m) = aQn(m+ 1).

On the other hand, it is known that Pn(x) is given by (13). For j = 1, 2, . . . , n, let

Rj = Rj(n) :=
Dj

gcd(Dj,
(

n+1
j

)

)
∈ N.

Then

Ln = (n+ 1)lcm(R1, R2, . . . , Rn)

and we obtain

Qn(x) = lcm(R1, R2, . . . , Rn)

n
∑

j=0

(−1)j
(

n+ 1

j

)

Bjx
n+1−j .

We now focus on the Erdős–Moser equation, when a = 1 and n is even, i.e., a counterexample
to the Erdős–Moser conjecture:

2Qn(m) = Qn(m+ 1).

In this case, Corollary 8 implies m(m+1)(2m+1) divides Qn(m), and (m+1)(m+2)(2m+3)
divides Qn(m+1). Note the appearance of the numbers m,m+2, 2m+1, 2m+3 as divisors—
these are the same numbers that appear in Moser’s trick.

Consider Qn(m+ 1) modulo m:

0 ≡ Qn(m+ 1) = lcm(R1, R2, . . . , Rn)

n
∑

j=0

(−1)j
(

n+ 1

j

)

Bj(m+ 1)n+1−j (mod m)

≡ lcm(R1, R2, . . . , Rn)
n
∑

j=0

(−1)j
(

n+ 1

j

)

Bj = (n+ 1)lcm(R1, R2, . . . , Rn) = L.

Therefore m divides L. The denominators of Bernoulli numbers are square-free, so we almost
obtain another proof of the square-freeness of m.
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