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Abstract

We consider the question of computing the distribution of a permu-
tation statistics over restricted permutations via enumeration schemes.
The restricted permutations are those avoiding sets of vincular patterns
(which include both classical and consecutive patterns), and the statistics
are described in the number of copies of certain vincular patterns such
as the descent statistic and major index. An enumeration scheme is a
polynomial-time algorithm (specifically, a system of recurrence relations)
to compute the number of permutations avoiding a given set of vincular
patterns. Enumeration schemes’ most notable feature is that they may be
discovered and proven via only finite computation. We prove that when a
finite enumeration scheme exists to compute the number of permutations
avoiding a given set of vincular patterns, the scheme can also compute
the distribution of certain permutation statistics with very little extra
computation.

1 Introduction

Enumeration schemes are special recurrences to compute the number of
permutations avoiding a set of vincular patterns. In this paper, we discuss
how to refine enumeration schemes to compute the distributions of certain
permutation statistics over a set of pattern-avoiding permutations. This
extends previous work in [6, 9] which considers the distribution of only
the inversion number.

Let [n] be shorthand for the set {1, . . . , n}. For a word w ∈ [n]k, we
write w = w1w2 · · ·wk and define the reduction red(w) to be the word
obtained by replacing the ith smallest letter(s) of w with i. For example
red(839183) = 324132. If red(w) = red(w′), we say that w and w′ are
order-isomorphic and write w ∼ w′. We will commonly use the notation
|w| to denote the length of w.

Vincular patterns resemble classical patterns, with the constraint that
some of the letters in a copy must be consecutive. Formally, a vincular
pattern of length k is a pair (σ,X) where σ is a permutation in Sk and
X ⊆ {0, 1, 2, . . . , k} is a set of “adjacencies.” A permutation π ∈ Sn

contains the vincular pattern (σ,X) if there is a k-tuple 1 ≤ i1 < i2 <
· · · < ik ≤ n such that the following three criteria are satisfied:
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• red(πi1πi2 · · ·πik ) = σ.

• ix+1 = ix + 1 for each x ∈ X \ {0, k}.

• i1 = 1 if 0 ∈ X and ik = n if k ∈ X.

In the present work we restrict our attention to patterns (σ,X) where
σ ∈ Sk and X ⊆ [k − 1], rendering the third containment criterion irrel-
evant.1 The subsequence πi1πi2 · · ·πik is called a copy of (σ,X). In the
permutation π = 162534, the subsequence 1253 is a copy of (1243, {3}),
but the subsequence 1254 is not a copy since the 5 and 4 are not adjacent
in π. The “classical pattern” σ is precisely the vincular pattern (σ, ∅)
since no adjacencies are required, while the “consecutive pattern” σ is
the vincular pattern (σ, {1, 2, . . . , k− 1}) since all internal adjacencies are
required.

In practice we write (σ,X) as a permutation with a dash between
σj and σj+1 if j 6∈ X. For example, (1243, {3}) is written 1-2-43. We
occasionally refer to “the vincular pattern σ” or even “the pattern σ”
without explicitly referring to X.

If the permutation π does not contain a copy of the pattern (σ,X),
then π is said to avoid σ. We will notation Sn(σ) or Sn((σ,X)) to
denote the set of permutations avoiding the (σ,X), and Sn(B) denotes
those permutations avoiding every vincular pattern (σ,X) ∈ B.

Observe that a vincular pattern (σ,X) of length k exhibits similar
symmetries to those of permutations, except for taking inverses. The
reverse is given by (σ,X)r = (σr, k−X) where k−X = {k − x : x ∈ X}.
For example, (1-3-42)r = 24-3-1. The complement is (σ,X)c = (σc, X).
For example, (1-3-42)c = 4-2-13. It follows that that π avoids (σ,X) if
and only if πr avoids (σ,X)r. Similarly, π avoids (σ,X) if and only if πc

avoids (σ,X)c.
See Steingŕımssson’s survey for a fuller history in [24]. From their

earliest days, vincular patterns been linked to many of the common com-
binatorial structures such as set partitions and lattice paths in [14] as well
as permutation statistics in [2].

Enumeration schemes were introduced by Zeilberger in [27] as an auto-
mated method to compute

∣

∣Sn(B)
∣

∣ for many differentB. Vatter improved
schemes in [25] with the introduction of gap vectors, and Zeilberger pro-
vided an alternate implementation in [28]. The greatest feature of schemes
is that they may be discovered by a computer: the user need only input
the set B (along with bounds to the computer search) and the computer
will return an enumeration scheme (if one exists within the bounds of the
search) which computes

∣

∣Sn(B)
∣

∣ in polynomial time. Pudwell extended
these methods to consider pattern avoidance in permutations of a multiset
in [22, 20], as well as barred-pattern avoidance in [21]. The author and
Pudwell extended schemes to sets of vincular patterns in [9].

A permutation statistic is any function f :
⋃

n≥0 Sn → Z. The most-

studied permutation statistic is the inversion number inv(π) =
∣

∣{(i, j) :
i < j and πi > πj}

∣

∣. In terms of vincular patterns, inv(π) is the number

1We enact this restriction partly for simplicity. It is likely that the prefix-focused arguments
in [9] and below extend to patterns (σ, X) with 0 ∈ X with few modifications, but it is unlikely
such an approach could work for patterns with k ∈ X.
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of copies of 2-1 = (21, ∅). Similarly, the descent number des(π) =
∣

∣{i :
πi > πi+1}

∣

∣ is the number of copies of 21 = (21, {1}). In this work we
will primarily consider permutation statistics which count the number of
copies of a given vincular pattern, sometimes called pattern functions. It
is shown in [2] that many well-known permutation statistics can be framed
as linear combinations of pattern functions. For a permutation statistic f
and set S ⊆

⋃

n≥0 Sn, the distribution of f over S is given by:

F (S, f, q) :=
∑

π∈S

qf(π) (1)

We also consider the simultaneous distribution of multiple statistics f =
〈f1, . . . , fm〉 over the same set S with the indeterminates q = 〈q1 . . . , qm〉.
The distribution of f over S is given by:

F (S, 〈f1, . . . , fm〉, 〈q1, . . . , qm〉) :=
∑

π∈S

q1
f1(π) q2

f2(π) · · · qm
fm(π). (2)

Distributions of statistics over sets of pattern-avoiding permutations
have received increased attention of late, focusing primarily on sets of
permutations avoiding classical patterns of length 3. Barcucci et al. use
generating trees to study the inversion number over Sn(B) for a few
examples of sets B in [3]. Barnabei et al. study copies of consecutive
patterns over Sn(1-2-3) and Sn(3-1-2) in [4, 5]. Dokos et al. refine Wilf-
equivalence in [15] by studying the inversion number and major index
over Sn(τ ) for classical patterns τ ∈ S3. Bona and Homberger study the
total number of classical patterns σ ∈ S3 over Sn(τ ) for another classical
pattern τ ∈ S3 in [11, 12, 16]. Most recently, Burstein and Elizalde in
[13] study the total number of vincular patterns of length 3 over Sn(τ )
for classical patterns τ ∈ S3.

Suppose that E is a finite enumeration scheme which gives a recur-
rence to compute

∣

∣Sn(B)
∣

∣ for a given set of patterns B. The work in
[6, 9] demonstrates how to use E to compute F (Sn(B), inv, q). The
present work demonstrates how to use E to compute the distribution
F (Sn(B), f ,q) where each statistic fi counts the number of copies of a
vincular pattern of the form (σ, [|σ| − 1) or (σ, [|σ| − 2]) or counts the
number of right-to-left minima or right-to-left maxima. The results are
implemented in the Maple package Statter, available for download from
the author’s homepage.

The paper is organized as follows. Section 2 outlines the basics of
enumeration schemes and their structure. Section 3 defines the notion
of an “enumeration-scheme-compatible,” or “ES-compatible,” statistic.
Subsection 3.2 presents three classes of ES-compatible statistics. Section
4 presents a technical result proving that any given finite enumeration
scheme can be expanded to fit the additional requirements which ES-
compatible statistics can impose. Section 5 presents three specific exam-
ples of how enumeration schemes can be applied to explore statistics over
sets Sn(B).
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2 Overview of Enumeration Schemes

Enumeration schemes are succinct encodings for a family of recurrence
relations enumerating a family of sets. The enumerated sets are actually
subsets of Sn(B) determined by prefixes.

For pattern p ∈ Sk, letSn(B)[p] be the set of permutations π ∈ Sn(B)
such that red(π1π2 . . . πk) = p. We call p the prefix pattern. To refine
further, let w ∈ [n]k and define Sn(B)[p;w] to be those permutations in
π ∈ Sn(B)[p] such that π1π2 · · ·πk = w. For example,

S5(1-2-3)[21; 53] = {53142, 53214, 53241, 53412, 53421}.

Since we are interested in enumeration, it will be handy to have the no-
tation sn(B)[p] =

∣

∣Sn(B)[p]
∣

∣ and sn(B)[p;w] =
∣

∣Sn(B)[p;w]
∣

∣.
By looking at the prefix of a permutation, one can identify likely “trou-

ble spots” where forbidden patterns may appear. For example, suppose
we wish to avoid the (classical) pattern 1-2-3. Then the presence of the
pattern 12 in the prefix indicates the potential for the whole permutation
to contain a 1-2-3 pattern.

Enumeration schemes take a divide-and-conquer approach to enumer-
ation. We define the child of a permutation p ∈ Sk to be any permutation
p′ ∈ Sk+1 such that red(p′1p

′
2 · · · p

′
k) = p. Any Sn(B)[p] for p ∈ Sk may

be partitioned into the family of sets Sn(B)[p′] for each of its children
p′ ∈ Sk+1(B)[p]. The sets indexed by these children are then considered
as described below, and their sizes are totaled to obtain sn(B)[p]. In the
end we have computed

∣

∣Sn(B)
∣

∣, since Sn(B) = Sn(B)[ǫ] = Sn(B)[1],
where ǫ is the empty (i.e., , length 0) permutation.

For p ∈ Sk a set Sn(B)[p] fits into one of three cases:

(1) If n = k, then Sn(B)[p] is either {p} or ∅, depending on whether p
avoids B.

(2) For each w ∈ [n]k such that red(w) = p, one of the following happens:

(2a) Sn(B)[p;w] is empty, and so sn(B)[p;w] = 0.

(2b) Sn(B)[p;w] is in bijection with some other Sn̂(B)[p̂; ŵ] for n̂ <
n, and so sn(B)[p;w] = sn̂(B)[p̂; ŵ].

(3) Sn(B)[p] must be partitioned further, so sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].

Case (1) provides the base cases for our recurrence. If case (2) applies,
then we will use it preferentially over case (3). If case (2) does not apply,
we must divide Sn(B)[p] as in case (3). Determining whether case (2)
applies makes use of gap vector criteria to test (2a) and reversible deletions
to form the bijection in (2b). These concepts are outlined in the following
subsections.

2.1 Gap Vectors

The differences between the values of letters in the prefix may be great that
a forbidden patternmust appear. To make this more precise, we follow our
example above and compute sn(1-2-3)[12]. Observe thatSn(1-2-3)[12;w1w2]
is empty if w1 < w2 < n, since otherwise if π ∈ Sn(1-2-3)[12;w1w2] then
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πi = n for some i ≥ 3 and so w1w2n forms a 1-2-3 pattern. Since the possi-
bility for any πi > w2 for i ≥ 3 prohibits the formation of a 1-2-3-avoiding
permutation, we must restrict the space above w2.

To formalize this, consider Sn(B)[p;w] and let ci be the ith smallest
letter in w. Let c0 = 0 and ck+1 = n + 1, and form the (k + 1)-vector
~g(n,w) so that the ith component is gi = ci−ci−1−1. Note that gi counts
the number of letters for any π ∈ Sn(B)[p;w] which lie strictly between
ci−1 and ci, i.e., the number of letters πj following the prefix (j > k) and
ci−1 ≤ πj ≤ ci. We call ~g(n,w) the spacing vector for w.

In the example above, if ~g(n,w) ≥ 〈0, 0, 1〉 in the product order of
N

3 (i.e., component-wise), then Sn(1-2-3)[12;w] = ∅. We call 〈0, 0, 1〉 a
gap vector for the prefix 12. More generally we may make the following
definition:

Definition 1. Given a set of forbidden patterns B and prefix p, then ~v is
a gap vector for prefix p with respect to B if, for all n, Sn(B)[p;w] = ∅
for any w such that ~g(n,w) ≥ ~v. In this case we say that w satisfies the
gap vector criterion for ~v.

Hence ~v = 〈0, 0, 1〉 is a gap vector for p = 12 with respect to B =
{1-2-3}, and any prefix set w = w1w2 with w1 < w2 < n satisfies the gap
vector condition for v.

Observe that gap vectors for a given prefix p ∈ Sk form an upper
order ideal in N

k+1, since if ~v is a gap vector so is any ~u ≥ ~v. Hence it
suffices to determine only the minimal elements (which form a basis). For
details on the discovery of gap vectors and automating the process, see
[25, 28, 9].

Note that if the prefix p contains a pattern in B, then Sn(B)[p;w] = ∅
for any appropriate w, and so ~0 = 〈0, 0, . . . , 0〉 is a gap vector.

2.2 Reversible Deletability

When w fails the gap vector criterion for all gap vectors ~v, we must rely
on bijections with previously-computed Sn̂(B)[p̂; ŵ]. To continue our ex-
ample above, consider Sn(1-2-3)[12;w1n]. Here w1n fails all gap vec-
tor criteria, because 〈0, 0, 1〉 forms the basis for the ideal of gap vectors
and ~g(n, w1n) = 〈w1 − 1, n − w1 − 1, 0〉 6≥ 〈0, 0, 1〉. However, any π ∈
Sn(1-2-3)[12;w1n] has π2 = n, so we may use the map d2 : π1π2 . . . πn 7→
red(π1π3 . . . πn) to form a bijectionSn(1-2-3)[12;w1n] → Sn−1(1-2-3)[1;w1].
The deletion of a letter always preserves pattern-avoidance properties
when considering classical patterns, but inverting the map by inserting
a letter has the potential for creating a forbidden pattern. Here, however,
inserting an n at the second index cannot possibly create a 1-2-3, so we
may safely reverse the deletion.

More generally define the deletion dr(π) := red(π1 . . . πr−1πr+1 . . . πn),
that is, the permutation obtained by omitting the rth letter of π and re-
ducing. Furthermore for a set R, define dR(π) to be the permutation
obtained by deleting πr for each r ∈ R and then reducing. For a word w
with no repeated letters, define dr(w) be the word obtained by deleting
the rth letter and then subtracting 1 from each remaining letter larger
than wr. Similarly, to construct dR(w) delete wr for each r ∈ R and
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subtract
∣

∣{r ∈ R : wr < wi}
∣

∣ from each remaining wi. For example
d3(6348) = 537 and d{1,3}(6348) = 36. It can be seen that this defini-
tion is equivalent to the one given above when w ∈ Sk, and it allows for
more succinct notation in the upcoming definition. In the unrestricted
case, dR : Sn(∅)[p;w] → Sn−|R|(∅)[dR(p); dR(w)] is a bijection for any set
R ⊆ [|p|]. Sometimes we are lucky and the restriction to Sn(B)[p;w] is
a bijection with Sn−|R|(B)[dR(p); dR(w)], leading to the following defini-
tion:

Definition 2. The set of indices R is reversibly deletable for p with
respect to B if the map

dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p); dR(w)]

is a bijection for all words w failing the gap vector criterion for every gap
vector of p with respect to B (i.e., dR is a bijection for all w such that
Sn(B)[p;w] 6= ∅).

Note that the empty set R = ∅ is reversibly deletable for any p and
B, but is uninteresting. Additionally, if ~0 is a gap vector then any set
R ⊆ [|p|] is vacuously reversibly deletable since Sn(B)[p;w] = ∅ for any
prefix w.

Proving that a set is reversibly deletable for prefix p with respect to B
can be carried out by a finite list of verifications, and thus can be done via
computer. This is proven in [25] for the case that B contains only classical
patterns, and in [9] in the case that B contains vincular patterns. The
process of automated discovery itself is not relevant to the present work
and will be omitted.

2.3 Formal Definition of Enumeration Schemes

We will now formally define an enumeration scheme.

Definition 3. Let B be a set of vincular patterns. An enumeration
scheme for B is a set E of triples (p,G,R), where p is a permutation
(i.e., , the prefix pattern), G is a basis of gap vectors for p with respect to
B, and R is a reversibly deletable set for p with respect to B. Furthermore,
E must satisfy the following criteria:

1. (ǫ, ∅, ∅) ∈ E.

2. For each (p,G,R) ∈ E,

(a) If R = ∅ and ~0 /∈ G, then there exists a triple (p′, G′, R′) ∈ E
for each child p′ of p.

(b) If R 6= ∅, then there exists a triple (p̂, Ĝ, R̂) ∈ E for p̂ = dR(p).

To compute sn(B)[p;w] for a fixed n, p, and w, the enumeration
scheme E is “read” by finding the appropriate triple (p,G, R) ∈ E and
concluding:

1. If w satisfies the gap vector criteria for some ~v ∈ G, then sn(B)[p;w] =
0.

2. If w fails the gap criteria for all ~v ∈ G and R 6= ∅, then sn(B)[p;w] =
sn−|R|(B)[dR(p);dR(w)].
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3. If w fails the gap criteria for all ~v ∈ G and R = ∅, then sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].

When combined with the initial conditions that sn(B)[p;w] = 1 when-
ever p has length n and avoids B, the scheme provides a system of recur-
rences to compute sn(B)[p;w] and ultimately

∣

∣Sn(B)
∣

∣.
To illustrate, consider the enumeration scheme for Sn(1-2-3):

{(ǫ, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, {2}), (21, ∅, {1})} (3)

Since Rǫ = ∅, the first condition above requires the presence of (1, G1, R1).
Starting with the pattern 1 yields no additional information, so R1 = ∅
and thus explaining the presence of (12, G12, R12) and (21, G21, R21). As
discussed above, {〈0, 0, 1〉} forms a basis for the gap vectors for 12, and
whenever w fails this gap vector criteria the second letter is reversibly
deletable. For the fourth entry in the scheme, suppose that π ∈ Sn(∅)[21]
contains a 1-2-3 pattern involving the first letter, say π1 < πi < πj for
i < j. Then since π2 < π1, we see that π2 < πi < πj is another 1-2-3
pattern. Therefore π1 cannot be the deciding factor for whether π contains
1-2-3. Hence the index 1 is reversibly deletable, so R21 = {1}.

Enumeration schemes exhibit a tree-like structure. The empty prefix
ǫ serves as the root, and the children of each prefix are drawn as children
in a rooted tree. When a prefix has nontrivial gap vector criteria, we list
those basis vectors below it. When prefix p has a non-empty reversibly
deletable set R, we draw an arrow from p to dR(p) labeled with “dR”. See
Figure 1 for an example.

ǫ

1

12

〈0, 0, 1〉

21

��

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

��❄
❄❄

❄❄
❄❄

❄❄d2

22
d1

ll

Figure 1: Tree representation of the enumeration scheme for Sn(1-2-3)

If |E| is finite, we say that B admits a finite enumeration scheme. A
finite enumeration scheme gives us a polynomial-time algorithm to com-
pute sn(B)[p;w]. We construct the system of recurrences based on the
partitions and bijections above, along with base cases as given by the gap
vector criteria and the trivial cases when Sn(B)[p] = {p} or ∅. For ex-
ample, the above enumeration scheme in (3) translates into the following
system of recurrences:
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∣

∣Sn(1-2-3)
∣

∣ = sn(1-2-3)[ǫ]

= sn(1-2-3)[1]when n > 0

=

n
∑

i=1

sn(1-2-3)[1; i]

sn(1-2-3)[1; i] =

i−1
∑

j=1

sn(1-2-3)[21; ij] +

n
∑

j=i+1

sn(1-2-3)[12; ij]

sn(1-2-3)[12; ij] =

{

0 if n− j ≥ 1

sn(1-2-3)[1; i] otherwise

sn(1-2-3)[21; ij] = sn(1-2-3)[1; j]

(4)

The recurrences in (4) simplify to create the following recurrence:

sn(1-2-3)[1; i] =

i
∑

j=1

sn−1(1-2-3)[1; j] (5)

Amont other things, one can then evaluate this recurrence by hand to
identify the closed form

∣

∣Sn(1-2-3)
∣

∣ = 1
n+1

(

2n
n

)

, the Catalan numbers.
The length of the longest prefix p appearing in finite scheme E is

the called the depth of E. Not every set B admits a finite enumeration
scheme, the simplest example being the classical pattern 2-3-1. Let E be
the scheme for Sn(2-3-1), and let Jt = t(t − 1) · · · 21 be the decreasing
permutation of length t. It can be shown that for any t there are no gap
vectors for Jt and no non-empty reversibly deletable sets. Hence E must
contain the triple (Jt, ∅, ∅) for each t ≥ 1 and hence E is infinite.

It should be noted that the enumeration scheme for Sn(1-3-2) is finite
(of depth 2) and

∣

∣Sn(2-3-1)
∣

∣ =
∣

∣Sn(1-3-2)
∣

∣ by symmetry. More generally,
it can be seen that if B admits an enumeration scheme EB of depthK then
its set of complements Bc = {σc : σ ∈ B} also admits an enumeration
scheme EBc of depth K. The analogous statements regarding Br = {σr :
σ ∈ B} do not hold and so B may not have a finite scheme while Br does,
as exhibited by B = {2-3-1}.

3 Enumeration-scheme-compatible statis-

tics

3.1 Definitions and interaction with enumeration

schemes

The author proves in [6] that if B admits a finite enumeration scheme, then
the distribution of the statistic inv(π) over Sn(B) can be computed via
the same enumeration scheme. This is the consequence of comparing the
inversion number of a permutation and its image under the deletion map
dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p); dR(w)]. In particular, for π ∈ Sn
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the change in the inversion number after deleting the rth letter is given
by

δinvr (π) := inv(π)− inv(dr(π)) = (πr − 1) +
∑

i<r

sgn(πi − πr), (6)

where sgn(x) is the signum function:

sgn(x) :=











−1, x < 0

0, x = 0

1, x > 0.

For the more general case, let R = {r1, . . . , rt} where rj < rj+1. Then
the deletion dR has the following effect on inversion number:

δinvR (π) := inv(π)− inv(dR(π)) =
∑

r∈R

δr(π)− inv(πr1 · · ·πrt) (7)

Observe that δR(π) can be written purely in terms of the letters
π1, . . . , πrt . Therefore if E is an enumeration scheme for pattern set B,
and (p,G,R) ∈ E, then δR is constant over the set Sn(B)[p;w] for any
fixed w. Thus we define a new function ∆inv

R (w, n) on prefix words w,
which takes on the value δinvR (π) given by a π ∈ Sn(B)[p;w]. Therefore
we may recursively compute the distribution of inv over Sn(B)[p;w] via

F (Sn(B)[p;w], inv, q) = q∆
inv
R (w,n)F (Sn−|R|(B)[dR(p); dR(w)], inv, q)

(8)
The above results motivate the following definitions:

Definition 4. Let f :
⋃

n≥0 Sn → Z be a permutation statistic. For

a permutation π let the R-deletion difference, denoted δfR(π), be f(π) −
f(dR(π)).

For nonnegative integer m, a permutation statistic f is enumeration-
scheme-compatible (or “ES-compatible”) with marginm if for any positive
integer t and any R ⊆ [t], the R-deletion differences δfR(π) = δfR(π

′)
whenever π and π′ are two permutations of length n ≥ t + m such that
π1 · · ·πt+m = π′

1 · · ·π
′
t+m. We denote this constant value ∆f

R(w, n) where
w = π1 · · ·πt+m.

In other words, permutation statistic f is ES-compatible with margin
m if δfR(π) may be determined from only the length of π and its first
maxR +m letters. Note that if f is ES-compatible with margin m, then
f is also ES-compatible with margin m′ for any m′ ≥ m.

The results from [6] cited above may be rephrased as follows:

Theorem 5. The inversion number is ES-compatible with margin 0.

It follows from the definition of ES-compatible that enumeration schemes
are amenable to computing the distribution for any ES-compatible statis-
tic:

Theorem 6. Let f be a ES-compatible permutation statistic with margin
m. If R is reversibly deletable for prefix p ∈ Sk with respect to B and
maxR +m ≤ k, then

F (Sn(B)[p;w], f, q) = q∆
f
R
(w,n) F (Sn−|R|(B)[dR(p); dR(w)], f, q), (9)

9



where ∆f
R(w, n) has the value δfR(π) for any π ∈ Sn(B)[p;w].

Proof. Since maxR + m ≤ |p| and f is ES-compatible with margin m,
we see from the definition of ES-compatible that δfR(π) is constant for
all permutations π ∈ Sn(B)[p;w]. Therefore ∆f

R(w, n) is well-defined.
Furthermore, f(π) = ∆f

R(w, n) + f(dR(π)) for any π ∈ Sn(B)[p;w].
From the definition of reversibly-deletable, dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p);dR(w)]

is a bijection. Shifting focus to the weight enumerators, we see that

F (Sn(B)[p;w], f, q) : =
∑

π∈Sn(B)[p;w]

qf(π)

=
∑

π∈Sn(B)[p;w]

q∆
f
R
(w,n)qf(dR(π))

= q∆
f
R
(w,n)

∑

π∈dR(Sn(B)[p;w])

qf(π)

= q∆
f
R
(w,n)

∑

π∈Sn−|R|(B)[dR(p);dR(w)]

qf(π)

= q∆
f
R
(w,n)F (Sn−|R|(B)[dR(p);dR(w)], f, q)

(10)

Thus we have proven equation (9).

By a similar proof we get the following multivariate generalization of
Theorem 6:

Theorem 7. Let f1, . . . , fs be ES-compatible permutation statistics, each
with margin at most m, and let f = 〈f1, . . . , fs〉 and q = 〈q1, . . . , qs〉. If R
is reversibly deletable for prefix p ∈ Sk with respect to B and maxR+m ≤
k, then

F (Sn(B)[p;w], f ,q) =
(

q
∆

f1
R

(w,n)

1 · · · q
∆

fs
R

(w,n)
s

)

F (Sn−|R|(B)[dR(p);dR(w)], f ,q),

(11)
where each ∆fi

R (w, n) has the value δfiR (π) for any π ∈ Sn(B)[p;w].

To more clearly tie Theorems 6 and 7 to enumeration schemes, we
introduce the following terminology:

Definition 8. For nonnegative integer c, an enumeration scheme E has
clearance c if for each (p,G,R) ∈ E, either R = ∅, ~0 ∈ G, or |p|−maxR ≥
c.

For example, the scheme for 1-2-3-avoiding permutations given in (3)
has clearance 0 because of the triple (12, {〈0, 0, 1〉}, {2}). The clearance
of an enumeration scheme describes the largest margin that the scheme
could accomodate, as detailed in the following corollaries.

Corollary 9. If f is a ES-compatible permutation statistic of margin
m and E is an enumeration scheme for pattern set B with clearance at
least m, then F (Sn(B), f, q) may be computed in polynomial time (via
enumeration scheme E).
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Corollary 10. Let f1, . . . , fs be ES-compatible permutation statistics,
each with margin at most m, and let f = 〈f1, . . . , fs〉 and q = 〈q1, . . . , qs〉.
Let E be a finite enumeration scheme for pattern set B with clearance at
least m. Then F (Sn(B), f ,q) may be computed in polynomial time (via
enumeration scheme E).

Clearly corollaries 9 and 10 are impractical if there is no scheme E
satisfying the conditions stated. It will be shown in Theorem 15 of Section
4 that a finite scheme of any clearance is sufficient for a polynomial time
computation since a scheme can be “deepened” to create a scheme for the
same pattern set with any desired clearance.

3.2 Examples of ES-compatible statistics

We now take some time to prove some well-known permutaiton statistics
are indeed ES-compatible.

3.2.1 Copies of consecutive patterns

We first consider statistics based on the number of copies of a given con-
secutive pattern. Several well-studied statistics can be phrased in terms
of the number of copies of certain consecutive patterns. The descent num-
ber, des(π), is the number of copies of the consecutive pattern 21. The
number of double-descents, i.e., indices i so that πi > πi+1 > πi+2, is
the number of copies of the consecutive pattern 321. In Subsection 5.2
we discuss the distribution for the number of peaks, i.e., indices i so that
πi−1 < πi and πi > πi+1, which is the total of the number of copies of 132
and the number of copies of 231.

Theorem 11. Let σ ∈ St and f(π) be the number of copies of the (con-
secutive) pattern (σ, [t−1]) in π. Then f is a ES-compatible statistic with
margin t− 1.

Note that f(π) is defined for any word π, not just permutations. Fur-
thermore, if π ∼ π′, then f(π) = f(π′).

Proof. Fix pattern σ ∈ St and let k ≥ 1. We will prove that f(π) −
f(π1 · · ·πk) = f(dR(π))− f(dR(π1 · · · πk)) for any R ⊆ [k − t + 1]. From
this it is clear that δfR(π) = f(π1 · · ·πk) − f(dR(π1 · · ·πk)) for any k ≥
maxR + t− 1, and so f is ES-compatible with margin t− 1.

Let fi(π) be the number of copies of (σ, [t − 1]) starting at πi. Since
(σ, [t− 1]) is consecutive, we see that

fi(π) = χ[πi · · ·πi+t−1 ∼ σ],

where χ[P ] is the characteristic function for statement P , i.e., , χ[P ] equals

1 if P is true and 0 otherwise. Therefore f(π) =
n−t+1
∑

i=1

fi(π) for π ∈ Sn,

11



and splitting this sum implies that:

f(π) =

n−t+1
∑

i=1

fi(π)

=

k−t+1
∑

i=1

fi(π) +

n−t+1
∑

i=k−t+2

fi(π)

=
k−t+1
∑

i=1

fi(π1 · · ·πk) +
n−t+1
∑

i=k−t+2

fi(πk−t+2 · · ·πn)

= f(π1 · · ·πk) + f(πk−t+2 · · ·πn)

Thus f(π) = f(π1 · · ·πk) + f(πk−t+2 · · ·πn). Similarly, let π′ = dR(π)
for R ⊆ [k − t + 1], and by the appropriate sum-splitting we see that
f(π′) = f(π′

1 · · ·π
′
k−|R|) + f(π′

k−t+2−|R| · · ·π
′
n−|R|). By the definition of

dR, πk−t+2 · · ·πn ∼ π′
k−t+2−|R| · · ·π

′
n−|R|. Hence it follows that

f(π)− f(π1 · · ·πk) = f(πk−t+2 · · ·πn)

= f(π′
k−t+2−|R| · · ·π

′
n−|R|)

= f(π′)− f(π′
1 · · ·π

′
k−|R|)

Thus we have confirmed f(π)−f(π1 · · ·πk) = f(dR(π))−f(dR(π1 · · ·πk))
and our result follows.

Remark. In terms relevant to enumeration schemes, for any permutation
π ∈ Sn(B)[p;w] for a prefix of length k,

∆f
R(w, n) = f(w) − f(dR(w)) = f(p)− f(dR(p)), (12)

where f counts the number of copies of a consecutive pattern.

3.2.2 Copies of vincular patterns

We next consider the number of copies of a vincular pattern of the form
σ1 · · ·σt−1-σt. The proof will proceed similarly to that of Theorem 11.
Note that the inversion number inv(π) is the number of copies of 2-1, and
so is a special case of this result. Subsection 5.3 extends the results in
this section to apply the major index statistic.

Theorem 12. Let σ ∈ St and let g(π) be the number of copies of the
pattern (σ, [t − 2]) in π. Then g is a ES-compatible statistic with margin
t− 2.

Proof. Fix σ ∈ St and let k ≥ 1. We will prove that δgR(π) := g(π) −
g(dR(π)) is determined by the length of π together with the prefix π1 · · ·πk

for any R ⊆ [k− t+ 2]. From this it follows that g is ES-compatible with
margin t− 2.

For a permutation π ∈ Sn, define gi(π) to be the number of copies
of (σ, [t − 2]) starting at πi. Clearly g(π) =

∑n

i=1 gi(π), and if π and π′

are order-isomorphic words then gi(π) = gi(π
′). In particular we see that

12



gi(π) can be computed in the following way based, on which πj can be
the last letter of a copy of (σ, [t− 2]) starting at πi:

gi(π) :=
∣

∣{j : j > i+ t− 2, and πi · · ·πi+t−2 πj ∼ σ}
∣

∣

=
∣

∣{j : j ≥ 1 and πi · · · πi+t−2 πj ∼ σ}
∣

∣−
∣

∣{j : j < i and πi · · ·πi+t−2 πj ∼ σ}
∣

∣

(13)

We now will show that gi(π) can be determined entirely from |π| and
π1 · · ·πi+t−2 by showing each of the addends in (13) requires such limited
information.

We consider the first term,
∣

∣{j : j ≥ 1 and πi · · ·πi+t−2 πj ∼ σ}
∣

∣.

Given the fixed σ ∈ St, we can define hi(w, n) for words w ∈ [n]k as
follows:

hi(w, n) :=











min(wi, . . . , wi+t−2)− 1 if σt = 1

n−max(wi, . . . , wi+t−2) if σt = t

wb −wa − 1 if 1 < σt < t, σa = σt − 1, σb = σt + 1.

(14)
If σt = 1, then hi(π,n) yields the number of letters πj which are less
than each of πi, . . . , πi+t−2, in which case πi · · ·πi+t−2 πj ∼ σ. Similarly
σt = t, then hi(π,n) yields the number of letters πj which are greater
than each of πi, . . . , πi+t−2. Last, if a and b are defined by σa = σt − 1
and σb = σt + 1, then hi(π, n) yields the number of letters πj so that
πi+a−1 < πj < πi+b−1 since every number between the values πi+a−1 and
πi+b−1 appears somewhere in π. In each case, we see that

hi(π,n) =
∣

∣{j : j ≥ 1 and πi · · ·πi+t−2 πj ∼ σ}
∣

∣.

Observe that hi(π, n) = hi(π1 · · · πs, n) for any s ≥ i + t − 2, and so the
first term of the sum in (13) is determined solely by |π| and πi · · ·πi+t−2.

Similarly, the term
∣

∣{j : j < i and πi · · ·πi+t−2 πj ∼ σ}
∣

∣ can be
determined entirely by π1 · · · πi+t−2. Define h′

i(w) for word w to be

h′
i(w) :=

i−1
∑

j=1

χ[wi · · ·wi+t−2 wj ∼ σ],

and so it is clear that h′
i(π) =

∣

∣{j : j < i and πi · · ·πi+t−2 πj ∼ σ}
∣

∣. Note
that h′

i(π) = h′
i(π1 · · ·πs) for any s ≥ i+ t− 2.

Combining the above observations, we can decompose the sum g(π) =
∑n

i=1 gi(π) as follows:

g(π) =
n
∑

i=1

gi(π)

=

k−t+2
∑

i=1

gi(π) +
n
∑

i=k−t+3

gi(π)

=

k−t+2
∑

i=1

(

hi(π1 · · ·πk)− h′
i(π1 · · ·πk)

)

+
n
∑

i=k−t+3

gi(π)

(15)
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Fix R ⊆ [k− t+2] and let π′ = dR(π). The above observations also apply
to π′ to imply:

g(π′) =

k−t−|R|+2
∑

i=1

(

hi(π
′
1 · · ·π

′
k−|R|, n−|R|)−h′

i(π
′
1 · · ·π

′
k−|R|)

)

+

n−|R|
∑

i=k−t−|R|+3

gi(π
′)

(16)
We now focus on the last terms of the equations (15) and (16). By the

definition of dR, πk−t+3 · · ·πn ∼ π′
k−t+3−|R| · · ·π

′
n−|R|. Therefore gi(π) =

gi−|R|(π
′) for i ≥ k − t + 3, and so

n
∑

i=k−t+3

gi(π) =
n−|R|
∑

i=k−t−|R|+3

gi(π
′).

Thus subtracting equation (16) from (15) we see that:

δgR(π) = g(π)− g(π′)

=
k−t+2
∑

i=1

(

hi(π1 · · ·πk, n)− h′
i(π1 · · ·πk)

)

−

k−t−|R|+2
∑

i=1

(

hi(π
′
1 · · ·π

′
k−|R|, n− |R|)− h′

i(π
′
1 · · ·π

′
k−|R|)

)

(17)

Thus we have proven that g is ES-compatible with margin t− 2.

Remark. In terms relevant to enumeration schemes, for any permutation
π ∈ Sn(B)[p;w] for a prefix of length k,

∆g
R(w, n) =

k−t+2
∑

i=1

(

hi(w, n)−h′
i(w)

)

−

k−t−|R|+2
∑

i=1

(

hi(dR(w), n−|R|)−h′
i(dR(w))

)

.

(18)

As an example of hi and h′
i in practice, consider σ = 4123. Here g(π)

counts the number of copies of the vincular pattern 412-3. Then a = 1
and b = 3. Let π be any one of the 4! permutations of length 9 such that
w = π1 · · ·π5 = 86913. Since π3π4π5 = 913 ∼ 413 = σ1σ2σ3, we see that
h3(π, 9) = π3 − π5 − 1 = 5. Also h′

3(π) = 2, since both 6 and 8 appear
before π3π4π5 and have values which lie between π5 = 3 and π3 = 9.
Therefore g3(π) = h3(π) − h′

3(π) = 3, and indeed there are 3 copies of
412-3 starting at π3 (specifically, these copies are 9134, 9135, and 9137,
since {4, 5, 7} ⊆ {π6, . . . , π9}). In this example g1(π) = g2(π) = 0. If
R = {2, 3}, which respects the needed margin of 2 for a length-5 prefix,
we get that π′ = dR(π) has prefix dR(86913) = 713. Deleting the 6 and 9
from π deletes the three copies of 412-3 described above, but creates three
new copies since g1(π

′) = h1(713, 7) − h′
1(713) = 3 − 0 = 3 (specifically,

the new copies are witnessed by 7134, 7135, and 7136). Hence in this case
δgR(π) = 0.

Comparing Theorems 11 and 12, one might guess the trend continues,
i.e., that patterns of the form (σ, [t − 3]) for σ ∈ St are ES-compatible
with margin t − 3. An extension involving partially-ordered generalized
patterns, as introduced by Kitaev in [17], provides the proper generaliza-
tion. For example, a copy of the pattern 124-3′-3′′ would be witnessed by
a copy of either 125-3-4 or 125-4-3. Such a statistic of the form

σ1 . . . σt−1 - σ′
t - σ′′

t - . . . - σ′′′
t
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can be seen to be ES-compatible with margin t − 2 (one less than the
length of the consecutive portion).

3.2.3 Right-to-left statistics

A letter wi of word w is a right-to-left maximum [resp., minimum] if
wi > wj [resp., wi < wj ] for all j > i. Let rtlmax(w) be the number
of right-to-left maxima in w and rtlmin(w) be the number of right-to-left
minima in word w. For example, if π = 28674153, we see rtlmax(π) = 4
(for π2, π4, π7 and π8) and rtlmin(π) = 2 (for π6 and π8).

In this subsection we prove the following theorem:

Theorem 13. The statistics rtlmin and rtlmax are ES-compatible with
margin 0.

It will be useful to have the following characterization of the right-
to-left minima and maxima for a permutation, which are based solely
on prefixes. The proof follows directly from the definition above and is
omitted.

Lemma 14. Let π = π1 · · ·πn be a permutation. Then,

1. πi is a right-to-left minimum of π if and only if {1, 2, . . . , πi − 1} ⊆
{π1, π2, . . . , πi−1} (i.e., , all numbers less than πi lie to the left of
πi).

2. πi is a right-to-left maximum of π if and only if {πi+1, πi+2, . . . , n} ⊆
{π1, π2, . . . , πi−1} (i.e., , all numbers greater than πi lie to the left
of πi).

For the remainder of the section, we will restrict ourselves to the proof
that rtlmax is ES-compatible. The proof that rtlmin is ES-compatible is
analogous.

For integers a and b let rtlmax[a,b](π) be the number of right-to-left
maxima πi of π such that i is in the closed interval [a, b]. For example,
rtlmax[1,5](2867153) = 2 (for π2 and π5). Note that while π5 is a right-
to-left maximum of π1 · · ·π5 = 28671, it is not counted since this function
only counts those letters which are right-to-left maxima in the overall
permutation. We may decompose rtlmax(π) for any π ∈ Sn and 1 ≤ t ≤
n, by rtlmax(π) = rtlmax[1,t](π) + rtlmax[t+1,n](π). Thus it follows from
the first half of Definition 4 that if π ∈ Sn, R ⊆ [t] and π′ := dR(π) ∈
Sn−|R|,

δrtlmax
R (π) = rtlmax(π)− rtlmax(π′)

=
(

rtlmax[1,t](π) + rtlmax[t+1,n](π)
)

−
(

rtlmax[1,t−|R|](π
′) + rtlmax[t−|R|+1,n−|R|](π

′)
)

(19)

Rearranging terms leaves us with

δrtlmax
R (π) =

(

rtlmax[1,t](π)−rtlmax[1,t−|R|](π
′)
)

+
(

rtlmax[t+1,n](π)−rtlmax[t−|R|+1,n−|R|](π
′)
)

By the original definition of rtlmax, it is clear the rtlmax[a,n](π) =
rtlmax(πaπa+1 · · ·πn) for any a. Since π′

t−|R|+1π
′
t−|R|+2 · · ·π

′
n−|R| ∼ πt+1πt+2 · · · πn,
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it follows that rtlmax[t+1,n](π) − rtlmax[t−|R|+1,n−|R|](π
′) = 0. Thus we

see that
δrtlmax
R (π) = rtlmax[1,t](π)− rtlmax[1,t−|R|](π

′) (20)

Let w be a word in [n]k without repeated letters, and define

rtlmax∗(w, n) :=
∣

∣

{

wi : {wi + 1, wi + 2, . . . , n} ⊆ {w1, w2, . . . , wi−1}
}∣

∣.
(21)

By Lemma 14 above immediately see for any π ∈ Sn

rtlmax[1,t](π) = rtlmax∗(π1π2 · · ·πt, n).

Hence equation (20) becomes

δrtlmax
R (π) = rtlmax∗(π1π2 · · ·πt, n) − rtlmax∗(π′

1π
′
2 · · ·π

′
t−|R|, n− |R|).

(22)
Therefore if R ⊆ [t], then δrtlmax

R (π) depends only the values of π1 · · ·πt.
Thus by Definition 4 we see that rtlmax is ES-compatible with margin 0,
and the proof is complete. As mentioned previously, the proof that rtlmin
is ES-compatible with 0 proceeds analogously, where rtlmin∗(w, n) :=

∣

∣

{

wi : {1, 2, . . . , wi−
1} ⊆ {w1, w2, . . . , wi−1}

}∣

∣.
In [8] the author generalizes right-to-left maxima with the right-to-

left maximal copy of a consecutive pattern σ. For a permutation π and
consecutive pattern σ, the subfactor πiπi+1 · · ·πi+k−1 is a right-to-left
maximal copy of σ if the following criteria are satisfied:

1. πiπi+1 · · ·πi+k−1 ∼ σ, and

2. if j > i and πjπj+1 · · ·πj+k−1 ∼ σ and σm = min(σ1, . . . , σk),
then πj+m−1 < πi+m−1. In other words, the minimal letter of
πiπi+1 · · ·πi+k−1 is greater than the minimal letter of any other copy
of σ to starting the right of πi.

For example, the permutation 31856742 has four copies of the consecutive
pattern 21 (namely, 31, 85, 74, and 42), but only three of these copies (all
but 31) are right-to-left maximal. The classical right-to-left maxima can
be viewed as right-to-left maximal copies of the pattern 1. A straight-
forward generalization of the above argument proves that the statistic
counting the number of right-to-left maximal copies of a consecutive pat-
tern σ of length t is ES-compatible with margin t− 1.

Before closing this section, it should be noted that the number of left-
to-right maxima and left-to-right minima are not ES-compatible. For
example, if n = 4, w = 12, and R = {1, 2} then δltrmin

R (1234) = 0 while
δltrmin
R (1243) = −1. For n = 4, w = 43, and R = {1, 2} we also see
δltrmax
R (4321) = 0 while δltrmax

R (4312) = −1.

4 Deepening Schemes

Suppose that pattern set B admits a finite enumeration scheme. The
question remains whether one can find a finite enumeration scheme for
B with clearance sufficient to accomodate a given ES-compatible statistic
with margin m. The algorithms from [9] can be altered to ensure that any
constructed scheme has clearance c if such a scheme exists. The existence
of such a scheme is guaranteed in the following theorem.
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Theorem 15. Suppose the pattern set B has a finite enumeration scheme
E. Then for any c ≥ 0 there is a finite enumeration scheme E′ with
clearance c.

To prove Theorem 15, we will first prove a lemma regarding reversibly
deletable sets.

Lemma 16. Suppose that R is a reversibly deletable set for prefix p ∈ Sk

with respect to B. Then R is also reversibly deletable for any permutation
p′ ∈ Sk′ such that p′1 · · · p

′
k ∼ p, where k′ > k.

Proof. IfR ⊆ [k] is reversibly deletable for p ∈ Sk, then dR : Sn(B)[p;w] →
Sn−|R|(B)[dR(p);dR(w)] is a bijection whenever Sn(B)[p;w] 6= ∅. Let

k′ > k and let p′ ∈ Sk′ such that red(p′1 · · · p
′
k) = p. Let w′ ∈ [n]k

′

so that Sn(B)[p′;w′] 6= ∅. We must show that dR : Sn(B)[p′;w′] →
Sn−|R|(B)[dR(p

′); dR(w
′)] is a bijection.

First note that Sn(B)[p′;w′] = Sn(B)[p;w]∩Sn(∅)[p
′;w′], where w =

w′
1 · · ·w

′
k. Since Sn(B)[p′;w′] 6= ∅ and Sn(B)[p′;w′] ⊆ Sn(B)[p;w], we

know that Sn(B)[p;w] 6= ∅. Since R is reversibly deletable for p, the map
dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p);dR(w)] is bijective. For the unre-
stricted case, dR is a bijection fromSn(∅)[p

′;w′] toSn−|R|(∅)[dR(p
′); dR(w

′)].
Therefore dR is a bijection fromSn(B)[p′;w′] toSn−|R|(B)[dR(p);dR(w)]∩
Sn−|R|(∅)[dR(p

′); dR(w
′)]. Now it remains to showSn−|R|(B)[dR(p

′); dR(w
′)] =

Sn−|R|(B)[dR(p);dR(w)]∩Sn−|R|(∅)[dR(p
′); dR(w

′)] to complete our proof.
By the action of dR, the word formed by the first k−|R| letters of dR(w

′) is
exactly dR(w), and soSn−|R|(B)[dR(p

′); dR(w
′)] ⊆ Sn−|R|(B)[dR(p);dR(w)],

and the remaining inclusions are obvious from the definitions. Thus R is
reversibly deletable for p′.

Note that the resulting set R in Lemma 16 is not necessarily a maximal
reversibly-deletable set for p. For example, recall from Equation (3) that
{2} is reversibly deletable for the prefix 12 with respect to B = {1-2-3}.
Lemma 16 implies that {2} is reversibly deletable for the prefix 231, al-
though the larger set {1, 2} is also reversibly deletable for 231.

We are now ready to prove Theorem 15.

Proof of Theorem 15. Let E be a finite enumeration scheme for B, with
depth K. We will construct a scheme E′ with clearance c ≥ 1. If c = 0,
then E will suffice since any enumeration scheme has clearance 0.

We will construct a (finite) set E′ by creating a triple (p,G(p),R(p)) ∈
E′ for each p ∈

⋃K+c

k=0 Sk. For p = ǫ, let G(ǫ) = ∅ and R(ǫ) = ∅, so we see
E′ satisfies criterion 1 in Definition 3. For p 6= ǫ, let G(p) be a basis of
gap vectors for p with respect to B, which may be constructed according
to the algorithm described in [9].

We now constructR(p). If |p| < K+c, then let R(p) = ∅. If |p| = K+c,
then let p′ be the longest prefix p′ = red(p1 · · · ps) such that there is a
triple (p′, G′, R′) in the original scheme E. Then |p′| ≤ K, and since
no child of p′ has a triple in E (by maximality of p′) we know R′ is
nonempty. By Lemma 16, R′ is also a reversibly deletable set for p, so we
let R(p) = R′. Furthermore, R(p) = R′ ⊆ [K], so |p| −maxR(p) ≥ c and
so we see that E′ has clearance c.
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We now verify that E′ satisfies the criteria to be an enumeration
scheme for B, as outlined in Definition 3. Each triple (p,G(p), R(p)) ∈ E′

is constructed so that G(p) is a basis of gap vectors for p with respect
to B and so that R(p) is a reversibly deletable set for p with respect to
B. As previously mentioned, E′ satisfies criterion 1 since (ǫ, ∅, ∅) ∈ E′. If
R(p) = ∅, then |p| < K + c and so E′ contains a triple (p′, G(p′), R(p′))
for each child p′ since E′ contains a triple for every permutation of length
|p|+ 1. Therefore E′ satisfies criterion 2a. If R(p) 6= ∅, then |p| = K + c
and E′ contains a triple (p̂, G(p̂), R(p̂)) for p̂ = dR(p)(p) since E′ contains
a triple for every permutation with length less than K + c. Therefore E′

satisfies criterion 2b.

It perhaps goes without saying that E′ from the proof of Theorem 15 is
not usually minimal, neither in terms of number of triples nor the encoded
recurrence. For example, the proof constructs the following scheme E′

with clearance 1 for B = {1-2-3} based on the scheme E in (3):

E′ =
{

(ǫ, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, ∅), (21, ∅, ∅),

(123, {〈0, 0, 0, 0〉}, {2}), (132, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {2}), (231, {〈0, 0, 0, 1〉}, {2}),

(213, {〈0, 0, 0, 1〉}, {1}), (312, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {1}), (321, ∅, {1})
}

.

(23)

In practice, therefore, it is better to alter the automated-discovery algo-
rithms from [9] to construct ab initio a reversibly deletable set for each
prefix p so that only sets R ⊆ [|p| − c] are considered. This change guar-
antees the clearance criterion holds, and Theorem 15 guarantees that the
algorithm will succeed in finding a finite scheme whenever the algorithms
would succeed without the clearance conditions. Such an approach yields
the following scheme with clearance 1 for B = {1-2-3}.

E′ =
{

(ǫ, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, ∅), (21, ∅, {1}),

(123, {〈0, 0, 0, 0〉}, {1, 2}), (132, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {2}), (231, {〈0, 0, 0, 1〉}, {1, 2})
}

.

(24)

Note in particular that the children of 21 do not need to appear in a
scheme with clearance 1, since 21 has a nonempty reversibly deletable set
which respects the clearance requirement.

We close this section with a corollary combining Theorem 15 and
Corollary 9.

Corollary 17. If f is a ES-compatible permutation statistic of margin m
and E is an enumeration scheme for pattern set B, then F (Sn(B), f, q)
may be computed in polynomial time.

5 Applications

We wish to take some time in this section to highlight some of the less
obvious applications of the results above. Studying statistics over sets
Sn(B) is relatively new, so much of what follows only scratches the sur-
face. In what follows we use the common notation that (σ)(π) denotes
the number of copies of vincular pattern σ in permutation π.
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5.1 Implementation

The above algorithms have been implemented in a Maple package Statter.
This package supercedes the package gVatter accompanying [9] and can
perform the following tasks.

1. Build an enumeration scheme for a given pattern set B with given
clearance c. (This also requires search parameters for the maximum
size of gap vectors and maximum depth of prefixes.)

2. Read a given enumeration scheme to get the distribution over Sn(B)
for given n of a statistic based on the number of copies of a consec-
utive pattern, a pattern of type σ1 . . . σt−1-σt, right-to-left maxima,
or right-to-left minima.

3. Read a given enumeration scheme to get the distribution of multi-
statistics given above.

For example, Statter gave the the enumeration scheme for pattern
set B = {1-2-3} with clearance 1 shown above in (24). From that,
Statter can quickly give the distribution of the descent statistic over,
say, S10(1-2-3):

F (S10(1-2-3),des, q) = 42 q4 + 1770 q5 + 7515 q6 + 6455 q7 + 1013 q8 + q9.

A fuller investigation of the descent statistic over Sn(1-2-3), particu-
larly its connection to Dyck paths, is given in [5].

The package Statter is available for download from the author’s home-
page.

5.2 Peaks and Valleys

A peak of a permutation π is a letter πi such that πi−1 < πi > πi+1.
Let peak(π) be the number of peaks of π. Therefore peak(π) is the total
number of copies of the consecutive patterns 132 and 231 in π. Likewise a
valley is a letter πi such that πi−1 > πi < πi+1. If vall(π) is the number of
valleys of π, then again we see that vall(π) is the total number of copies of
the consecutive patterns 213 and 312 in π. Therefore we see that peak(π)
and vall(π) are ES-compatible statistics.

While exploring the distributions of the peak and vall statistics over
sets Sn(B), a few interesting confluences appeared:

Theorem 18. The following three distributions are equivalent:

• the distribution of peaks over 1-2-3-avoiding permutations,

• the distribution of valleys over 1-2-3-avoiding permutations, and

• the distribution of valleys over 1-3-2-avoiding permutations.

In the notation above, F (Sn(1-2-3),peak, q) = F (Sn(1-2-3), vall, q) =
F (Sn(1-3-2), vall, q).

Remark. In [15], Dokos et al. started investigating statistic-Wilf-equivalence,
where two pattern sets B and B′ are f-Wilf-equivalent for permutation
statistic f if F (Sn(B), f, q) = F (Sn(B

′), f, q) for all n. This equivalence
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is denoted B
f
≡ B′. In this notation, the second half of Theorem 18 can

be written as

1-2-3
vall
≡ 1-3-2.

Proof. The equivlence F (Sn(1-2-3),peak, q) = F (Sn(1-2-3), vall, q) fol-
lows directly from symmetry. Permutation π avoids 1-2-3 if and only if its
reverse-complement πrc avoids 1-2-3. Next, the peaks in π correspond to
valleys in πrc and vice versa. Thus it follows that F (Sn(1-2-3), peak, q) =
F (Sn(1-2-3), vall, q).

We next prove F (Sn(1-2-3), vall, q) = F (Sn(1-3-2), vall, q). We will
begin by proving the following claim: For any π ∈ Sn(1-2-3)∪Sn(1-3-2),
πi is a valley of π if and only if i > 1, πi is a left-to-right minimum of
π and πi+1 is not an left-to-right minimum of π. Suppose that πi is a
valley but that there is some πj such that πj < πi and j < i. Then we
see πjπi−1πi ∼ 132 and πjπiπi+1 ∼ 123 and so π would contain 1-3-2
and 1-2-3. Thus if π avoids 1-3-2 or 1-2-3 then πi must be a left-to-
right minimum. Since πi+1 > πi we see that πi+1 is not a left-to-right
minimum. Conversely, suppose that πi is a left-to-right minimum of π for
i > 1 but πi+1 is not. Then πi+1 > πi, since otherwise πi+1 would be a
left-to-right minimum, and also πi−1 > πi, since otherwise πi would not
be an left-to-right minimum. Therefore πi must be a valley of π. Hence
the claim is proven.

The Simion-Schmidt bijection in [23] provides a map Sn(1-3-2) →
Sn(1-2-3) which preserves the left-to-right minima. Therefore by the
claim above, the same bijection also preserves the valleys of the permuta-
tions. Thus we see that F (Sn(1-2-3), vall, q) = F (Sn(1-3-2), vall, q).

Remark. The proof above implies that vall is equally distributed over
Sn(1-2-3) and Sn(1-3-2) even when restricting further to those permuta-
tions with a given set of left-to-right minima. Letting LRmax(π) be the
set of indices which are left-to-right minima for π, then for any S ⊆ [n].

∑

π∈Sn(1-2-3)
LRmax(π)=S

qvall(π) =
∑

π∈Sn(1-3-2)
LRmax(π)=S

qvall(π) (25)

For completeness we will comment that F (Sn(1-3-2), peak, q) appears
in OEIS as A091894, suggesting the following correspondence. A Dyck
path of semilength n is a lattice path from (0, 0) to (n, 0) composed of
steps U = (1, 1) and D = (1,−1) which never goes below the x-axis. We
will write Dyck paths as words Ua1 Db1 Ua2 Db2 · · ·Uak Dbk .

Theorem 19. The number of permutations in Sn(1-3-2) with k peaks
equals the number of Dyck paths of semilength n with k occurrences of the
subfactor DDU .

Proof. Krattenthaler provides a bijection, Φ, in [18] from Sn(1-3-2) to the
set of Dyck paths of semilength n. In that bijection, a permutation with
k valleys maps to a Dyck path with k subfactors DDU . The remainder
of this proof outlines this bijection.

Suppose that π ∈ Sn(1-3-2) with ltrmin(π) = k. Then let j1, j2, . . . , jk
be the indices of the left-to-right minima and let mi = πji be the values
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of the left-to-right minima for 1 ≤ i ≤ k. Further, let m0 = n + 1 and
jk+1 = n + 1. Then Φ(π) is the Dyck path Ua1 Db1 Ua2 Db2 · · ·Uak Dbk

where ai = mi−1 − mi and bi = ji+1 − ji. For Φ−1, observe that the
left-to-right minima of Φ−1(Ua1 Db1 Ua2 Db2 · · ·Uak Dbk ) occur at indices
1, 1 + b1, 1 + b1 + b2, . . . , 1 + b1 + b2 + · · · bk−1 and have values n + 1 −
m1, n+ 1− (m1 +m2), . . . , n+ 1− (m1 +m2 + · · ·mk). It is well-known
that a 1-3-2-avoiding permutation is uniquely determined by the indices
and values of its left-to-right minima, and thus Φ is bijective.

Observe that if ltrmin(π) = k, then Φ(π) = Ua1 Db1 Ua2 Db2 · · ·Uak Dbk

for ai > 0 and bi > 0. Therefore each left-to-right minima beyond π1 cor-
responds to a DU subfactor in Φ(π) . Furthermore if adjecent letters πi

and πi+1 are both left-to-right minima, then the corresponding string of
D’s in the image is only a single D. Therefore DDU subfactors correspond
to non-adjacent left-to-right minima, which by the claim from Theorem
18 correspond to valleys in the permutation.

The distributions from Theorems 18 and 19 are given in Tables 1 and
2. This data was generated by Statter.

n F (Sn(1-2-3), peak, q)
1 1
2 2
3 3 + 2 q
4 4 + 10 q
5 5 + 32 q + 5 q2

6 6 + 84 q + 42 q2

7 7 + 198 q + 210 q2 + 14 q3

8 8 + 438 q + 816 q2 + 168 q3

9 9 + 932 q + 2727 q2 + 1152 q3 + 42 q4

10 10 + 1936 q+ 8250 q2 + 5940 q3 + 660 q4

Table 1: The distributions from Theorem 18 for 1 ≤ n ≤ 10.

n F (Sn(1-3-2), peak, q)
1 1
2 2
3 4 + q

4 8 + 6 q
5 16 + 24 q + 2 q2

6 32 + 80 q + 20 q2

7 64 + 240 q + 120 q2 + 5 q3

8 128 + 672 q + 560 q2 + 70 q3

9 256 + 1792 q + 2240 q2 + 560 q3 + 14 q4

10 512 + 4608 q + 8064 q2 + 3360 q3 + 252 q4

Table 2: The distributions of peaks over 1-3-2-avoiding permutations. Corre-
sponds to OEIS sequence A091894 [19].
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A complete classification of the classical patterns according to peak-
Wilf-equivalence is forthcoming in [10].

5.3 The major index

The major index is defined by maj(π) :=
∑

i:πi>πi+1
i. As shown in [2],

the major index can be decomposed into the sum of four vincular pattern
functions:

maj(π) = (3-21)(π) + (2-31)(π) + (1-32)(π) + (21)(π). (26)

where (σ)(π) is the number of copies of σ in permutaion π. While these
patterns do not conform to the structure of those in Theorem 12, their
reverses do. Thus we define

rmaj(π) := maj(πr) = (12-3)(π) + (13-2)(π) + (23-1)(π) + (12)(π).

Therefore Corollary 10, Theorem 12 imply the following special case:

Corollary 20. If B is a set of patterns such that Br := {τ r : τ ∈
B} admits a finite enumeration scheme, then F (Sn(B),maj, q) can be
computed via enumeration scheme.

Distributions of the major index over avoidance sets Sn(τ ) for classical
patterns τ ∈ S3 are studied by Dokos et al. in [15].

To illustrate the method with a new example, consider the set of clas-
sical patterns

Bk = {2-1-3, 1-2- · · · -(k − 1)-k}

for any k ≥ 2. A discussion of Bc
3 = {2-3-1, 3-2-1} appears in [15], but

we will consider the more general family. It was shown in [25] that Br
k =

{3-1-2, k-(k − 1)- · · · -2-1} admits a finite enumeration scheme of depth 2:
{

(ǫ, ∅, ∅), (1, ∅, ∅), (12, ∅, {1}), (21, {〈0, 1, 0〉, 〈k − 2, 0, 0〉}, {1})
}

(27)

The scheme in (27) derives from general-purpose algorithms of [25],
and so is not necessarily optimal for a special case. There are a few missed
gap vector criteria which will simplify the resulting recurrence. Observe
that if π is a permutation with π1 ≥ k, then 2, 3, . . . , k − 1 lie among
the remaining letters. Either these letters appear in decreasing order, in
which case π contains a k-(k − 1)- · · · -2-1, or at least two of the letters
appear in increasing order, in which case π contains 3-1-2. Therefore
〈k−1, 0〉 is a gap vector for prefix pattern 1, and in turn this implies that
{〈i, j, 0〉 : i+ j = k − 1} are gap vectors for prefix 12. Thus we arrive at
the following enumeration scheme for Br

k:

{

(ǫ, ∅, ∅),(1, {〈k − 1, 0〉}, ∅), (12, {〈k − 1, 0, 0〉, 〈k − 2, 1, 0〉, . . . , 〈0, k − 1, 0〉}, {1}),

(21, {〈0, 1, 0〉, 〈k − 2, 0, 0〉}, {1})
}

(28)

We will consider the following analogue of the classic Euler-Mahonian
distribution, restricted to the Bk-avoiding permutations:

Gn(p;w) := F (Sn(Bk)[p;w], 〈maj,des〉, 〈q, t〉)

= F (Sn(B
r
k)[p;w], 〈rmaj, (12)〉, 〈q, t〉)
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This scheme in (28) translates into the following recurrences for n ≥ 2:

∑

π∈Sn(Bk)

qmaj(π) tdes(π) =
∑

π∈Sn(Br
k
)

qrmaj(π) t(12)(π)

= Gn(ǫ; ǫ) =

n
∑

a=1

Gn(1, a)

=

k−1
∑

a=1

Gn(1, a) (by gap vector criteria)

Gn(1, a) =

a−1
∑

b=1

Gn(21; ab) +

n
∑

b=a+1

Gn(12; ab)

= Gn(21; a(a− 1)) +

k
∑

b=a+1

Gn(12; ab) (by gap vector criteria)

Gn(21; a(a− 1)) = t0 q0 Gn−1(1; a− 1)

Gn(12; ab) = t1 qn−1 Gn−1(1; b− 1)

(29)

The reader is left to verify the following values:

• ∆
(12)
{1} (a(a− 1), n) = 0

• ∆rmaj
{1}

(a(a− 1), n) = 0

• ∆
(12)
{1} (ab, n) = 1 for ab ∼ 12

• ∆rmaj
{1} (ab, n) = n− 1 for ab ∼ 12

Combining the recurrence relations above yields the following recur-
rence for Gn(1; a), the distribution of (maj,des) over Bk-avoiding permu-
tations:

Gn(1; a) =























t qn−1
k−1
∑

b=1

Gn−1(1; b), a = 1

Gn−1(1; a− 1) + t qn−1
k−1
∑

b=a

Gn−1(1; b), 2 ≤ a ≤ k − 1

0, a ≥ k.

(30)

6 Conclusion and Future Work

The techniques above face the same limitations as enumeration schemes.
In short, the recurrences produced are often complicated and do not trans-
late nicely into generating functions. The methods discussed in Chapter 5
of [7] make some progress toward converting schemes to generating func-
tions, but cannot account for the full range of recurrences that schemes
can produce.

23



Further, not all sets of vincular patterns B admit a finite enumeration
scheme, and there is no full characterization predicting whether a given
B will admit a finite scheme. Data on how many sets B do admit a small
scheme are available in [9].

We note that it should be possible to adapt the insertion encodings
from [1, 26] toward the purpose of computing F (Sn(B), f, q) for permu-
tation statistics f based on counting copies of consecutive patterns. The
insertion encoding offers two advantages over enumeration schemes: (1)
the recurrences developed lead directly to generating functions, and (2)
there are more [sets of] classical patterns which admit regular insertion
encodings than finite enumeration schemes. The current state of inser-
tion encodings, however, cannot handle vincular patterns, however. Such
tools could a very helpful in classification of patterns under statistic-Wilf-
equivalence for various statistics.
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