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Abstract A new variational method, the principle of least radix economy,
is formulated. The mathematical and physical relevance of the radix econ-
omy, also called digit capacity, is established, showing how physical laws can
be derived from this concept in a unified way. The principle reinterprets
and generalizes the principle of least action yielding two classes of physical
solutions: least action paths and quantum wavefunctions. A new physical
foundation of the Hilbert space of quantum mechanics is then accomplished
and it is used to derive the Schrödinger and Dirac equations and the break-
ing of the commutativity of spacetime geometry. The formulation provides
an explanation of how determinism and random statistical behavior coexist
in spacetime and a framework is developed that allows dynamical processes
to be formulated in terms of chains of digits. These methods lead to a new
(pre-geometrical) foundation for Lorentz transformations and special relativ-
ity. The Parker-Rhodes combinatorial hierarchy is encompassed within our
approach and this leads to an estimate of the interaction strength of the
electromagnetic and gravitational forces that agrees with the experimental
values to an error of less than one thousandth. Finally, it is shown how the
principle of least-radix economy naturally gives rise to Boltzmann’s princi-
ple of classical statistical thermodynamics. A new expression for a general
(path-dependent) nonequilibrium entropy is proposed satisfying the Second
Law of Thermodynamics.
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1 Introduction

It has been conjectured that all natural processes can be understood as the
result of computation [1] [2] [3]. This statement is contained in Wolfram’s
principle of computational equivalence [1] which is closely related to the
Church-Turing thesis [4]: A computable function (expressing e.g. a law of
physics) is also effectively calculable (i.e. its values can be found by some
purely mechanical process). This thesis is the base for digital physics, in
which the universe is modeled as a giant computer [1] [2] [5] processing the
information contained in it. Ideas of digital physics had been independently
advanced in the 60’s in the context of quantum mechanics by Bastin et al.
[6] [7], and then by Noyes and Kauffman [8] [9] [10]. In the context of non-
linear dynamics, McCauley and Palmore [3] [11] [12] showed how converting
real numbers into finite strings of digits from a finite alphabet can capture
all dynamical features of chaotic deterministic systems. Very recently, these
latter ideas have been systematically explored [13] by means of B-calculus
[14], which constitutes a mathematical formalism for rule-based dynamical
systems (examples being cellular automata [14] [15] [16] and substitution
systems [17]).

If one accepts something like the principle of computational equivalence
described above, several questions can be raised. First of all, since compu-
tations are assumed to be made with symbols of a finite alphabet, one can
ask what the size (cardinal) η of the alphabet should be and what physical
meaning is to be attributed to the alphabet’s size (note that in this view com-
putations are intended to directly map physical processes). In performing
computations, the size of the alphabet coincides with the radix (base) in
which a number is expressed. We shall henceforth use the latin word radix as
a synonym for “base” to avoid confusion with other uses of the latter word
in physics. Because of its obvious, useful connection with boolean algebra,
the binary radix has long been considered in the research of discrete physics
[1] [8] [3].

In this article we present a new approach to quantum mechanics inspired
by digital physics which gives an answer to the above questions. The non-
commutativity of the continuum spacetime at the quantum level is derived
from our approach. We claim that nature makes dynamically the most effec-
tive choice for the radix in which its computations take place. It is then shown
that classical and quantum physics merge together from a single variational
principle. An integer function of the dimensionless Lagrangian action bS/hc
(here bxc denotes the floor function (lower closest integer) of x, S is the La-
grangian action and h is the Planck’s constant) is interpreted as the radix
in which the computations that implement the laws of nature take place.
By demanding that this radix works most efficiently physical laws are derived
in a unified way. The Lagrangian action can thus be understood as a key
quantity for the effectiveness of mathematics in the natural sciences [18].

The outline of this article is as follows. In Section 2 the central idea of the
article, involving a quantity called radix economy (or digit capacity), is pre-
sented and illustrated with examples. The mathematical (and technological)
relevance of this quantity (and the natural necessity of having it “econom-
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ical”) is substantiated in an attempt to provide an easy access to the later
developments in the article (which explore its physical relevance). In Section
3 the principle of least radix economy is presented in detail. Three postu-
lates in which our whole approach is based are stated. We then show how
the principle gives rise to two kinds of physical solutions: least action paths
and complex wavefunctions. The Hilbert space of quantum mechanics is then
systematically constructed. This is accomplished through the specification of
a complete orthonormal base and an inner product that are naturally linked
to the structure of the solutions of the principle of least radix economy.
These are classified into symmetry classes through cyclic groups described
by the automorphisms that leave invariant each vector of the complete base
of the Hilbert space. In Section 4 the Schrödinger equation is derived, the
eikonal approximation and the correspondence principle are proved, and our
approach is compared to Feynman’s path integral formulation (which is also
based on the physical, Lagrangian action), briefly discussing similarities and
differences (which are not of physical but of mathematical character). In
Section 5 we elucidate how the commutativity of spacetime is broken in the
quantum realm and we illustrate how the main quantum numbers emerge
from the description without need of solving the Schrödinger equation. We
also show how finite dimensional Hilbert spaces can be naturally accounted
for. In Section 6 the physical radix is related to the mode of certain binomial
distributions, whose form is established and discussed. These concepts are
then linked to the possibility of expressing physical dynamical processes as
chains of zeroes and ones. The physical content and meaning of these chains
is better understood in terms of the unary radix. In Section 7 the unary radix
and the consequences of the third postulate of Section 3 are explored and
the quantum of action is investigated. Surprisingly, the statistical distribu-
tion of the latter provides a key to understanding how Minkowski geometry
arises locally in spacetime at a classical level. The quantum of action, to-
gether with the principle of least radix economy, allows to understand how
different scales, described by different values of the optimal radix, are in-
terrelated and how particles can be equivalent to fields. Special relativity is
derived from these insights and relativistic wave equations that describe par-
ticles with spin (Dirac equation) are also derived. In Section 8 we show how
classical statistical thermodynamics and the Second Law of Thermodynam-
ics emerge from the principle of least radix economy. Finally, in Section 9
we explain how our approach encompasses the Parker-Rhodes combinatorial
hierarchy, giving a direct and accessible physical meaning to this intriguing
mathematical concept and showing how it indeed provides an argument to
establish the value of fundamental physical constants governing the strength
of fundamental interactions.

2 Radix economy and the Lagrangian action

We usually distinguish the physical impact of numbers in terms of the orders
of magnitude that they involve. A related (but so far unexplored) approach
is to consider the radix in which numbers are expressed. The decimal radix
which we always adopt for representing numbers in physics is just a tacit
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convention which is not necessarily the most efficient one. The representation
of all numbers with physical meaning is radix dependent. For example, if we
consider a length of 123 meter, it is understood that we mean 1·102+2·101+3·
100 m, i.e that we give the number through its representation in the decimal
radix. Had we used another radix, 50 say, this same representation would
yield 1 · 502 + 2 · 501 + 3 · 500 m and with the same figures we would mean
another number, i.e. 2603 m, instead. We all conventionally (and tacitly)
agree to represent all our numbers in the same fixed radix so that we can
easily compare them (if we fix the representation instead, we see that by
changing the radix we change, e.g., a length). Let b (a natural number)
denote an arbitrary radix. We can represent any real number A in radix b as

A =

b1+logb Ac∑
m=−∞

bm−1db(m,A) (1)

where the upper bound in the sum blogbA+ 1c is the total number of integer
digits of A in radix b [13], and db(m,A) is an integer function that returns
the digit of A that accompanies the (m− 1)th-power of b when A is written
in base b. This latter function [13] (see also [19]), yields an integer between
0 and b− 1 and is defined as

db(m,A) ≡
⌊

A

bm−1

⌋
− b
⌊
A

bm

⌋
(2)

An important means to quantify the effectiveness of radix b to express
the number A is the radix economy C(b, A), also called digit capacity [20]

C(b, A) = b b1 + logbAc (3)

This quantity is related to the hardware economy in circuits with multiple
valued logic [20]. When it is a minimum, we say that radix b expresses most
efficiently A or that b has the least radix economy in expressing A. Why this
quantity is related to hardware economy can be understood as follows: As
mentioned above, if we want to give the integer number A in base b we need
b1 + logbAc figures since the largest power of b that is needed to express A
in radix b is blogbAc and 0 is the lowest power. Each of these figures can
be any integer number ∈ [0, b − 1] which means that, in order to render an
arbitrary number of the same order of magnitude as A in base b each position
should be able to accommodate any of the b figures. In a digital device, if
one then assumes that one needs, e.g. a number b of light-emitting diodes
per figure (a subset of them being illuminated to render any figure between
0 and b − 1) this then means a “hardware cost” precisely given by Eq. (3),
i.e. b times the total number of digits of the number to be represented. In
the examples above the representation 123 has three digits in both radices
b = 10 and b = 50. Hence, the numbers associated to this representation have
digit capacities 10 · 3 = 30 for the one in the decimal radix and 50 · 3 = 150
for the one in radix b = 50. Therefore, the decimal radix is more economic
in this case.

Another example to illustrate the concept of radix economy is the fol-
lowing. Suppose that you want to design a pocket calculator to work with
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numbers whose order of magnitude would never exceed 106 and you envisage
to have up until 10 figures of space to represent numbers. Would the decimal
radix be the most economic choice in this case? To answer this question, note
that the number 107 − 1 = 9999999 needs seven figures to be represented
in the decimal radix. The radix economy would thus be C(10, 107 − 1) =
10
⌊
1 + log10(107 − 1)

⌋
= 10 ·7 = 70. However, a more economic radix would

be 6, since 107− 1 is represented as 554200143 in radix 6, i.e. a number with
9 figures, and hence C(6, 107 − 1) = 6

⌊
1 + log6(107 − 1)

⌋
= 6 · 9 = 54, which

proves to be more economic than the decimal radix: numbers of 9 figures in
radix 6 are more economic than numbers of 7 figures in the decimal radix!

From Eq. (1) we have

A =

blogb Ac+1∑
m=1

bm−1db(m,A) =

b−1∑
k=0

blogb Ac+1∑
m=1

kbm−1δk,db(m,A) (4)

where δk,db(m,A) denotes the Kronecker delta (i.e. it returns one if k =
db(m,A) and zero otherwise). The digit capacity, Eq. (3), corresponds to
the size of the matrix with elements Rkm given by

Rkm = δk,db(m,A) (5)

which is the representation matrix of the integer A. The latter is generally
rectangular and contains only zeros and ones. It has b rows labelled by index
k ∈ [0, b− 1] and blogbAc+ 1 columns, labelled by index m. The matrix has
thus size given by Eq. (3). For example, the number A = 11 reads ’102’ in

radix 3 and, in that radix, it has matrix representation

(
0 1 0
0 0 1
1 0 0

)
. Its size is 9,

which coincides with C(3, 11) given by Eq. (3). Thus, Eq. (4) can be written
in matrix form, which in this case reads

(0 1 2)

0 1 0
0 0 1
1 0 0

30

31

32

 = (2 0 1)

 30

31

32

 = 11 (6)

The left and right vectors are fixed. They have components 0, 1, . . . , b −
1 and b0, b1, . . . , bblogb Ac respectively. Therefore, the matrix representation
characterizes each number in each radix in a unique way.

Quite interestingly, for b = bAc > 1 we have

C(bAc , A) = bAc
⌊
1 + logbAcA

⌋
= bAc

⌊
1 +

lnA

ln bAc

⌋
= 2 bAc (7)

since we have A = bAc+ ε with 0 ≤ ε < 1 and thus

1 ≤ lnA

ln bAc
=

ln(bAc+ ε)

ln bAc
≈ 1 +

ε

bAc ln bAc
< 2 (8)

The unary radix b = 1 does not obey Eq. (7) although it defines the most
elementary numeral system (and the lowest possible bound for a numeral
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system with a natural base) and certainly has a useful physical meaning (as
we shall see). This system is a most ancient one. It appears already in the
Golenishchev Mathematical Papyrus, an ancient Egyptian papyrus which was
most likely written down in the 13th dynasty of Egypt (roughly 1850 BC).
Since zero does not exist in the unary radix, it is not possible to represent
with it non-existing things. This probably explains why the ancient Egyptians
knew a formula for the volume of a frustum (i.e. an unfinished pyramid) but
not for the one of a finished pyramid: They did not have the number zero!
(This idea is fully elaborated in [21] p. 6.)

In order to represent a natural number A in the unary radix b = 1, an
arbitrarily chosen symbol ’1’ is repeated A times. This numeral system, thus,
transforms any number in the number of counts in which ’1’ appears. Ad-
dition and subtraction in this radix amounts to concatenate/remove strings
of 1’s. The following examples show how numbers in the decimal radix are
written in unary:

2 = 11 3 = 111 5 = 11111 10 = 1111111111 (9)

Note that the position of the 1’s is immaterial: all 1’s are indistinguishable
(it does not make sense to talk here about powers of the radix). Only their
total number is important. Thus, the 1’s behave just as tally marks. The
radix capacity C(1, A) in the unary radix is, thus, trivially

C(1, A) = A (10)

since A has A digits in radix 1 and the alphabet has only one symbol. Thus,
the unary radix is the one with the least economy to represent natural num-
bers A ≤ 5 (note that 6, which is written as 110 in the binary radix, has
digit capacity C(2, 6) = 2 · 3 = 6 in that radix and, therefore, it is equal to
the capacity C(1, 6) = 6 in the unary radix).

We finish these remarks on numeral systems with the trivial case b = 0
which does not constitute any useful numeral system, but which is, nonethe-
less, of physical relevance to represent the vacuum. In such radix, there are
no natural numbers A to be represented others than A = 0. The radix econ-
omy is thus C(0, 0) = 0. Such “radix” has always the least economy since,
trivially, it does not cost anything to represent nothing.

We have seen above that if a number A1 has the same number of digits
in radix b1 as it has A2 in radix b2, then, if b1 < b2 so is also A1 < A2. We
note also that a real number A ≥ 2 in radix bAc has always 10 as integer

part since bAc ≤ A < bAc+ 1 and, therefore, A = 1 · bAc1 + 0 · bAc0 + {A},
where {A} denotes the fractional part of A. Thus, crazy as it may seem, 10
m can denote any arbitrarily large length if we tune the radix in which 10
is expressed (note, however, that 1 m is always 1 m regardless of the radix
used!).

We read in Dirac’s book [22] (p. 3): So long as big and small are relative
concepts, it is no help explaining the big in terms of the small. It is therefore
necessary to modify classical ideas in such a way so as to give an absolute
meaning to size. We now show how the dimensionless Lagrangian action S/h,
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where h is the Planck constant, can be used to that purpose. Along a path γ
connecting two points ’1’ and ’2’, S is an scalar functional RN → R given by

S(q(t)) =

∫ t2

t1

L(q(t), q̇(t), t) dt (11)

where L is the Lagrangian, t denotes time, and q(t) and q̇(t) are the gener-
alized position and velocity vectors evaluated along the path. When S/h is
large the physical trajectories are governed by the principle of least action

DεS(q(t)) ≡ d

dε
S(q(t) + εf)

∣∣∣∣
ε=0

= 0 (12)

where Dε denotes the first-variation operator, ε is a scalar and f is an arbi-
trary function. The extremization of the action leads to the Euler-Lagrange
equations describing the physical trajectories

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 i ∈ [1, N ] (13)

where N is the total number of degrees of freedom in the system and qi and
q̇i are the i-th component of the generalized position and velocity vectors,
respectively. An equivalent formulation of the equations of motion is provided
by the Hamilton-Jacobi equation

H (q,∇S; t) +
∂S

∂t
= 0 (14)

which implies the following relationships involving the Hamiltonian H and
generalized momenta p as

H = −∂S
∂t

p = ∇S (15)

When S/h is small, there are no longer well defined unique trajectories along
which the motion of the system takes place. Rather, infinitely many choices
are possible and one is forced to speak about the probability of finding a
certain physical state. This is a most striking fact in quantum mechanics:
When the action S is of the order of h the physical laws seem very different
to when S/h is large. Thus, the (generally real) number S/h suggests a way
to give an absolute meaning to size, breaking the relativity of big and small.

The question thus arises as whether we can extract a physical radix from
the real-valued quantity S/h which is to be considered as the characteristic
“physical length” of a certain dynamical process. If we introduce the natural
demand that the radix (an integer) should increase linearly on the integers
as does S/h on the reals, a straightforward way to achieve this is to take
bS/hc as the physical radix by observing that

S

h
=

⌊
S

h

⌋
+

{
S

h

}
(16)
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i.e. that S/h is the sum of its integer and its fractional parts. The r.h.s. is the
sum of two nonlinear discontinuous functions on the reals, the integer-valued
function

⌊
S
h

⌋
which is a staircase with discrete jumps at each integer value of

S/h (and which strongly approaches S/h for S large, being always linear on
the integers), and the real-valued function

{
S
h

}
, which is a periodic function

of S/h (taking values between 0 and 1) with the form of a sawtooth wave,
being discontinuous at the integer values of S/h and linear everywhere else.

The principle of least action only works asymptotically, when S/h is large.
In such limit

{
S
h

}
can be neglected and we have, as already mentioned S/h ≈

bS/hc. Therefore, from Eq. (16), we obtain

1

h
DεS ∼ Dε

⌊
S

h

⌋
=

1

2
DεC

(⌊
S

h

⌋
,
S

h

)
(17)

where we have used Eq. (7) in getting to the last equality. This, therefore,
leads to reinterpret the least (classical) action paths as being those for which
the radix bS/hc is most efficient, i.e. those paths for which the radix bS/hc
has the least economy. With “efficiency” we mean those laws which extremize
the digit capacity, Eq. (3), with b ≡ bS/hc and A = S/h. As we have seen
above this efficiency represents an actual mathematical efficiency since it
also means that the matrix representations of physical numbers, Eq. (5),
have the lowest size. We propose that this principle of least radix economy
holds generally (also in situations where S/h is not necessarily large) thus
providing foundations for classical and quantum mechanics and statistical
thermodynamics as well. In the next sections we substantiate this claim.

Note that bS/hc is an integer-valued discontinuous function and the first
variation operator, infinitesimally acts on well-behaved (real-valued) func-
tionals. From a mathematical point of view this would seem a major violence
(belonging to the kind of problems mentioned in [23], p. 28). However, by
noting that

⌊
S
h

⌋
= S

h −
{
S
h

}
and

{
S
h

}
is a periodic function we have [24]{

S

h

}
=

1

2
− 1

π

∞∑
k=1

sin
(
2πk Sh

)
k

(18)

We claim that this Fourier series, which converges to {S/h} everywhere when
S/h is noninteger, is a physically meaningful representation of {S/h} even at
the discontinuities S/h integer (where Gibbs phenomenon takes place [25]).

Together with the decomposition of Eq. (16) a mathematical result that
we shall frequently use is the following. We note that

η ≤ S/h < η + 1 (19)

and therefore

0 ≤ η

η + 1
≤ S/h

η + 1
< 1 (20)

This means that S/h
η+1 is equal to its fractional part

{
S/h
η+1

}
. Thus

S

h
= (η + 1)

{
S/h

η + 1

}
. (21)
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and we also have, therefore,

η =

⌊
S

h

⌋
=

⌊
(η + 1)

S

(η + 1)h

⌋
=

⌊
(η + 1)

{
S

(η + 1)h

}⌋
(22)

3 The principle of least radix economy

We have thus seen that a fixed radix is not always the most efficient choice in
all situations involving representations of numbers (e.g. the example of the
pocket calculator above). Of course, in any specific scale the description of
physical laws is not affected in any way by the choice of the radix since the
latter is merely an (equivalent) representation of the numbers. Since Physics
is not scale invariant (from the considerations made in the previous section
on the role of S/h) there is, however, a fundamental physical radix: the one
which most efficiently works at each scale. Furthermore, the fundamental
radix establishes the form that physical laws do have at each scale. We propose
that nature has her own dynamical means to specify the most efficient radix.
Using action as our guide, we thus introduce the following postulates.

A. The physical radix (a natural dimensionless number) is given by

η ≡
⌊
S

h

⌋
=


S
h −

1
2 + 1

π

∑∞
k=1

sin(2πk Sh )
k if S

h /∈ Z

S
h if S

h ∈ Z
(23)

B. (Principle of least radix economy) Let A be either (a) an action-like radix-
dependent functional or (b) a dimensionless radix-independent quantity aris-
ing from, e.g., a counting argument. Then, physical laws are derived by ex-
tremizing the radix economy

DεC (η,A) = Dε

(
η
⌊
1 + logη A

⌋)
= 0 (24)

with η > 1 given by postulate A. In case (a) A is simply called action and we
shall take A = S/h. In case (b) A is called a (generalized) partition function
and the least radix economy C is said to be an entropy or a (generalized)
Massieu-Planck potential.
C. The unary radix η = 1 ≡ η1 gives the quantum of action. When it has the
least economy, it describes particles if S/h = η1 (hence {S/h} = 0) and fields
(the quantum smeared in spacetime) otherwise. η = 0 ≡ η0 describes the
vacuum and has always the least economy. Therefore, the vacuum is always
present in any physical situation.

We shall discuss postulate C in Section 7 and case (b) of postulate B in
Section 8. We now focus on case (a) of postulate B with η ≥ 2. Thus, with
A = S/h we have, from Eqs. (7) and (23) C (η, S/h) = η

⌊
logη (S/h) + 1

⌋
=

2η = 2 bS/hcand hence, the principle of least radix economy takes the form

DεC (η, S/h) = 2Dε bS/hc = 0 (25)
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Therefore

2Dε bS/hc = 2Dε

(
S

h
− 1

2
+

1

π

∞∑
k=1

sin
(
2πk Sh

)
k

)

=
2

h

[
1 + 2

∞∑
k=1

cos

(
2πkS

h

)]
DεS

=
2

h

∞∑
k=−∞

ei2πkS/hDεS =
2

h
D∞(2πS/h)DεS

=
4π

h

∞∑
n=−∞

δ

(
2πS

h
− 2πn

)
DεS

=
2

h
δ

({
S

h

})
DεS = 0 (26)

where D∞(x) ≡
∑∞

k=−∞ eikx is the Dirichlet kernel and δ(x) is the Dirac
delta function [26]. There are thus two kinds of possible physical solutions:

– I. Paths where the action S is minimized (i.e. for which DεS = 0);
– II. Any path where the action S is not an integer multiple of h (since then

the Dirac comb in Eq. (26) is zero). These are relevant in the quantum
regime which, from Eq. (23) takes place when

S

h
∼ 1

2
− 1

π

∞∑
k=1

sin
(
2πk Sh

)
k

=

{
S

h

}
(27)

When Eq. (27) holds, paths where S is an integer multiple of h are also
physically meaningful only if they are of the Type I as well, i.e. if they are
least action paths satisfying Eq. (12). These paths reproduce indeed the Bohr
quantization rule where the action is first minimized and then a value nh is
attributed to the least action trajectories. All these considerations guarantee
that the classical limit governed by Eq. (12) is asymptotically approached
from Eq. (26) for S/h large through the semiclassical quantization rules, as
was also already observed in the matrix formulation of quantum mechanics
[27]: In this limit S/h ∼ bS/hc, Eq.(27) does not hold ({S/h} can be neglected
compared to S/h) and Eq. (26) reduces to the least action principle, Eq.
(12). This is the correspondence principle, which we shall rigorously prove in
Section 4.

Henceforth, we shall always assume that S/h can take any arbitrary value
having in mind that when it is integer it corresponds to a least-action path
as well. Any solution of the Euler-Lagrange differential equations, Eq. (13),
is automatically also a solution of Eq. (26). Let us look for other solutions.
First we note a crucial fact of Eqs. (16), (23) and (26): they are all invariant
under the discrete transformation

S → S +mh (28)
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with m integer. Hence, if S is a solution of the variational principle so must
be S + mh necessarily as well. We now prove the following result: If S/h
is irrational (and, hence, a solution of Type II) the (multivalued) inverse

function S′

h ≡
1

i2πk ln ek of any member of the family

ek = eik2πS/h k = 0,±1,±2, . . . ,±∞ (29)

is a solution of Type II of Eq. (26) as well.
To prove this we must only check that Eq. (26) is satisfied for S′/h, i.e.,

that we have
4π

h

∞∑
n=−∞

δ

(
2πS′

h
− 2πn

)
DεS

′ = 0

We obtain,

4π

h

∞∑
n=−∞

δ

(
2πS′

h
− 2πn

)
DεS

′

=
4π

h

∞∑
n=−∞

δ

(
1

ik
ln ek − 2πn

)
Dε

(
h

i2πk
ln ek

)

=
4π

h

∞∑
n=−∞

δ

(
1

ik
[ln 1 + i(arg(ek) + 2πq)]− 2πn

)
Dε

(
h

i2πk
ln ek

)

=
4π

h

∞∑
n=−∞

δ

(
arg(ek)

k
+

2πq

k
− 2πn

)
Dε

(
arg(ek)

2πk
h+

q

k
h

)

=
4π

h

∞∑
n=−∞

δ

(
2πS

h
+

2πq

k
− 2πn

)
Dε

(
S +

q

k
h
)

=
4π

h

∞∑
n=−∞

δ

(
2πSq/k

h
− 2πn

)
DεSq/k = 0 (30)

where q is an arbitrary integer and we have defined
Sq/k
h ≡ S

h + q
k . In getting

to the last equality we have used the fact that, since S/h is irrational so is
Sq/k
h and, hence, the Dirac comb is zero because it is not possible to have

2πSq/h = 2πn for any integers n, q and k. This proves the result. Since
the irrational numbers are the most abundant ones in the real line (the
rational numbers having measure zero) [28] this result is expected to be most
important in the deep quantum regime (where irrational numbers should play
a most prominent role) and we shall use it below.

The multivaluedness of the complex logarithm gives thus rise to sym-
metric partners of S called Sq/k (S0 = S) which correspond to complex

numbers in the circle S1 given by Eq. (29). Therefore, together with values
Smk/k = Sm = S0 = S on different sheets of the Riemann surface [which
are symmetric by virtue of Eq. (28)] there appear k symmetric partners Sq/k
in each sheet of the Riemann surface as well, which correspond to the ac-
tion values S0/k, S1/k, S2/k, . . . , S(k−1)/k. They are induced in the circle
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S1 through the action of the group of automorphisms x → 2πqx/k with
q = 0, 1, . . . , k− 1 which leave ek invariant under composition. This group is
isomorphic to the finite cyclic group Zk = Z/kZ.

Two interesting corollaries are easily derived from the above result. If we
set k = 1 in Eq. (30), then if S/h is a solution of the variational princi-
ple 1

i2π ln e1(S/h) is also a solution of the same type. That this is so comes
from the discrete symmetry Eq. (28). As we shall prove below (see Section
4), this corollary is directly connected to the eikonal approximation in the
semiclassical regime.

The second corollary is that if S/h is a rational solution, there generally
exist physical paths with Sq/k/h integer and k > 1 which necessarily corre-
spond to least-action trajectories. This result may be helpful in understanding
subtleties of the semiclassical regime which proved to be stumbling blocks for
the old quantum theory. For example, it provides an explanation of why the
Heisenberg semiclassical quantization of the Helium atom with half-integer
quantum numbers seemed to work well in certain cases. Because of symmetry
considerations, the quantum physical state of the Helium atom, having two
electrons, appears to be naturally described by the member e2 = ei4πS/h,
which induces solutions S0/2, S1/2 with a Z2 symmetry in S1 [although we
must refrain from giving a detailed calculation here, that this should be the
case is because this symmetry group naturally reflects the exchange degen-
eracy of the two electrons (see e.g. [29], p. 480)]. Because of the symmetry
Eq.(28), there exist states with S1/2/h+m integer which correspond to half-
integer values for the action S/h = S0/2/h. Therefore, from the corollary,
since S/h takes half-integer values, this gives rise to semi-classically quan-
tized least-action periodic paths as the ones calculated by Heisenberg. Since
the Helium atom constitutes a three-body problem [30] in spite of the strong
correlations induced by e2, all other members ek should also be present lead-
ing to quantum chaos. Gutzwiller’s trace formula [31] has been found to
provide an excellent account of quantum chaos in the semiclassical regime.
In the semiclassical regime, all our above arguments are fully consistent with
the importance that classical periodic orbits play in Gutzwiller’s theory [31].
Here, such periodic orbits are ascribed to the Riemann surfaces created by
Eq. (28) through the members ek and the action values Sq/k/h in each sheet
of the Riemann surface.

The main consequence of the above theorem and corollaries is the follow-
ing: there exists a direct physical correspondence between the action S/~ on a
physical path and the phase χ of a complex number eiχ in the unit circle S1.
The reverse statement is then also true, albeit in a different form: any point
eiχ in the unit circle S1 corresponds to a certain (possibly infinite) ensem-
ble of paths in physical space. Any linear combination ψ(S) of the mappings
ek(x) : R → S1 in the complex plane yielding the trigonometric series (or
polynomial) [32]

ψ(S) =

∞∑
k=−∞

ψ̃(k)ei2πkS/h ≡ eiχ (31)

is surjective. Indeed, this is related to the fact that R is the universal cover
of S1. Note that χ is in Eq. (31) a kind of “averaged action” which is itself a
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solution of the principle of least radix economy. The multivalued inverses of
each ek(x) taken separately are complex logarithms whose values unfold the
possible (real) values for the action with different discrete symmetries indexed
by k. We have proved all the latter to be a solution of Eq. (26) by virtue of
Eq. (28). Indeed, the mapping ek(x) can be understood as the composition
of two mappings (the first being already surjective) {x} : R → [0, 1) and
[ek ◦ {}]x = ek({x}) : [0, 1)→ S1.

We have now tools to study the mathematical structure of solutions in
physical space that do not necessarily correspond to least-action trajectories
but which have a significant dynamical impact in the quantum realm. From
the above correspondence we have found that any arbitrary sequence of com-
plex numbers whose sum converges to a complex number in S1 maps to a
physical solution of the principle of least radix economy. Therefore, since the
trigonometric series Eq. (31) converges to a complex number of unit modulus
ψ(S) ∈ S1, it maps to physical solutions. Eq. (31) is called a wavefunction of
the physical system, with the property ψψ∗ = |ψ|2 = 1, i.e. the modulus of
the complex number ψ is unity (the asterisk denotes complex conjugation).
By the Cauchy-Schwarz inequality [33] we then observe that

∞∑
k=−∞

|ψ̃(k)|2 <∞ (32)

i.e., the sum converges to a finite positive real value: the norm. Hence, the

ψ̃(k)’s are terms of the sequence space `2 which consists of all convergent
Cauchy sequences. This sequence space is a most prominent example of
Hilbert space H. In fact, it was through this example that Hilbert intro-
duced his theory of linear integral equations [34]. There, thus, exist an scalar
product

(ψA, ψB) =

∞∑
k′=−∞

∞∑
k=−∞

∫ η+1

η

ψ̃∗A(k′)ψ̃B(k)e−i2π(k
′−k){S/h}d (S/h)

=

∞∑
k=−∞

∞∑
k′=−∞

ψ̃∗A(k′)ψ̃B(k)δkk′ =

∞∑
k=−∞

ψ̃∗A(k)ψ̃B(k) (33)

which is a complex-valued function of two vectors ψA, ψB ∈ H constituting
a positive definite hermitian form. A scalar function (f, g) : X ×X → C (or
R if X is a real linear space) is said to be an inner product or scalar product
if it satisfies the following conditions:

i. (f, f) ≥ 0 ∀f ∈ X with equality if and only if f = 0.

ii. (f, g) = (g, f) ∀f, g ∈ X. (The overline denotes complex conjugation.)
iii. (af, g) = a(f, g) ∀f, g ∈ X and a ∈ C (or R).
iv. (f1 + f2, g) = (f1, g) + (f2, g) ∀f1, f2, g ∈ X.

Specifically, then, a Hilbert space H is an inner product space that is
complete when furnished with the norm ||f || =

√
(f, f) [35]. The first of the
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conditions for the scalar product is not a direct consequence of the princi-
ple of least radix economy and can be relaxed to include isotropic vectors
(spinors). The Riesz-Fischer theorem [25] establishes the isomorphism be-
tween the Hilbert space `2 and the one of square summable real functions
L2. Between those spaces there exists a 1:1 linear distance-preserving map
which constitutes the efficient implementation of the Fourier transform. All
this also warrants that members in Eq. (29) constitute a complete orthonor-
mal family in H

(ek′ , ek) =

∫ η+1

η

e−i2π(k
′−k){S/h}d (S/h) = δkk′ (34)

that we can use as base of the vector space. In turn, this implies that the

trigonometric series given by Eq. (31), ψ(S) =
∑∞

k=−∞ ψ̃(k)ei2πkS/h =∑∞
k=−∞ ψ̃(k)ei2πk(bS/hc+{S/h}) =

∑∞
k=−∞ ψ̃(k)ei2πk{S/h} is also a Fourier

series and that the latter is unique for any set of elements ψ̃(k) in sequence
space. We, therefore, have

ψ̃(k) =

∫ η+1

η

ψ(S)e−i2πk{S/h}d (S/h) = (ek, ψ(S)) (35)

and Eq. (31) can be rewritten as

ψ(S) =

∞∑
k=−∞

(ek, ψ(S))ek (36)

which corresponds to a linear superposition of the quantum states ek. Because
physical quantities that are observable can only be real-valued, since η is real,
as well as S/h in the principle of least radix economy, finding a particular
state ek of ψ(S) is a just a possibility that may or may be not the case. We
have |(ψ(S), ψ(S))|2 = 1 and, then, necessarily

|(ek, ψ(S))|2 ≤ 1 (37)

is a real quantity between 0 and 1 and since this is the only real-valued in-
formation that can be generally extracted out of ek and ψ(S) it is reasonable
to interpret |(ek, ψ(S))|2 as the probability that ek is the case in any mea-
surement (Born rule). This is so because ψ(S) represents the physical state
of the system and therefore |(ek, ψ(S))|2 is the norm of the projection of the
physical state on the direction spanned by the vector ek.

Taking into account the above remarks on probability we note then that
|(ψ(S), ψ(S))|2 = 1 because a point in spacetime belongs always with cer-
tainty to (at least) one path with action S regardless of the actual value of
S. This latter statement is clear both for periodic orbits (where any value
of S can be realized by completing the trajectory as many times as needed)
and non-periodic ones (where any value of S can be realized by extending the
trajectory forward or backward in time). As discussed at the end of Section
4, the endpoints of the trajectory are irrelevant in the formulation presented
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here and we are only concerned with each point in spacetime (q, t) and the
set of paths with action S/h that pass through (q, t).

The consistency of all above results is still reinforced by the fact that the
Dirichlet kernel D∞(2πS/h) is also everywhere a solution of the variational
principle, Eq. (26). The Dirichlet kernel also obeys the symmetry Eq. (28)
i.e. D∞(2π(S + nh)/h) = D∞(2πS/h) and is to be regarded as an operator
under an integral sign [26] connecting in the circle S1 the different values
of the action S/h which are consistent with the same wavefunction and for
which the physical radix η is kept constant. The Dirichlet kernel thus acts
as a propagator between such states in the form of a convolution with the
wavefunction

ψ(S) =

∫ η+1

η

ψ(S′)D∞ (2π(S − S′)/h) d(S′/h) (38)

It is well-known that the L1 norm of the Dirichlet kernel Dn diverges as
‖Dn‖L1 ∼ log n when n→∞. Therefore, in order to be able to use a function
ψ(S) in a convolution with the Dirichlet kernel, ψ(S) must belong to the set
of square-summable functions. This is, however, automatically warranted by
the above development, which led us to establish the trigonometric series Eq.
(31) as a Fourier series.

Quantum mechanics is thus described by unit rays ψ (so-called because

their norm ||ψ|| =
√

(ψ,ψ) = 1 [35]) and the action of self-adjoint operators

Ô which satisfy (ψB , ÔψA) = (ÔψA, ψB) so that the properties of the scalar
product are unaffected and allow observables (that are real-valued quantities)
to be defined. Since ψ is a vector in the space spanned by the complete
orthonormal base Eq. (29), such operators are hermitian matrices which

send vectors to vectors and whose elements [Ô]ij ≡ Oij satisfy Oij = O∗ji. A

most simple example is K̂, the index operator, defined as

K̂ ≡ ~
i

d

dS
(39)

We have, by using Eq. (31)

K̂ψ ≡ ~
i

dψ

dS
=

∞∑
k=−∞

ψ̃(k)
~
i

deikS/~

dS
=

∞∑
k=−∞

kψ̃(k)eikS/~ (40)

When this operator acts on wavefunctions which correspond to members of
the orthonormal base, Eq. (29) we find

K̂ek = kek (41)

which shows that any of such members is an eigenstate of the operator K̂ with
eigenvalue k. The matrix elements of the operator when the eigenfunctions
are used as base are thus (ek′ , K̂ek) = kδkk′ . This trivially shows that the

operator K̂ is hermitian.
In order to proceed further, we have now at our disposal the Hilbert

space constructed through the complete orthonormal base given by Eq. (29).
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Since all Hilbert spaces with the same dimensions are isomorphic [36] we are
now free to choose any appropriate base in Hilbert space to deal with any
particular quantum mechanical problem. This freedom in the choice of the
base has been recently emphasized (see [37], p. 176) and is fully consistent
with the orthodox Copenhagen interpretation of quantum mechanics. For
example, since S is a scalar functional and can be thought as dependent
on the generalized position vector q and time t, appropriate orthonormal
functions other than the eikS/~ can be chosen and this norm will always be
conserved from Parseval’s theorem.

We conclude this section with a brief summary of the main predictions
made by the principle of least radix economy. There exist basically two kinds
of physical solutions. Type I paths above lead to trajectories defined by the
Euler-Lagrange differential equations Eq. (13), the state of the system being
specified by the vector (t,q). Type II paths are described by the integral
equation Eq. (38) in terms of the Dirichlet kernel, which acts as a propagator.
In any case the physical state is described by the wavefunction ψ(S) Eq. (31)
with the discrete symmetry of Eq.(28). In the classical limit S/h large only
type I paths are relevant. In the quantum regime, the fact that the two types
of paths coexist in phase space is consistent with the wave-particle duality. In
the case S/h integer, each term in the sum in Eq. (31) describes a de Broglie
standing wave in the quantum regime.

4 Derivation of the Schrödinger equation, eikonal approximation
and correspondence principle

From Eq. (31) it is now straightforward to derive the Schrödinger equation.
We first define Sk ≡ kS, pk ≡ kp and Ek ≡ kH. Then Eq. (15) implies

Ek = −∂Sk
∂t

pk = ∇Sk (42)

and, therefore, from Eq. (31)

∂ψ

∂t
=

∞∑
k=−∞

ψ̃(k)
∂eikS/~

∂t
=
i

~

∞∑
k=−∞

ψ̃(k)eiSk/~
∂Sk
∂t

= − i
~

∞∑
k=−∞

Ekψ̃(k)eiSk/~ ≡ − i
~
Ĥψ (43)
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∇ψ =

∞∑
k=−∞

ψ̃(k)∇eikS/~ =
i

~

∞∑
k=−∞

ψ̃(k)eiSk/~∇Sk

=
i

~

∞∑
k=−∞

pkψ̃(k)eiSk/~ ≡ i

~
p̂ψ (44)

∇2ψ = ∇ · ∇ψ = − 1

~2
∞∑

k=−∞

p2
kψ̃(k)eiSk/~

= − 1

~2
p̂ · p̂ψ (45)

In Eqs. (43) and (44) the Hamiltonian Ĥ ≡ i~ ∂
∂t and momentum operators

p̂ ≡ −i~∇ have been defined. From Eqs. (43) and (45) we now have

i~∂ψ
∂t

+
~2

2m
∇2ψ =

∞∑
k=−∞

(
Ek −

p2
k

2m

)
ψ̃(k)eiSk/~

=

∞∑
k=−∞

Vk(q)ψ̃(k)eiSk/~ = V (q)ψ (46)

where V (q) is the potential energy and it has been used that Ek =
p2
k

2m+Vk(q)
(conservation of energy). We thus obtain the time-dependent Schrödinger
equation

i~∂ψ
∂t

=

(
− ~2

2m
∇2 + V (q)

)
ψ = Ĥψ (47)

If we consider a free particle (V (q) = 0) we obtain from Eqs. (31) and (47)
the following solution for ψ(S)

ψ(S) =

∞∑
k=−∞

ψ̃(k)eiSk/~ = Aei(pq−Et)/~ (48)

with A being a constant. This plane wave corresponding to the free particle
can be interpreted from this latter expression as a mean-field (averaged)

complex order parameter of an (infinite) collection of “oscillators” ψ̃(k)eiSk/~.
Each point in spacetime can thus be assumed to contain such an infinite
collection of oscillators which are not to be considered as hidden variables:
Only their mean field is physically relevant and, furthermore, only the power
spectral density of the order parameter is physically observable.

Since Eq. (31) converges everywhere on a set of positive Lebesgue mea-

sure, by the Cantor-Lebesgue theorem ψ̃(k) → 0 as |k| → ∞ [38]. We use
now this latter result to prove that when S/h is increasingly large, in the
semiclassical regime Eq. (31) becomes

ψ(S) ∼ ψ̃(1)eiS/~ (49)
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To prove this we use Eq. (21) in Eq. (31)

ψ(S) =

∞∑
k=−∞

ψ̃(k)ei2πkS/h =

∞∑
k=−∞

ψ̃(k)ei2πk(η+1){ S/hη+1} (50)

Thus S/h large corresponds to taking the limit η + 1 large. Now, note that
from Eq. (35)

ψ̃(k(η + 1)) =

∫ 1

0

ψ

(
S/h

η + 1

)
e−i2πk(η+1){ S/hη+1}d

(
S/h

η + 1

)
(51)

Let k′ ≡ k(η+1). Then, because of the Cantor-Lebesgue theorem, ψ̃(k′)→ 0
as k′ → ∞, and for η → ∞ the only k’s that are relevant are the ones that
become smaller accordingly, i.e. long wavelengths. Thus, asymptotically only
the first inhomogeneous mode (|k| = 1) present in the expansion Eq. (50)
becomes significant, which in turn proves Eq. (49). If one replaces Eq. (49)
in the Schrödinger equation one arrives at the Hamilton-Jacobi equation in
the limit S/~ large. Mathematically, we can see this explicitly if we replace
ψ = e1(S/h) = eiS/~ in the Schrödinger equation. We then obtain

(∇S)2

2m
+ V (q) +

∂S

∂t
=

i~
2m
∇2S (52)

The r.h.s. of Eq. (52) vanishes because the prefactor (of order ~) is negligible
compared to the prefactors of all terms in the l.h.s (of order unity). We are
thus only left with

(∇S)2

2m
+ V (q) +

∂S

∂t
= 0 (53)

which is the Hamilton-Jacobi equation, Eq. (14), for a Hamiltonian of the

form H = p2

2m + V (q). This proves again the correspondence principle: in
the limit of large quantum numbers, quantum mechanics reproduces classical
mechanics.

Note that time reversal symmetry is possessed by the Schrödinger equa-
tion, i.e., we have, from Eq. (47), by taking the complex conjugate and using
that H is real

Ĥψ∗ = −i~∂ψ
∗

∂t
= i~ ∂ψ∗

∂(−t)
(54)

Thus, the state ψ∗ will evolve in the +t direction exactly in the same way as
ψ would have evolved in the −t direction. This warrants that the probability
density, proportional to |ψ|2, remains unaffected [39].

Although the formulation presented here is based on the Lagrangian ac-
tion S(q(t)) our approach is different to Feynman’s path integral formulation
of quantum mechanics [40]. Note that our formulation is entirely built on
the wavefunction Eq. (31), which is itself a consequence of the least radix
economy principle: there is not a “sum over all possible different paths in
spacetime”. Our formulation is based neither on the concept of propagator
between points in spacetime nor on attributing amplitude probabilities to
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Fig. 1 The action S(q(t)) at a point q is a real number that may refer to any
of the many different paths in spacetime (not necessarily least-action ones) with
(unspecified) initial q′ and final q′′ coordinates (the paths being parameterized by
the time coordinate t).

paths (but to physical states directly). In Feynman’s formulation the end-
points q′ and q′′ of the trajectory are fixed and any midpoint q(t) and the
action S(q(t)) fluctuate. A sum over all paths is then needed to obtain the
probability amplitude of going from q′ to q′′. In our formulation, we rather fix
S and q(t) and we do not care about the endpoints, which are arbitrary in the
quantum regime. Indeed, there is in general an ensemble of endpoints (and,
hence, an ensemble of paths, see Fig. 2) that are compatible with a value for
the action S(q(t)) at q(t). Importantly, note however that, in the classical
regime, the trajectory is uniquely specified by giving q(t) and S(q(t)) (since
then the momentum is uniquely determined along the trajectory through the
Hamilton-Jacobi equation and the total length of the path is given by S).
We have then shown how the Hilbert space emerges as a natural description
when η is small.

We have made use of Eqs. (42) and this requires some justification since
the Schrödinger equation is thus to be understood as an approximation re-
lated to an expansion around the least-action paths. To see this let us observe
that, in general, we have [31]

S(q(t)) ≡ S(q′ → q→ q′′) = S(q′ → q) + S(q→ q′′) (55)

where we have split the total action into partial actions and the transitions
between the endpoints through the midpoint q are indicated. Let Eq. (55)
refer to a least-action path. Then, for an arbitrary path (not a least-action
one) between the same points, we would have

S(q(t) + δq) ≡ S(q′ → q + δq→ q′′) = S(q′ → q + δq) + S(q + δq→ q′′)

= S(q′ → q) + S(q→ q′′) +
1

2
δqj

(
∂2S(q′ → q)

∂qj∂qk
+
∂2S(q→ q′′)

∂qj∂qk

)
δqk

= S(q(t)) +
1

2
δqjcjkδqk (56)
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where we have used Einstein’s summation convention and that the first vari-
ation around the classical path is zero. We have also defined

cjk ≡
∂2S(q′ → q)

∂qj∂qk
+
∂2S(q→ q′′)

∂qj∂qk
(57)

These latter coefficients form a matrix which gives the deviation from the
extremum of the action. If the second variation is small so are these coeffi-
cients and the determinant of the matrix is small as well. Indeed, the density
of trajectories close to the classical one is inversely proportional to the de-
terminant of this matrix (see [31], p. 179): a larger density is related to a
constructive interference of waves [31] and there is where the approximation
involved in keeping to first-order to derive the Schrödinger equation (hence
using Eqs. (42) to first-order) is most accurate. This approximation is also
involved in Feynman’s derivation of the Schrödinger equation [40] (see also
the remarks in [31]) and this shows the intimate connection between Feyn-
man’s formulation and ours, even when we are not following a path integral
approach. Rather, we claim that Eq. (31) captures the whole interference pat-
tern caused by the paths of total action S passing through the location q(t).
The intensity of this interference of waves at q(t) is thus naturally related to
the probability of finding q(t) as a physical state of the system.

5 Breaking of spacetime commutativity and finite systems

If we define the position operator as q̂ ≡ q, we have, for two components i and

j [q̂i, p̂j ]ψ = (q̂ip̂j − p̂j q̂i)ψ = −i~
(
qi

∂
∂qj
− ∂

∂qj
qi

)
ψ = i~δijψ (with δij being

the Kronecker delta). In general, for two conjugate variables α and β that

satisfy βk = ∂Sk/∂α, the operator β̂ = −i~∂/∂α can be defined through the
straightforward generalization of Eq. (44). Then, if one considers the operator

α̂ ≡ α, the commutation relationship [α̂, β̂] = i~ holds (provided that α is
differentiable and periodic in the unit circle S1). This implies the Heisenberg
uncertainty principle [41] [42]. The breaking of geometric commutativity has
been the subject of intense interest [9] [43] and can also be directly understood
from the concepts introduced in this article. If we now use η given by Eq.
(23) as radix in Eq. (1), we have, for A = S/h

S

h
= 1 · η1 + 0 · η0 +

0∑
m=−∞

ηm−1dη(m,S/h) (58)

For classical paths for which the action is large the sum in the last term can
be neglected: Eq. (58) means the same as S/h = η + {S/h}, and {S/h} can
be neglected for η large. In this classical limit we are left with only two digits
at integer positions: All digits after the decimal point are zero. From Eq. (2)

we have, for each of these two digits, dη(1, S/h) = 0 = bS/hc − η
⌊
S/h
η

⌋
,

dη(2, S/h) = 1 =
⌊
S/h
η

⌋
− η

⌊
S/h
η2

⌋
=
⌊
S/h
η

⌋
. The former of these equations

means that the operations of dividing by η and taking the floor brackets



21

b...c commute, and hence b(S/h)/ηc = bS/hc /η. The latter equation means
that S/h is proportional to η with prefactor 1. Let us now assume, however,
than we are in the quantum regime so that Eq. (27) is satisfied. This means
that S/h ∼ {S/h} and thus the fractional part cannot be neglected (the sum
in Eq. (58) contains non-zero terms). Let us assume that in the fractional

part of S/h the digit dη(−|m′|, S/h) accompanying the power η−|m
′|−1 with

m′ ≤ 0 in Eq. (58) is the first, most significant, nonzero digit. Then from Eq.
(2) we have

dη(−|m′|, S/h) =
⌊
η1+|m

′|S/h
⌋
− η

⌊
η|m

′|S/h
⌋

(59)

This latter expression means that the operator η̂x ≡ ηx that multiplies the
real quantity x by η and the operator b. . .cx ≡ bxc which evaluates the floor
function do not commute (in Eq. (59) both operators act on the quantity

η|m
′|S/h). The classical limit (where these operators do commute) occurs in

the limit |m′| → ∞ (i.e. when the fractional part {S/h} is negligible). In
such limit, the principle of least radix economy reduces to the principle of
least action and commutativity is regained. Note that this non-commutative
relationship for the action is not a conventional Heisenberg-like as the ones
discussed above since dη(−|m′|, S/h) in Eq. (59) is an integer number ∈ [0, η−
1]. Such integer-valued structure constants arise in the study of Chevalley
groups [44]. The latter are non-abelian finite simple groups that constitute
the finite counterparts of Lie groups [45].

In atomic models, the physical radix η coincides with the so-called prin-
cipal quantum number n. Then it must also be remarked that dη(m,S/h)
for any m ≤ 0 is a non-negative integer ∈ [0, η − 1]. This suggests that
dη(−|m′|, S/h) (i.e. the most significant digit of the fractional part of the
action {S/h}) corresponds to the azimuthal quantum number ` describing
the orbitals (electronic subshells). The necessary existence of such quantum
numbers comes directly from the variational principle presented in this ar-
ticle without solving any further equation. When the angular momentum is
important as a further conservation law coming from the semiclassical prob-
lem, the splitting of the main quantum shells into orbital subshells predicted
by the Schrödinger equation, Eq. (47), can also be understood from this new
point of view as the increased significance that the digit dη(−|m′|, S/h) ac-
quires on the expansion of the Lagrangian action S/h in the radix η, Eq.
(58). That this digit is responsible for the breaking of the commutativity of
the spacetime, from Eq. (59) is also made spatially evident, since orbitals
are countable discrete objects that arise out of a continuum and commutative
spacetime.

This argument points to a natural way in which finite systems with a
finite number of quantum states enter in the theory. Let us first note that,
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from Eq. (58) we have

ψ(S) =

∞∑
k=−∞

ψ̃(k)eikS/~ =

∞∑
k=−∞

ψ̃(k)ei2πk(bS/hc+{S/h}) (60)

=

∞∑
k=−∞

ψ̃(k) exp

(
i2πk

0∑
m=−∞

ηm−1dη(m,S/h)

)

Let us now assume a physical system with a phase space such that all
digits in the expansion of the fractional part of the action in Eq. (58) can be
neglected except dη(0, S/h) ∈ [0, η − 1]. In this case, we obtain

ψ(S) =

∞∑
k=−∞

ψ̃(k) exp

(
i
2πkdη(0, S/h)

η

)

=

η−1∑
k′=0

ϕ(k′) exp

(
i2πk′dη(0, S/h)

η

)
≡ ψ(dη(0, S/h)) (61)

where we have defined ϕ(k′) ≡
∑∞

k=−∞ ψ̃(k′ + kη). Thus ψ(dη(0, S/h)) is
a wavefunction in the finite-dimensional Hilbert space Cη. There is a vast
literature addressing wavefunctions which constitute finite models of this
kind, see e.g. [37] and [46]. Following [37] we can, for example, construct a

Hamiltonian operator Ĥ which acts on the wavefunction ψ(dη(0, S/h)) as

Ĥψ(dη(0, S/h)) =
2π~dη(0, S/h)

ηε
ψ(dη(0, S/h)) (62)

where ε is a fundamental time step. The time interval ∆t is regarded here
as an integer multiple of that fundamental time step. Such a model with a
discrete clock belongs to the family of cellular automata models [14], [37].
This is equivalent to the cogwheel model with η teeth described in Section
2.3 in [37]. From the Schrödinger equation, we then have

ψ(dη(0, S/h), t = ε) = e−iĤε/~ψ(dη(0, S/h), t = 0)

=

η−1∑
k′=0

ϕ(k′) exp

(
i2π(k′ − 1)dη(0, S/h)

η

)
(63)

=

η−1∑
k′=0

ϕ(k′ + 1 mod η) exp

(
i2πk′dη(0, S/h)

η

)
The spectrum given by Eq. (62) is ubiquitously found in physics [37] and
corresponds to the one of an atom with total angular momentum J = 1

2 (η−1)
and magnetic moment µ in a weak magnetic field: the Zeeman atom [37].
From the above we also see that ψ(dη(0, S/h)) can be written as a linear
superposition of the η members ek′(dη(0, S/h)/η) (k′ ∈ [0, η − 1], which
correspond to rational values dη(0, S/h)/η of the action.
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6 Statistics of action

In any given physical situation the actual radix can fluctuate around the
optimal one (having the least economy) because all values for the action are
allowed by the principle of least radix economy. In the classical limit (least
action paths) the actual radix and the optimal one can be taken as equal
because the impact of fluctuations in the actual radix can be neglected. Let
us now investigate these statements more closely.

When the optimal radix is η = η1 = 1 (unary radix) we can ask what
is the probability to observe either a quantum of action (a ’1’ value) or a
vacuum state (a ’0’ value) which has always (trivially) the least economy. In
the deep quantum regime, since no other information is available from the
principle, the statistics of action reduces to the analysis of unbiased yes/no
experiments. Such a kind of statistics is well-known to be modeled by a
binomial distribution of the form

f(m;n, 1/2) =

(
n

m

)
1

2n
(64)

The latter gives the probability that out of n experiments m quanta of action
(and, hence, n−m vacuum states) are observed.

We can now ask how does this distribution change when the optimal radix
η is larger than one. In order to investigate this question, we first note that, if
in the binomial distribution the probability of observing a quantum of action
in one experiment is now p, we have

f(m;n, p) =

(
n

m

)
pm(1− p)n−m (65)

for the probability of observing m quanta in n experiments. The mode (i.e.
most probable value) of Eq. (65) is

b(n+ 1)pc (66)

when (n+1)p is noninteger. We then observe that if we identify n with η and

p with
{

S
(η+1)h

}
then, from Eqs. (22) and Eq. (65) we find that η is indeed

the mode of the binomial distribution given by

f

(
m; η,

{
S

(η + 1)h

})
=

(
η

m

){
S

(η + 1)h

}m(
1−

{
S

(η + 1)h

})η−m
(67)

i.e., this probability mass function has its maximum at value m = η which
appears with probability

f

(
η; η,

{
S

(η + 1)h

})
=

{
S

(η + 1)h

}η
(68)

The mean and the variance of the distribution are given respectively by

η
{

S
(η+1)h

}
and η

{
S

(η+1)h

}(
1−

{
S

(η+1)h

})
. The relative strength of the
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fluctuations around the maximum at η is therefore given by√√√√√1−
{

S
(η+1)h

}
η
{

S
(η+1)h

} ∼ a
√
η

(69)

where a = O(1) because of Eq. (20). Thus, the distribution of action is
strongly peaked at the optimal radix η in the limit η large. Although the
outcomes η − 1, η − 2 etc. are also possible with a significant probability,
in such limit the system becomes increasingly better described by η on the
average because any other possible integer values can be accurately approx-
imated by η. That such approximation at the level of integers can be made
in the classical limit, automatically warrants the validity of the variational
approach of classical mechanics in that limit as well. This provides an in-
terpretation of how the principle of least-action emerges from the quantum
world out of probabilistic considerations. We then see that the physical radix
η not only classifies physical paths giving the characteristic, optimal and
most economic ruler of the dynamics: It also classifies the dynamical behav-
ior into binomial probability distributions, Eq. (67), of which it constitutes
the mode.

If η is large there is an almost unit probability of observing a chain of η
1’s on the average. Thus the optimal radix η corresponds to observing chains
whose most probable outcome in η ’experiments’ are η quanta of action. From
Eq. (64) the probability of observing n quanta of action in the unary radix
η1 = 1 is (1/2)n.

In order to observe n quanta of action in the unary radix with the most
significant probability, at least 2n experiments have to be carried out. Note

that there are
(
2n
n

)
= (2n)!

(n!)2 chains with n zeroes and n ones. For 2n experi-

ments, these chains are the largest in number and, hence, they have the most
significant probability, which is given by

1

22n

(
2n

n

)
(70)

This means that, in a situation where the optimal radix is η1, some chains
of ten experiments yielding e.g.

0100111001 1010011001 1100101010 (71)

are all consistent with finding the chain

11111 (72)

in radix η = 5 after performing five experiments. Note however that, while
fluctuations around this maximum are stronger in η1 (and, hence, chains
with different numbers of ones and zeros have also a significant probability)
they are less significant in radix η = 5 from the above arguments. However,
because of the law of large numbers in the classical limit (η →∞) chains of η
ones in radix η are described in radix η1 by chains with length 2η containing
η zeroes and η ones: Any other kind of chains have negligible measure. This
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statement, whose proof is the law of large numbers [47], implies then that
Eqs. (68) and (70) must coincide on the average and in the limit η large
fluctuations must be negligible in both the η and the η1 “ensembles”, i.e. we
have

p(η) ≡
〈
f

(
η; η,

{
S

(η + 1)h

})〉
=

1

22η

(
2η

η

)
(73)

where the brackets denote the average over all possible values of the action.
From this latter expression, we obtain the following result

22ηp(η) = (η + 1)Cη (74)

where Cη is the Catalan number n = η. In the next section we shall discover
what this Catalan number counts.

The above discussion shows that η plays an analogous role to the num-
ber of particles N in classical statistical thermodynamics where fluctuations
around mean values of thermodynamic quantities are proportional to 1/

√
N .

We emphasize that this result indeed is not an analogy, as the next sec-
tion shows. (There, the physical radix η is indeed shown to be equivalent
to η particles described by the unary radix.) With this in mind, the radix
economy for the quantity A that enters the least radix economy principle is
asymptotically equal to

C (η,A) = η
⌊
1 + logη A

⌋
∼ η logη A = logη Aη (75)

when A is large. Eq. (75) has the form of a “Boltzmann entropy” or a
“Massieu-Planck thermodynamic potential” [48] and tells us that A is an
“extensive” quantity in the “number of particles” η when A is large. Thus,
the radix capacity is, generally, an entropy-like quantity and the principle of
least-radix economy leads to a relationship between action (for A = S/h) and
entropy. Such a relationship was explored, by totally different arguments, in
[49]. In Section 8 we shall elucidate the connection between this sketch of
“spacetime thermodynamics” and classical statistical thermodynamics.

As a final remark of this section, we note that from Eq. (10) we have

C(1, η) = η (76)

Because of the above interpretation of the radix economy C as an entropy-like
quantity, this relationship relates the action η to the “entropy C(1, η) of a
single particle” (described by the quantum of action in the unary radix) and
coincides with the connection between action and entropy made by de Broglie
in his book “Thermodynamics of the isolated particle” [50] and also discussed
in [51]. Note that this relationship has a different form to the familiar one
given by Eq. (75) but this is merely because the unary radix behaves quite
differently to any other radix η ≥ 2, as we explained in Section 2.
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7 The unary radix: special relativity, relativistic wave equations
and spin from the quantum of action.

We now explore the consequences of Postulate C in Section 3. As explained
in Section 2, the unary radix η1 = 1 defines the most elementary numeral
system and it constitutes the lowest bound for a physical, nonvanishing radix.

Postulate C implies that action is quantized and that the quantum of
action is described by the unary physical radix η1 = bS/hc = 1. Any other
value of η can be itself written in the unary radix as

η = 111 . . . 11︸ ︷︷ ︸
η copies of 1

(77)

like in the examples given in Eq. (9) of Section 2. Thus a situation described
by optimal radix η, no matter how large, can be seen as involving η quanta
of action described each by radix η1. This is consistent with the observation
made about η in the previous section that η is analogous to a “number of
particles”. Indeed, it is the number of quanta of action.

The solution of the Schrödinger equation leads, generally, to an spectrum
of discrete energy levels (e.g. for a particle in a potential well). When these are
infinitesimally separated, a continuum energy spectrum is obtained instead.
Still, we can think about energy in similar terms as we think about action:
Energy is quantized as well and we can talk about energy quanta in terms of
the energy differences of consecutive energy levels. The ratio of a quantum
of action to a quantum of energy is time. Since the latter can be thought as
measured by a clock that has an absolute character, we generally define a
proper time interval as the ratio of the quantum of action η1 to the quantum
of energy E1

∆T ≡ hη1
E1

(78)

From the results in the previous section and the principle of least radix
economy, we have seen that action can fluctuate. If we consider processes in
which a quantum of energy is conserved while considering a transformation
from a quantum of action to a different physical action, then the ratio η1/∆T
must stay constant, being equal to the ratio S/(h∆t). Here ∆t is a time
increment characteristic of the process with the action S/h 6= η1 (an improper
time). Thus, we have

η1
∆T

=
S/h

∆t

(
=
η + {S/h}

∆t

)
→ ∆t

∆T
=
S/h

η1
(79)

Note that, because S/h ≥ η1, this last relationship necessarily implies that
a clock that does not measure increments of proper time, measures time in-
tervals ∆t that are dilated compared to the proper ones ∆T . Let an observer
be at rest with a quantum of action. The observer ’eternally’ sees ’1’ with
perfect certainty. What is being ’measured’ by this observer is physically the
same as what another observer measures in a different frame moving with
relative velocity v and where 2n experiments in the unary radix take place
yielding n quanta of action. If all 2n experiments take place simultaneously
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then the probability that a certain chain of zeroes and ones is compatible
with this situation is given by Eq. (70). Remind that for the observer in the
rest frame there are no simultaneous experiments at all, but the single out-
come ’1’ with perfect certainty. Thus, to account for both observers, the one
at rest and the one moving with velocity v, it is clear that Eq. (70) has to
be extended to

1

22n

(
2n

n

)(v
c

)2n
(80)

Thus, for v = c Eq. (70) is regained and for v = 0 (hence n = 0 experiments)
it yields the outcome ’1’ of the observer at rest. The number of simultaneous
experiments in the moving frame can freely fluctuate. Each possible chain
of 2n simultaneous experiments has the same content in action η1 since any
of these possibilities being the case corresponds to the outcome ’1’ of the
observer at rest. We, thus, obtain

∆t

∆T
=
S/h

η1
=

1

η1

∞∑
n=0

p(n)η1 =

∞∑
n=0

1

22n

(
2n

n

)(v
c

)2n
=

1√
1−

(
v
c

)2 (81)

where we have used that

1√
1− 4u

=

∞∑
n=0

(
2n

n

)
un (82)

is the generating function of the central binomial coefficients [52] (Eq. (81)

then simply follows by taking u =
(
v
2c

)2
in Eq. (82)). Eq. (81) is the cel-

ebrated Lorentz time dilation. Here we have derived it from quantum me-
chanical probabilistic arguments suggested by the postulate on the physical
interpretation of the unary radix, instead of the usual geometric-kinematic
ones.

We can now ask how many experiments are simultaneous on average. We
note that, indeed, the sum in Eq. (81) can be interpreted as a grand canonical
partition function of the “spacetime statistics” presented in Section 6 where
v/c plays the role of a “fugacity”. For v < c the average value < 2n > of the
length of the chains converges to

< 2n >=

∑∞
n=0

2n
22n

(
2n
n

) (
v
c

)2n∑∞
n=0

1
22n

(
2n
n

) (
v
c

)2n =
v2

c2 − v2
=
m2

m2
0

v2

c2
=
E2v2

m2
0c

6
(83)

where m is the relativistic mass of the particle, defined as

m ≡ m0√
1−

(
v
c

)2 =
c

v
m0

√
< 2n > =

E

c2
(84)

The energy is thus consistent with Einstein’s relationship

E = mc2 =
m0c

2√
1−

(
v
c

)2 = c
√
p2 +m2

0c
2 (85)
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Fig. 2 All C3 = 5 possible physical paths in spacetime for the case η = 3 (see text).
Space |∆r| is plotted in the abscissa and c∆t in the ordinate. Shown is the relevant
part of the Minkowski spacetime. The cyan region constitutes the accessible points
in spacetime and the red one the inaccessible ones.

where p ≡ mv. Eq. (83) diverges when v = c. Furthermore, v cannot exceed
c since then Eq. (81) would diverge and Eq. (83) would yield negative values.
Eq. (83) has a further important consequence: it directly connects the chains
of zeroes and ones of Section 6 to physical quantities: The average length of
the chains when described in radix η1 is a function of the ratio v/c.

Special relativity and relativistic quantum mechanics are consequences of
the principle of least radix economy and the physical implications of the unary
radix. We can now finish the picture on familiar grounds. From Eq. (81) we
have (

∆t

∆T

)2

−
(
v∆t

c∆T

)2

= 1 (86)

from which we obtain, by using that |∆r| = v∆t

c2 (∆t)
2 − |∆r|2 = c2 (∆T )

2 ≡ (∆s)
2

(87)

where we have defined the length element ∆s. Thus, if all increments are
infinitesimally small we obtain

c2dt2 − |dr|2 = ds2 (88)

which is the length element of the Minkowskian geometry. Now we can under-
stand what the Catalan numbers in Eq. (74) count: The chains of zeroes and
ones correspond to paths in the forward lightcone and the Catalan number
Cη correspond to all possible paths in spacetime within the reach of 2η exper-
iments. Experiments with outcome ’1’ correspond to quanta of action along
the time-like worldline while experiments with outcome ’0’ vacuum states
corresponding to propagation along space-like coordinates. Note that for the
observer at rest with the quantum of action, the latter kind of propagation
is not possible since the observer just measures ’1’ quantum of action only
along the time-like worldline, which corresponds to a proper time since his
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measurement corresponds to a quantum of energy as well. Note that, from
Eqs. (74) and (81)

S

h
=

∞∑
n=0

p(n) =

∞∑
n=0

(n+ 1)

22n

(v
c

)2n
Cn (89)

The sum runs over all possible paths within the forward Minkowski cone.
In Fig. 2 these paths are sketched for the case n = 3. We have C3 = 5
paths. Space (|∆r|) is plotted in the abscissa and time (c∆t) in the ordinate.
The cyan region contains all points in spacetime that are accessible within
the forward Minkowski cone. The red region contains all points that are
inaccessible. The paths, from top to bottom and left to right correspond
thus to the chains ’101010’, ’101100’, ’110010’,’110100’, ’111000’. Since these
chains have length 6, from Eq. (83) this means that this describes a situation

that we would find on average if we take v/c =
√

6/7.
In coordinates, we have

ds2 = c2dt2 − dx2 − dy2 − dz2 (90)

We can thus define the quadrivector (x0, x1, x2, x3) ≡ (ct, x, y, z) and express
Eq. (90) as

ds2 = ηµνdx
µdxν (91)

where we have used Einstein’s summation convention for repeated indices
and

ηµν = ηµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (92)

is the metric tensor for the Minkowski metric. Note also that, if we now define
the quadrimomentum (p0, p1, p2, p3) ≡ (E/c, px, py, pz) Eqs. (42) can all be
written in a compact way as

pµ = −∂µS (93)

with pµ = ηµνp
ν and where the label k has been dropped. The following

scalar defines the rest mass of the particle

pµp
µ = −pµηµν∂νS = ηµν∂νS∂µS =

E2

c2
− p2 ≡ m2

0c
2 (94)

from which the energy-momentum relationship, Eq. (85) is again obtained

E = c
√

p2 +m2
0c

2 (95)

A relativistic wave equation which is first order in time and space can
now be derived following well-known steps that involve Clifford algebra, but
using the wavefunction Eq. (31) and Eqs. (93). Let us first introduce the
matrices γk through the following relationship

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (96)
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Such expression defines the Clifford algebra C`1,3(R) (up to an unimportant
factor of 2). Clifford algebras allow us to take the square root of operators
involving derivatives in spacetime [53]. We further define

/p ≡ γµpµ = −γµ∂µS ≡ −/∂S (97)

where we have used Feynman’ slash notation to introduce also the operator
/∂ ≡ γµ∂µ. By using now Eq. (96) together with Eq. (90) we have, from Eq.
(94), remarkably

/p/p = (/∂S)21 = pµp
µ1 = m2

0c
21 (98)

where 1 is the identity matrix. Therefore, we also have

/∂S = ±m0c1 (99)

Taking the minus sign of this latter equation and using Eq. (31) and applying
the /∂ operator to both sides

/∂ψ =

∞∑
k=−∞

ψ̃(k)/∂eikS/~ =
i

~

∞∑
k=−∞

kψ̃(k)eikS/~ /∂S

= − im0c1

~

∞∑
k=−∞

kψ̃(k)eikS/~ = − im0c

~
1K̂ψ (100)

where K̂ is the index operator that we defined in Eqs. (39) and (40) We thus
obtain the relativistic wave equation

i~γµ∂µψ −m0c1K̂ψ = 0 (101)

In order for this equation to have solutions the wavefunction ψ must be a
vector. It indeed defines what is called a spinor field. When only the mode

k = 1 is present in the wavefunction, ψ = ψ̃(1)e1 the latter equation reduces
to the Dirac equation

i~γµ∂µψ −m0c1ψ = 0 (102)

with ψ being a four-component vector, a bispinor. In Dirac representation,
the four contravariant gamma matrices are

γ0 =

 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (103)

γ2 =

 0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 γ3 =

 0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 (104)

which can be written in terms of the 2× 2 Pauli matrices σi as

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
(105)
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where I denotes the 2× 2 identity matrix.
We must now justify why k = 1 describes spin-1/2 states, since we have

used this in our derivation of the Dirac equation. Since η1 describes particles,
we must work in this radix in order to be able to interpret spin as an internal
property of them, if we stick to our postulates. From Eq. (50) we have, if
η = η1,

ψ(S) =

∞∑
k=−∞

ψ̃(k)ei2πkS/h =

∞∑
k=−∞

ψ̃(k)ei4πk{
S
2h} (106)

where we have used Eq. (21). Since
{
S
2h

}
is any number ∈ [0, 1), it is clear

then that there exist two different kinds of states with different periodicities,
which depend on whether the quantity

s ≡ k

2
(107)

is integer or half-integer, i.e. whether k is even or odd respectively. We in-
terpret s as the spin state of the particle. When s is half-integer valued we
say that the particle is a fermion and when it is an integer we call it boson.
We thus see that k = 1 above describes particles with spin s = 1/2. If we
replace k = 1 in Eq. (106) we also see the 4π periodicity which is typical of
the motion of the electron [53]. This justifies having taken k = 1 to obtain
the Dirac equation from the more general equation Eq. (101).

If η > η1 then k in Eq. (31) does no longer describe spin states. At the end
of Section 5 we have seen an example where k takes indeed values between 0
and η − 1, with η > 1, and we have mentioned their relationship with states
of angular momentum. Such states are not spin states because they do not
describe a system where the unary radix is the optimal one. The problem
of how to describe particles with higher spin by means of Eq. (101) shall be
discussed elsewhere. We conjecture that a connection should exist between
this equation and the Bargmann-Wigner equations.

Our definition of spin is in tune with the interpretation of spin made in
algebraic quantum field theory. See, for example Eqs. I.3.26 and I.3.27 in
[54]. There a “little Hilbert space” is introduced depending on a parameter
ϕ ∈ [0, 2π) which is mathematically equivalent to the orthonormal base Eq.
(29), as considered in Eq. (106) for η = η1. Here

{
S
2h

}
plays the same role

as ϕ there.

8 Derivation of Boltzmann’s principle

The Second Law of Thermodynamics becomes important when the total
number of degrees of freedom N in Eq. (13) is huge. The Second Law finds an
elegant interpretation in Statistical Thermodynamics through Boltzmann’s
principle, which establishes that the equilibrium thermodynamic entropy SB
for an isolated system given by

SB = kB lnΩ (108)
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attains its maximum at equilibrium (kB is the Boltzmann constant). Ω in
Eq. (108) is interpreted as the space of configurations of a finite system. For
a classical Hamiltonian system where energy is conserved one has [55] [56]

Ω =

∫
d3Npd3Nq

h3NN !
δ (E −H(q,p)) (109)

This number corresponds to the total number of attainable microstates in
the constant energy surface. Eq. (108) is connected to the Gibbs canonical
ensemble through the Laplace transform of Ω. Why Eq. (108) or, equiva-
lently, the Gibbs ensemble, describes indeed thermodynamic equilibrium is
a mistery. We quote Ruelle [57]: The problem of why the Gibbs ensemble de-
scribes the thermal equilibrium (at least for “large systems”) [...] is deep and
incompletely clarified.

From the principle of least radix economy we can now give a new inter-
pretation of Boltzmann’s entropy and the Second Law. To see how, let us
remark that Ω is just a huge number corresponding to all possible configu-
rations of the conservative Hamiltonian system: There is also a huge variety
of finite paths with dimensionless action S/h (and radix η = bS/hc) that are
contained in the constant energy surface and we can express the number Ω
in terms of the radix corresponding to any of these paths.

At equilibrium, the concept of typicality was coined to describe the paths
with the largest probability measure. The principle of least radix economy, as
we show now, provides both the right expression for the equilibrium entropy
and an estimate of the length of the typical paths. To see this, first observe
that the number to be expressed now in the radix η = bS/hc is A = Ω which
is a radix-independent fixed quantity given by Eq. (109). Thus, we have, from
(b) Postulate B

DεC (η,Ω) = Dε

(
η
⌊
1 + logη Ω

⌋)
≈ Dε

(
η logη Ω

)
= Dε

(
η

ln η

)
lnΩ =

d

dη

(
η

ln η

)
lnΩ Dεη

= 0 (110)

where Eq. (3) has been used together with the fact that Ω is very large and
so is its logarithm compared to unity, i.e.

C (η,Ω) ≈ η logη Ω = η
lnΩ

ln η
(111)

We see from Eq. (110) that each least radix path obeying Eq. (12) (i.e.
satisfying Dεη = 0) is a local minimum. There is, however, a global minimum
as well, which occurs when

d

dη

(
η

ln η

)∣∣∣∣
ηmin

= 0 (112)

The function x/ lnx has a minimum at x = e. Therefore, since η = bS/hc
is an integer the minimum is at ηmin = 3 (≈ e) [20] which gives the typical
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paths. Such paths in the constant energy surface are characteristic of ther-
modynamic equilibrium and are tiny because of the effect of thermalization
in phase space (i.e the principle of the equipartition of energy) at equilibrium
where the global minimum is attained. The constant energy surface is ho-
mogeneously filled by an ensemble of paths and those which are the typical
ones have the most significant contribution to the average.

From Eqs. (108), (110) and (112) we observe that

C (ηmin, Ω) = C (3, Ω) =
3

ln 3
lnΩ =

3

kB ln 3
SB (113)

which shows how Boltzmann entropy naturally arises from the principle of
least radix economy. Furthermore, since from Eq. (112) we have

kBC (3, Ω)

SB
=

3

ln 3
≤ η

ln η
(114)

and then

SB ≥
kB ln η

η
C (3, Ω) =

3 ln η

η ln 3
kB lnΩ (115)

This suggests to define the nonequilibrium path-dependent entropy

S(η) ≡ 3 ln η

η ln 3
kB lnΩ (116)

and thus, we have, from Eq. (115)

SB ≥ S(η) (117)

where the equality only holds for η = ηmin (i.e. at equilibrium). In a nonequi-
librium situation, a significant proportion of paths is different to the typical
ones. In its evolution to equilibrium, the average characteristic lengths of the
possible paths on the constant energy surface changes with time. Finally, a
situation is reached when typicality is most relevant and this corresponds to
a situation where equipartition of the energy has taken place. Such a situ-
ation is described by Boltzmann entropy SB = S(ηmin) and this entropy is
a maximum compared to any other path-dependent nonequilibrium entropy.
This is the second law of thermodynamics. Explicitly, the nonequilibrium
entropy Eq. (116) is

S(η) =
3kB
ln 3

lnb 1h
∫ t2
t1
Ldtc

b 1h
∫ t2
t1
Ldtc

ln

[∫ 3N∏
k=1

dqkdq̇k
h3NN !

∂L

∂q̇k
δ

(
E + L−

∑
i

q̇i
∂L

∂q̇i

)]
(118)

and can thus be calculated, given any Lagrangian, for any specific path. The
paths which satisfy ⌊

1

h

∫ t2

t1

Ldt

⌋
= 3 (119)

are typical at equilibrium. In a nonequilibrium situation, there are flow struc-
tures in phase space with well defined characteristic lengths (if one thinks
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for example in the coexistence between KAM tori and a chaotic sea in the
weakly chaotic regime of a nonlinear Hamiltonian system, the KAM tori
define islands of regular motion with well defined characteristic dimensions
[58]). These characteristic lengths can be described by corresponding paths
in phase space and the entropy associated to any of these paths will be lower
than the entropy associated to a typical segment (which provides the char-
acteristic length for a “thermalized” path within the chaotic sea).

The arrow of time is given by the fact that, considering a conservative
system we have

E = −∂S
∂t
≈ −h∂η

∂t
(120)

in the limit η large, from the first of the Eqs. (15). Then the equation

∂S(η)

∂t
=
∂S
∂η

∂η

∂t
= −∂S

∂η

E

h
= −3ESB

h ln 3

d

dη

ln η

η
(121)

has a fixed point at the global minimum Eq. (112) of the radix economy
(i.e. at the maximum of the entropy) where the r.h.s. is zero. This global
fixed point is trivially stable for a bounded system (for which E = −|E|).
This gives a trend to equilibrium that is consistent with the Second Law of
Thermodynamics.

As a final remark we note that the nonequilibrium entropy Eq. (116) is
inversely proportional to η/ ln η. The prime number theorem (first proved
by Hadamard and de la Vallée-Poussin in 1896) [21] states that the number
of prime numbers π(n) below a certain natural number n is asymptotically
equal to

π(n) ∼ n

lnn
(122)

Thus, we observe that the nonequilibrium entropy is inversely proportional

to the total number of prime numbers below the radix η = b 1h
∫ t2
t1
Ldtc: the

larger the number of prime numbers, the lower the entropy. Remarkably, the
condition n large at which the prime number theorem holds, coincides with
the asymptotic limit (η large) that we have used in Eq. (110).

9 The Parker-Rhodes combinatorial hierarchy and the strength of
fundamental interactions

In the approach presented in Sections 6 and 7 we have distinguished between
quanta of action and strings of information formed by quanta of information
that can each contain either a quantum of action or a vacuum state. The
idea of information transfer processes in terms of binary digits to describe
fundamental physics pervades the work of Frederick Parker-Rhodes (1914-
1987) [7]. He made the major discovery of a combinatorial hierarchy [6], [7],
[8] that is a most deep and intriguing result of relevance to us here. Starting
from the most elementary configurations, the combinatorial hierarchy con-
stitutes a process in which chains of zeroes and ones are generated giving
rise to numerical values that, quite surprisingly, capture the relative interac-
tion strengths of some known fundamental physical forces. There exist some
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detailed expositions of the combinatorial hierarchy, e.g. by Ted Bastin and
Clive Kilmister [6] who also contributed significantly to the topic. The later
joint effort of H. Pierre Noyes, John Amson and David McGoveran added
further insights of interest to physics [8].

We close this article showing how the Parker-Rhodes combinatorial hi-
erarchy is physically understandable within the conceptual framework that
we have developed here. We now consider general chains of unequal numbers
of zeroes and ones, which are meant to be of the type discussed in Sec-
tion 6 and which codify interacting particles for which a wavefunction of the
form Eq. (31) can be constructed. Particles that interact through the strong
force (quarks), interact also electromagnetically (they bear electric charge)
and gravitationally (they bear mass). If Ω denotes the number of chains
that describe a certain interaction between particles with mass we find that
Ωstrong < · · · < Ωelectromagnetic < Ωgravitation since each set of chains in-
cludes the previous one as a subset. We now construct hierarchically chains
of zeros and ones, excluding always the chain where all digits are zero (the
vacuum), by using the elements obtained in the previous step. We consider
first the element ’1’ denoting the quantum of action and ’0’ denoting the vac-
uum state. With these two elements we can build three chains ’10’, ’01’ and
’11’ (the vacuum chain ’00’ is excluded). We start with these three chains to
hierarchically construct others. Thus, if Ωm−1 denotes the number of chains
constructed at iteration step m− 1, the number of new chains generated at
step m is

Ωm = 2Ωm−1 − 1 (123)

This sequence gives 3, 7, 127, 2127 − 1 ≈ 1.7 · 1038 (Sloane A00584, itself
a subsequence of Sloane A007013). Eq. (123) constitutes the iteration of
the so-called Mersenne operator, which is used in the investigation of prime
numbers. This sequence also coincides with the Catalan sequence (Sloane
A180094) which gives the total number of steps to reach 0 or 1 starting with
Ωm and applying the map Ωm → (number of 1’s in the binary expansion of
Ωm) repeatedly.

The cumulative sum of all numbers of chains
∑m

k=0Ωk gives the sequence:
3, 10, 137, 2127+136 ≈ 1.7 ·1038. This sequence is the central result of Parker-
Rhodes theory. Since it is not yet included in the comprehensive Sloane’s On-
line Encyclopedia of Integer Sequences, http://oeis.org (as of 13th October
2014) it can be happily “baptized” as Parker-Rhodes sequence.

We have now, of course Ω0 < Ω0 + Ω1 < · · · <
∑m

k=0Ωk mimicking the
above relationship described for the different physical interactions. We can
now define the strength of an interaction quite naturally as the ratio of one
quantum of action to the total number of chains cumulatively created at step
m as

η1∑m
k=0Ωk

(124)

We have proceeded in a similar way above when deriving the kinetic energy
term of special relativity, since we have attributed to each chain of zeros or
ones a path in the forward Minkowski cone, representing the propagation of a
free particle. Now, the quantum of action is distributed within all possibilities
of the interaction potential. The larger the number of possibilities, the lower

http://oeis.org
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the action corresponding to each of them. From probabilistic considerations,
the meaning of this equation is also clear if we think in terms of a Boltzmann
equal a priori probability postulate (which leads to the Boltzmann entropy
discussed in Section 8 when the same probability is attributed to every mi-
crostate in phase space). The total numbers of chains are total numbers of
possibilities (microstates) of distributing one quantum of action in the con-
figuration space of chains of zeroes and ones. The larger is such number, the
larger also the number of microstates and the lower the probability that the
quantum of action goes to a particular microstate. The lower is thus the field
strength (which is described by this elementary transfer of information). For
the first few iterations of the Parker-Rhodes sequence we obtain from Eq.
(124) starting with Ω0 = 3 (corresponding to the elements ’00’ and ’01’ and
’10’) the values

1

3
,

1

10
,

1

137
,

1

1.7 · 1038
(125)

Parker-Rhodes gave arguments of why the sequence must finish at the fourth
iteration [6], [7], [8]: It becomes then impossible to construct enough linear op-
erators that discriminate between the chains constructed. Most remarkably,
if the strong force is taken to have strength 1, the third and fourth terms
of the expansion give the right orders of magnitude of the relative strength
of the electromagnetic and the gravitational forces between two protons, re-
spectively. In fact the values approximate the actual experimental ones to an
error of less than one thousandth!

10 Conclusions

In this article we have presented a variational method: the principle of least
radix economy, Eq. (25) that has led us to a new interpretation of both
classical and quantum mechanics. The dimensionless integer quantity η =
bS/hc has been ascribed to the most efficient radix in which numbers en-
tering in physical laws are expressed. Minimizing the radix economy C(η,A)
(where A = S/h is the physical action or a radix-independent quantity),
has been shown to yield two different classes of solutions: least action paths
and quantum wavefunctions. The Hilbert space of quantum mechanics, the
Schrödinger equation, and Heisenberg uncertainty relationships have been
derived with this principle. The breaking of the commutativity of spacetime
geometry and the existence of quantum numbers has then also been eluci-
dated. A new derivation of Lorentz time dilation and Einstein’s special rela-
tivity has then been accomplished from statistical arguments (instead of the
traditional geometric-kinematic approach). We have also derived relativistic
wave equations governing the spatiotemporal evolution of spin fields. The
radix economy C(η,A) is an entropy-like quantity and we have also shown
how classical statistical thermodynamics is encompassed by the principle of
least radix economy.

The central idea of this article is simple, although unfamiliar, and is de-
tailed in Section 2. A physical number is not only just a number accompanied
by physical units. The number is also represented in a certain radix (a fact



37

that has previously been overlooked even when physicists always like to speak
about “orders of magnitude”) and we claim that this radix is physically im-
portant, even when physical laws at a certain scale (i.e. when the dynamical
variables do not change in many orders of magnitude) are not affected by
how actual numbers are indeed represented. In the quest for a unified theory
of physics, we propose that the radix change provides the necessary degree
of freedom (not a free parameter) to bring physics at all scales together. We
also propose that nature dynamically exploits this radix change and that
this explains the wave-particle duality found in the quantum realm (and the
least action principle in the classical realm). We claim that the quantum of
action (naturally described by the unary radix) is the main building block
in defining any physical action (as we have shown through the explicit con-
struction of the kinetic energy term). We thus suggest that there exists a
“radix relativity” that concerns the physical action and which, together with
the conservation laws related to the symmetries of the action itself through
Noether’s theorem, needs to be accounted for in order to better understand
the wide variety of dynamical behavior found in the universe (and why clas-
sical determinism and quantum mechanics coexist within the same physical
reality).
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