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Abstract

We show that the distribution of the major index over the set of involutions in Sn that
avoid the pattern 321 is given by the q-analogue of the n-th central binomial coefficient. The
proof consists of a composition of three non-trivial bijections, one being the Robinson-Schensted
correspondence, ultimately mapping those involutions with major index m into partitions of m
whose Young diagram fits inside a ⌊n

2
⌋× ⌈n

2
⌉ box. We also obtain a refinement that keeps track

of the descent set, and we deduce an analogous result for the comajor index of 123-avoiding
involutions.
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1 Introduction

The study of statistics on pattern-avoiding permutations is an active area of research. In one of
the first papers in this area, Robertson, Saracino and Zeilberger [24] considered the number of
fixed points and excedances in permutations avoiding patterns of length 3, which sparked further
work on these statistics by several authors [7, 16–19]. More recently, other statistics such as the
number of descents [4, 5], the major index and the number of inversions [10, 15, 26] have been
studied on restricted permutations. Many of these papers show that certain statistics have the
same distribution on permutations avoiding different patterns, and in some cases they give this
distribution.

There has also been a significant amount of work on pattern-avoiding involutions. Recall that
an involution is a permutation that equals its inverse. In one of the most cited papers on pattern
avoidance, Simion and Schmidt [29] count involutions avoiding each pattern of length 3. Other
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more recent papers consider various statistics on pattern-avoiding involutions [8, 9, 14]. The present
paper focuses on the descent number and major index statistic on 321-avoiding involutions, and
more generally on the distribution of the descent set. Similar problems on unrestricted involutions
have been well studied [2, 11, 22, 33].

One novelty of our work is that we find a surprising connection between pattern-avoiding in-
volutions and integer partitions. Our main result is that descent sets on 321-avoiding involutions
have the same distribution as certain hook lengths on partitions whose Young diagram fits inside
a box. In particular, the major index statistic translates to the area of the Young diagram. We
obtain a bijective proof by composing three non-trivial statistic-preserving bijections, first going
from permutations to lattice paths and then to partitions. One peculiarity of our main result is
that when the length of the permutation is large enough in comparison with the largest descent,
one can give a much simpler proof (discussed in Section 4.2), which does not seem to extend to all
cases.

In Section 2 we introduce some background on lattice paths, as well as one of the three pieces
of the main bijection. In Section 3 we state and proof the main results about descents and major
index on 321-avoiding involutions, presenting the two remaining pieces of the bijection, one of which
involves the Robinson-Schensted correspondence and has been used in [19], and the other one which
is new to the best of our knowledge.

In Section 4 we discuss some consequences and extensions. We show that, using ideas from [33],
our results extend to the ascent distribution on 123-avoiding involutions. We also consider descents
on involutions avoiding two patterns of length 3. Finally, in Section 5 we turn to the larger set of
all 321-avoiding permutations, and we obtain formulas enumerating those with a given descent set.

Finally, Section 6 discusses an alternate proof of our result about the distribution of the major
index on 321-avoiding involutions. This proof uses symmetric functions, and it is not bijective,
unlike the one provided in Section 3.2.

2 Lattice paths

An important tool in our study of pattern-avoiding involutions will be lattice paths. In this section
we define the paths that we will use and we give some background. Unless explicitly stated other-
wise, all the paths in this paper are lattice paths with steps N = (0, 1) and E = (1, 0) starting at
the origin (0, 0). The length of a path is its number of steps.

A Dyck path is a path ending on the line y = x and not going below y = x. Denote by Dn the
set of Dyck paths of length 2n. A Dyck path prefix (sometimes called ballot path) is a path not
going below y = x. We denote by Pn the set of Dyck path prefixes of length n. A Grand Dyck path

of length n is a path ending at
(

⌈n2 ⌉, ⌊
n
2 ⌋
)

. We denote by Gn the set of Grand Dyck paths of length
n. Note that this definition is more general than the standard one, which considers only Grand
Dyck paths with an even number of steps.

A peak in a path is an occurrence of NE, which we sometimes identify with the vertex in the
middle of such an occurrence. If we label the vertices of path P ∈ Pn or P ∈ Gn from 0 to n
starting at the origin, the peak set of P , denoted Peak(P ), is the set of labels of the vertices that
are peaks. For example, the peak set of both paths in Figure 1 is {2, 6, 9, 14}.

Next we describe a bijection ξ between Pn and Gn, which belongs to mathematical folklore.
A very similar construction was used by Greene and Kleitman [21] to give a symmetric chain
decomposition of the boolean algebra, and also more recently by Elizalde and Rubey [20] in the
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context of lattice paths.
Given P ∈ Pn, match Ns and Es that face each other, in the sense that the line segment (called

a tunnel in [17]) from the midpoint of N to the midpoint of E has slope 1 and stays below the
path. Figure 1 shows an example. Thinking of the Ns as opening parentheses and the Es as closing
parentheses, the matched parentheses properly close each other. Let j be the number of unmatched
steps, which are necessarily N steps, since P ∈ Pn. Note that j and n have the same parity. To
obtain ξ(P ), change the first ⌈ j2⌉ unmatched N steps into E steps.

It is clear that ξ(P ) ∈ Gn, since it has ⌈n2 ⌉ E steps and ⌊n2 ⌋ N steps. The inverse map is
obtained again by matching Ns and Es that face each other in the Grand Dyck path, and then
changing all the unmatched Es (which necessarily come before the unmatched Ns) into Ns.

2

6

9

14

7→
ξ

2

6

9

14

Figure 1: The bijection ξ : Pn → Gn. The unmatched steps changed by ξ are thicker and colored
in red. The labels indicate the positions of the peaks, which are preserved by the bijection.

Lemma 2.1. For every P ∈ Pn, we have

Peak(P ) = Peak(ξ(P )).

Proof. For each peak NE in a Dyck path prefix or Grand Dyck path, the steps N and E forming
the peak are matched to each other, so peaks remain unchanged when applying ξ or ξ−1.

3 321-avoiding involutions

This section contains the main results of the paper, which concern statistics on 321-avoiding invo-
lutions.

Let Sn (resp. In) denote the set of permutations (resp. involutions) of {1, 2, . . . , n}. Recall
that a permutation π is an involution if π = π−1. A permutation π(1) . . . π(n) is 321-avoiding if
there exist no i < j < k such that π(i) > π(j) > π(k). Denote by Sn(321) (resp. In(321)) the set
of 321-avoiding permutations (resp. involutions) in Sn.

We say that a permutation π has a descent at position i, where 1 ≤ i < n, if π(i) > π(i + 1).
Otherwise, we say that π has an ascent at that position. The set of descent positions of π will be
denoted by Des(π), while Asc(π) will denote the set of ascent positions. Moreover, we denote by
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des(π) and asc(π) the cardinalities of Des(π) and Asc(π), respectively. The sum of the entries in
Des(π) is called the major index of π:

maj(π) =
∑

i∈Des(π)

i.

Similarly, the comajor index of π is the sum

comaj(π) =
∑

i∈Asc(π)

i.

3.1 Number of descents

Our first goal is to give the distribution of the number of descents on 321-avoiding involutions.
We start by describing a bijection ρ between In(321) and Pn which, without the restriction to
involutions, appears in [19, Section 3], in [1], and in a similar form in [23, p. 64].

Given π ∈ In(321), we first apply the Robinson-Schensted algorithm (see [25, Section 3.1]) to
obtain a pair of standard Young tableaux of the same shape. By the symmetry of this algorithm
(see [28]), the fact that π = π−1 translates into the fact that these two tableaux are identical. Denote
the resulting tableau by Q. Since π avoids 321, this tableau has at most two rows (by Schensted’s

Theorem [27], the number of rows equals the length of the longest decreasing subsequence of π).
Thus, the Robinson-Schensted algorithm gives a bijection π 7→ Q between In(321) and the set of
standard Young tableaux with n boxes and at most 2 rows.

The tableau Q can be interpreted as a Dyck path prefix, by letting the entries in the first row
determine the positions of the N steps, and the entries in the second row determine the positions
of the E steps. Define ρ(π) to be this Dyck path prefix. Figure 2 shows an example of the bijection
ρ.

3 4 1 2 7 9 5 10 6 8 11 12
R-S
7→ 1 2 5 6 8 1112

3 4 7 9 10
7→

Figure 2: The bijection ρ : In(321) → Pn.

We now show that the distribution of the descent set on 321-avoiding involutions is the same
as the distribution of the peak set on Dyck path prefixes.

Lemma 3.1. For every π ∈ In(321), we have

Des(π) = Peak(ρ(π)).
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Proof. Let Q be the tableau obtained by applying the Robinson-Schensted algorithm to π. A
property of this algorithm (see [28, Remarque 2] and [31, Lemma 7.23.1]) is that Des(π) equals the
descent set of Q, that is, the set of indices i such that i appears in the top row of Q and i + 1
appears in the bottom row. This is equivalent to the i-th step of ρ(π) being a N step immediately
followed by an E step, namely, a peak.

Theorem 3.2. For every 0 ≤ k < n,

|{π ∈ In(321) : des(π) = k}| =

(

⌈n2 ⌉

k

)(

⌊n2 ⌋

k

)

.

Proof. By Lemmas 3.1 and 2.1, the composition ξ ◦ ρ is a bijection between In(321) and Gn with
the property that if π ∈ In(321) and P = ξ(ρ(π)) ∈ Gn, then Des(π) = Peak(P ), and in particular
des(π) = |Peak(P )|. Thus, it is enough to find the number of paths in Gn with k peaks. This
number equals

(

⌈n2 ⌉

k

)(

⌊n2 ⌋

k

)

,

since such a path is uniquely determined by the coordinates of its peaks (x1, y1), . . . , (xk, yk) with
x1 < · · · < xk and y1 < · · · < yk, where the x-coordinates are an arbitrary subset of {0, 1, . . . , ⌈n2 ⌉−
1} and the y-coordinates are an arbitrary subset of {1, 2, . . . , ⌊n2 ⌋}.

3.2 Major index and descent set

In this section we prove our main result. Its unrefined version states that the distribution of the
major index over 321-avoiding involutions is given by the central q-binomial coefficients. Recall
that the q-binomial coefficients are polynomials defined as

(

n

j

)

q

=
(1− qn)(1− qn−1) . . . (1− qn−j+1)

(1− qj)(1− qj−1) . . . (1− q)
.

Theorem 3.3. For n ≥ 1,
∑

π∈In(321)

qmaj(π) =

(

n

⌊n2 ⌋

)

q

. (1)

It is well known [32, Chapter 6] that the coefficient of qm in the central q-binomial coefficient
on the right hand side of (1) equals the number of partitions of m whose Young diagram fits inside
a ⌊n2 ⌋ × ⌈n2 ⌉ box. In the rest of the paper, we denote this box by Bn, and we place coordinates
on it so that its lower-left corner is at the origin and its upper-right corner is at

(

⌈n2 ⌉, ⌊
n
2 ⌋
)

. We
write λ ⊢ m to denote that λ is a partition of m, and we write λ ⊆ Bn to denote that the Young
diagram of λ fits inside Bn. By looking at the lower-right boundary of their Young diagrams,
partitions satisfying the above two conditions can be interpreted as Grand Dyck paths from (0, 0)
to

(

⌈n2 ⌉, ⌊
n
2 ⌋
)

with steps N and E such that the area of the region in R
2 inside Bn that lies above

the path is m, as shown in Figure 3.
We will prove a refinement of Theorem 3.3, which we state as Theorem 3.4 below. Given a

partition λ ⊢ m, we define its hook decomposition HD(λ) = {i1, i2, . . . , ik} (always written such
that i1 < · · · < ik) as follows. The number of entries k is the length of the side of the Durfee square
of λ, that is, the largest value such that λk ≥ k. The largest entry ik is the number of boxes in
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the largest hook of λ, which consists of the first column and first row of its Young diagram. Now
remove the largest hook of λ and define ik−1 to be the number of boxes in the largest hook of the
remaining Young diagram. Similarly, the remaining entries ij are defined recursively by peeling off
hooks in the Young diagram. See Figure 3 for an example. Note that ij − ij−1 > 1 for all j by
construction.

Figure 3: The Young diagram of the partition λ = (4, 4, 3, 3, 2) ⊢ 16 inside the box B12, and its
hook decomposition HD(λ) = {2, 6, 8}. The lower-right boundary of the Young diagram determines
a Grand Dyck path from (0, 0) to (6, 6), which is highlighted in blue.

Theorem 3.4. Let 1 ≤ i1 < i2 < · · · < ik < n, and let m = i1 + · · · + ik. There is a bijection

{π ∈ In(321) : Des(π) = {i1, i2, ..., ik}} −→ {λ ⊢ m : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn}.

Note that if ij − ij−1 = 1 for some j, then both sides in Theorem 3.4 are empty sets, since two
consecutive descents in a permutation would produce an occurrence of 321. For fixed m, taking the
union over all subsets {i1, . . . , ik} ⊆ [n− 1] with i1 + · · ·+ ik = m, Theorem 3.4 gives a bijection

{π ∈ In(321) : maj(π) = m} −→ {λ ⊢ m : λ ⊆ Bn},

so it implies Theorem 3.3.
To prove Theorem 3.4 we will use a sequence of bijections, as summarized in Figure 4. The

composition ξ ◦ρ used in the proof of Theorem 3.2 is not enough here, because it does not translate
the major index of the 321-avoiding involution into the area above the Grand Dyck path. We will
need an additional bijection mapping the statistic HD to Peak, which we define next.

Lemma 3.5. There is a bijection ψ from the set of partitions λ inside Bn to Gn such that, for

all λ,

HD(λ) = Peak(ψ(λ)).

Proof. Given a partition λ ⊆ Bn, suppose that its Durfee square has side k and that HD(λ) =
{i1, . . . , ik}. Let G ∈ Gn be the path given by the boundary of the Young diagram of λ. Splitting

In(321)
ρ

−→ Pn
ξ

−→ Gn
ψ−1

−→ {λ ⊆ Bn}

Des
Lem. 3.1

↔ Peak
Lem. 2.1

↔ Peak
Lem. 3.5

↔ HD

Figure 4: The statistic-preserving bijections used in the proof of Theorem 3.4.
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G at the point M = (k, ⌊n2 ⌋ − k) we can write it as a concatenation G = AB, where A and B have
⌊n2 ⌋ and ⌈n2 ⌉ steps, respectively. Counting the steps of A starting at the point M , suppose that
the E steps occur at positions 1 ≤ a1 < a2 < · · · < ak ≤ ⌊n2 ⌋ (an E step incident with M would
be considered to be at position 1). Similarly, counting the steps of B starting at M , suppose that
the N steps occur at positions 1 ≤ b1 < b2 < · · · < bk ≤ ⌈n2 ⌉. For each 1 ≤ j ≤ k, the hook of λ of
length ij is delimited by the E step of A at position aj and the N step of B in position bj, from
where it follows that aj + bj = ij + 1.

Define ψ(λ) to be the unique path in Gn that has peaks at coordinates (bj−1, aj) for 1 ≤ j ≤ k.
The elements of its peak set are then aj + bj − 1 = ij for 1 ≤ j ≤ k, so Peak(ψ(λ)) = HD(λ) as
claimed. Figure 5 shows an example of this construction.

The map ψ is clearly invertible, because given a path in Gn, the coordinates of its peaks deter-
mine the positions of the N and E steps in the boundary of the Young diagram of the corresponding
partition inside Bn.

M

6

3 2

1

3

7

7→
ψ

2

5

12

2 →

3 →

6 →

↑

0
↑

2
↑

6

Figure 5: The bijection ψ. In the path on the left, the numbers are the positions aj and bj , which
are then used in the path on the right to determine the locations of the peaks.

Proof of Theorem 3.4. By Lemmas 3.1, 2.1 and 3.5, the composition of bijections ψ−1 ◦ ξ ◦ ρ :
In(123) → {λ ⊆ Bn} maps the statistic Des to the statistic HD. See Figure 4 for a diagram of the
preserved statistics, and Figure 6 for an example.

As a consequence of Theorem 3.4, we obtain the following refinement of Theorems 3.2 and 3.3.

Corollary 3.6. For every 0 ≤ k < n,

∑

π∈In(321)
des(π)=k

qmaj(π) = qk
2

(

⌈n2 ⌉

k

)

q

(

⌊n2 ⌋

k

)

q

.

Proof. By the bijection in Theorem 3.4, the left hand side is the generating polynomial for Young
diagrams inside Bn with Durfee square of side k with respect to area. The formula on the right hand
side follows by decomposing such diagrams as in Figure 7 and using that

(

a+b
a

)

q
is the generating

polynomial for Young diagrams inside an a× b box with respect to area.
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3 4 | 1 2 7 9 | 5 10 | 6 8 11 12

7→

ρ

7→
ξ

7→
ψ−1

Figure 6: An example of the sequence of bijections in the proof of Theorem 3.4. Note that the
resulting partition (4, 4, 3, 3, 2) has hook decomposition {2, 6, 8}, which agrees with the descent set
of the 321-avoiding involution that we started from.

4 Consequences

4.1 Ascent sets on 123-avoiding involutions

Our work on descents on 321-avoiding involutions easily extends to describe the distribution of
the ascent set and comajor index on 123-avoiding involutions. Note that this does not follow
from any trivial symmetries on permutations, since those that take 321-avoiding permutations to
123-avoiding ones do not preserve the property of being an involution.

Given π ∈ In, the Robinson-Schensted algorithm associates to it a pair (Q,Q) of indentical
standard Young tableaux of size n. Let QT be the standard Young tableaux obtained by trans-
posing Q, and let πT ∈ In be the preimage of the pair (QT , QT ) under the Robinson-Schensted
correspondence. The map π 7→ πT is a bijection from In to itself. As an example, the image of the
involution 8 6 12 11 5 2 10 1 9 7 4 3 is 3 4 1 2 7 9 5 10 6 8 11 12.

The following result, which first appeared in [33] (see [3] for a detailed exposition), is an im-
mediate consequence of the fact that the descent set of a permutation equals the descent set of its
recording tableau.

Proposition 4.1 ([33]). For every π ∈ In, we have Asc(π) = Des(πT ).

Consider now the set In(12 . . . k) of involutions in Sn that avoid the pattern 12 . . . k. By
Schensted’s Theorem [27], the Robinson-Schensted algorithm associates to each π ∈ In(12 . . . k) a
standard Young tableau Q with at most k − 1 columns. Equivalently, the tableau QT has at most
k− 1 rows, and so its corresponding involution πT avoids k . . . 21. It follows that the map π 7→ πT

induces a bijection between In(12 . . . k) and In(k . . . 21) with the property that Asc(π) = Des(πT ).
For k = 3, the following results are now equivalent to Theorems 3.4 and 3.3, respectively.

Corollary 4.2. Let 1 ≤ i1 < i2 < · · · < ik < n, and let m = i1 + · · ·+ ik. There is a bijection

{π ∈ In(123) : Asc(π) = {i1, i2, ..., ik}} −→ {λ ⊢ m : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn}.

Corollary 4.3. For n ≥ 1,
∑

π∈In(123)

qcomaj(π) =

(

n

⌊n2 ⌋

)

q

.
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4.2 Large n

Even though the simplest proof of Theorem 3.4 that we know uses a composition of three non-trivial
bijections, as described in Section 3.2, it is interesting to note that for n large enough (relative to
ik), there is a simpler proof. It will be more convenient to work with 123-avoiding involutions, so
we will consider Corollary 4.2, which is equivalent to Theorem 3.4 via the map in Proposition 4.1.
Next we sketch a direct proof of Corollary 4.2 for large n which does not use lattice paths.

Fix 1 ≤ i1 < i2 < · · · < ik ≪ n. It is easy to see that any involution π ∈ In(123) is uniquely
determined by the positions of its left-to-right minima, that is, the set of indices i such that
π(i) < π(j) for all j < i. Note also that since π avoids 123, we have i ∈ Asc(π) if and only if i is a
left-to-right minimum and i + 1 is not. It follows that if Asc(π) = {i1, i2, ..., ik} 6= ∅, then the set
of left-to-right minima of π has the form

[1, i1] ∪ [a2, i2] ∪ [a3, i3] ∪ · · · ∪ [ak, ik] ∪ [b, n], (2)

where ij−1 +2 ≤ aj ≤ ij for each 2 ≤ j ≤ k, and n− i1 +2 ≤ b ≤ n+1. In fact, for n large enough
(more precisely, n ≥ 2(ik − k + 1)), any such choice of the aj and b yields a valid π ∈ In(123).
Thus,

|{π ∈ In(123) : Asc(π) = {i1, i2, ..., ik}}| = i1

k
∏

j=2

(ij − ij−1 − 1).

On the other hand, if n ≥ 2(ik − k + 1), then every partition λ with HD(λ) = {i1, i2, . . . , ik} 6= ∅
has a Young diagram that fits inside Bn, and so

|{λ : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn}| = |{λ : HD(λ) = {i1, i2, . . . , ik}}| = i1

k
∏

j=2

(ij − ij−1 − 1),

since we can construct such a partition by first choosing among the i1 ways to bend the innermost
hook (the one of size i1), then choosing among the i2−i1−1 ways to place the hook of size i2 around
the hook of size i1, and so on, placing the hooks from the inside to the outside. The degenerate
case Asc(π) = ∅ corresponds to the empty partition.

The above argument, which proves Corollary 4.2 when n is large, breaks down for small n, and
there does not seem to be a natural way to fix it. It is not true for any n that every choice of
left-to-right minima of the form (2) is realized by an involution in In(123), nor that every placement
of hooks as described above will produce a Young diagram that fits inside Bn.

Next we discuss some consequences of Theorems 3.3 and Theorem 3.4 when n is large. Using
that every partition of m fits inside Bn for n large enough, Theorem 3.3 implies the following.

Corollary 4.4. For n ≥ 2m,

|{π ∈ In(321) : maj(π) = m}| = p(m),

where p(m) is the number of partitions of m.

We remark that this result is somewhat reminiscent of Propositions 11 and 15 in [12], which
give formulas in terms of m for counting pattern-avoiding permutations in Sn with m inversions
when n is large enough.

Along the same lines, Theorem 3.4 can be used to obtain the generating function for 321-avoiding
involutions with k descents according to their descent set. If S = {i1, i2, ..., ik} with i1 < · · · < ik,
we write xS = xi11 . . . x

ik
k .

9



Corollary 4.5.

lim
n→∞

∑

π∈In(321)

xDes(π) =
∑

k≥0

x1x
3
2 . . . x

2k−1
k

(1− xk)2(1− xk−1xk)2 . . . (1− x1x2 . . . xk)2
,

lim
n→∞

∑

π∈In(321)

tdes(π)qmaj(π) =
∑

k≥0

tkqk
2

(1− q)2(1− q2)2 . . . (1− qk)2
.

Proof. Let 1 ≤ i1 < i2 < · · · < ik. For n ≥ 2(ik − k+1), Theorem 3.4 gives a bijection between the
set of involutions π ∈ In(321) with Des(π) = {i1, i2, ..., ik} and the set of partitions λ with HD(λ) =
{i1, i2, . . . , ik}, since the Young diagram of every such partition fits inside Bn. The generating
function for partitions λ with Durfee square of side k according to their hook decomposition is

∑

λ

xHD(λ) =
x1x

3
2 . . . x

2k−1
k

(1− xk)2(1− xk−1xk)2 . . . (1− x1x2 . . . xk)2
, (3)

since such partitions can be decomposed into pairs of partitions with at most k parts, each con-
tributing ((1− xk)(1− xk−1xk) . . . (1− x1x2 . . . xk))

−1, attached to the k× k Durfee square, which
contributes x1x

3
2 . . . x

2k−1
k . This decomposition is illustrated in Figure 7.

Figure 7: Decomposition of the Young diagram of a partition.

The generating function for involutions with k descents with respect to maj, or equivalently
partitions with Durfee square of side k with respect to their size, is obtained by substituting xj = q

for all j in Equation (3). Multiplying by tk and summing over all k ≥ 0 we obtain the second
formula in the statement.

4.3 Double avoidance

In closing this section, we look at the distribution of descents and major index on involutions that
avoid 321 and an additional pattern τ ∈ S3. The set of such involutions of length n is denoted by
In(321, τ). We only consider the cases τ = 312 and τ = 213, since the set In(321, 123) is empty
for n ≥ 6, and In(321, 231) and In(321, 132) correspond via the usual reverse-complement map to
the studied cases.

For the case τ = 213, it is easy to verify that π ∈ In(321, 213) if and only if π = p(p +
1) . . . n12 . . . (p − 1) for some 1 ≤ p ≤ n. Hence, π has either one descent in position n + 1 − p (if
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p 6= 1) or no descents at all. It follows that

∑

π∈In(321,213)

qmaj(π) =
1− qn

1− q
.

Now we consider the case τ = 312. It is easy to see that if π ∈ In(321, 312), then for every
1 ≤ i ≤ n, the entry π(i) is either the smallest or the second smallest among π(i), π(i+1), . . . , π(n).
This condition, together with the fact that π is an involution, implies that π is a direct sum
π = σ1⊕σ2 . . .⊕σt, where each σj equals 1 or 21 (recall that this means that π is a juxtaposition of
words order-isomorphic to either 1 or 21, where the entries in each word are smaller than the entries
in the next word). These are called Fibonacci permutations in [12]. It follows that the generating
function with respect to the number of descents is

∑

n≥0

∑

π∈In(321,312)

tdes(π)xn =
1

1− x− tx2
,

which gives the triangle of coefficients of Fibonacci polynomials (see [30, seq. A011973]).
The above observation also yields a recurrence for the polynomials pn(q) :=

∑

π∈In(321,312)
qmaj(π),

since every π ∈ In(321, 312) can be obtained by appending n or n(n− 1) to an involution of length
n− 1 or n− 2, respectively. We get that

pn(q) = pn−1(q) + qn−1pn−2(q)

for n ≥ 2, with initial conditions p0(q) = p1(q) = 1 (see [30, seq. A127836]).

5 Descent sets on 321-avoiding permutations

Some of the ideas used above to study descent sets on 321-avoiding involutions can be applied to
321-avoiding permutations, even though we do not obtain nice formulas analogous to Theorems 3.3
and 3.4.

The distribution of the major index on 321-avoiding permutations has been studied by Cheng
et al., who in [10, Thm 6.2] give a recurrence for the generating polynomial for the statistic maj
on Sn(321). Here we are interested in the distribution of the whole descent set. The following
result gives a simple description. In the rest of this section we denote the m-th Catalan number by
Cm = 1

m+1

(2m
m

)

.

Theorem 5.1. Let S ⊆ [n− 1]. Then

|{π ∈ Sn(321) : Des(π) ⊇ S}| =

{

Cn−|S| if S contains no two consecutive elements,

0 otherwise.

Proof. We apply the following bijection between Sn(321) and Dn from [19, Section 3], which is an
extension of the bijection ρ used above for involutions. First, the Robinson-Schensted correspon-
dence gives a bijection between Sn(321) and pairs (P,Q) of standard Young tableaux of the same
shape having n boxes and at most two rows. We can interpret P and Q as Dyck path prefixes
ending that the same height, where the entries on the first row determine the positions of the N
steps, and the entries on the second row determine the positions of the E steps. These two prefixes
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can be combined into a Dyck path by taking the prefix corresponding to the recording tableau Q
followed by the reversal of the prefix corresponding to the insertion tableau P .

Recall from the proof of Lemma 3.1 that the Robinson-Schensted algorithm maps the descent
set of the permutation to the descent set of the recording tableau Q, which in turn becomes the peak
set of the Dyck path prefix associated to Q. Thus, if our bijection maps π ∈ Sn(321) to D ∈ Dn,
then Des(π) is the set of peak positions in the first half of D, that is, Des(π) = Peak(D) ∩ [n− 1].

It follows that, for any S ⊆ [n − 1], the number of permutations in Sn(321) with descent set
containing S equals the number of paths in Dn with peak set containing S. If S contains two
consecutive elements, this set is clearly empty. Otherwise, there is a simple bijection between
{D ∈ Dn : Peak(D) ⊇ S} and Dn−|S|: given a path in the first set, remove the peaks NE in
positions given by S. This construction gives a Dyck path with 2n − 2|S| steps, and it is clearly
invertible, since S keeps track of the positions from where peaks were removed.

Next we use Theorem 5.1 to obtain a summation formula and a recurrence for the generating
polynomial for 321-avoiding permutations with respect to the descent set. If S is a set of positive
integers, we use the notation xS =

∏

j∈S xj .

Corollary 5.2. We have that

∑

π∈Sn(321)

xDes(π) =
∑

T



Cn−|T |

∏

j∈T

(xj − 1)



 , (4)

where T ranges over all subsets of [n− 1] with no two consecutive elements.

Proof. For any set S, is is clear that
∏

j∈S(1 + yj) =
∑

T⊆S

∏

j∈T yj. Making the substitution
yj = xj − 1 yields

xS =
∑

T⊆S

∏

j∈T

(xj − 1).

Using this identity, we get

∑

π∈Sn(321)

xDes(π) =
∑

π∈Sn(321)

∑

T⊆Des(π)

∏

j∈T

(xj − 1) =
∑

T⊆[n−1]

∑

π∈Sn(321)
Des(π)⊃T

∏

j∈T

(xj − 1),

which equals the right hand of (4) by Theorem 5.1.

Extracting the coefficient of xS in Corollary 5.2, it follows that for any S ⊆ [n − 1] with no
consecutive elements,

|{π ∈ Sn(321) : Des(π) = S}| =
∑

T

(−1)|T |−|S|Cn−|T |, (5)

where now T ranges over all subsets of [n−1] containing S and having no two consecutive elements.
Equation (5) can also be obtained directly from Theorem 5.1 using Möbius inversion.

For n,m ≥ 0, let

An,m(x) =
∑

T



Cm−|T |

∏

j∈T

(xj − 1)



 ,
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where T ranges over all subsets of [n − 1] with no two consecutive elements. Note that An,n(x) is
the right hand side of Equation (4). Separating terms depending on whether n− 1 ∈ T or not, we
obtain the following recurrence for An,m(x).

Corollary 5.3. For n ≥ 2 and m ≥ 1,

An,m(x) = (xn−1 − 1)An−2,m−1(x) +An−1,m(x),

with initial conditions A0,m(x) = A1,m(x) = Cm for m ≥ 0 and An,0(x) = 1 for n ≥ 2.

Note that setting xj = qj for all j in Corollary 5.2 we have An,n(q, q
2, q3, . . .) =

∑

π∈Sn(321)
qmajπ,

and so the recurrence in Corollary 5.3 can be used to compute this polynomial. A different and
arguably more complicated recurrence is given in [10, Thm. 6.2]. It would be interesting to find
a simple formula enumerating permutations in Sn(321) with a given major index in the spirit of
Theorem 3.3. A helpful tool might be the bijection between Sn(321) and Dn described in the proof
of Theorem 5.1, which maps the statistic maj on Sn(321) to the sum of the peak positions of peaks
in the first half of the corresponding Dyck path.

6 Appendix: A non-bijective proof of Theorem 3.3

In this appendix we discuss a non-bijective proof of Theorem 3.3 that was communicated to us by
Richard Stanley.

As discussed in Sections 3.1 and 4.1, the Robinson-Schensted correspondence gives a descent-
set-preserving bijection between In(k . . . 21) and the set SYTk−1

n of standard Young tableaux with
n boxes at most k − 1 rows. Recall that the major index of a standard Young tableaux is defined
as the sum of its descents. It follows from [31, Prop. 7.19.11] that

∑

π∈In(k...21)

qmaj(π) =
∑

T∈SYTk−1
n

qmaj(T ) = (1− q)(1− q2) · · · (1− qn)
∑

λ

sλ(1, q, q
2, . . .), (6)

where λ ranges over all partitions of n with at most k − 1 parts, and sλ denotes a Schur function.
In the case k = 3, if follows from [31, Ex. 7.16a] (see also [6]) that

∑

λ

sλ = h⌊n

2
⌋h⌈n

2
⌉,

where now the sum if over partitions of n with at most 2 parts, and hm =
∑

1≤i1≤i2≤···≤im
xi1xi2 . . . xim

denotes a complete homogeneous symmetric function. Since

hm(1, q, q
2, . . . ) =

1

(1− q)(1 − q2) . . . (1− qm)
,

Equation (6) gives

∑

π∈In(321)

qmaj(π) =
(1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− q⌊
n

2
⌋)(1− q)(1− q2) . . . (1− q⌈

n

2
⌉)

=

(

n

⌊n2 ⌋

)

q

,

recovering Theorem 3.3.
Although this non-bijective method cannot be used to prove the more general Theorem 3.4, it

can in principle be extended to enumerate k . . . 21-avoiding involutions for larger values of k.
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