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Journal de Théorie des Nombres

de Bordeaux 00 (XXXX), 000–000

Thue, Combinatorics on words, and conjectures

inspired by the Thue-Morse sequence
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On the occasion of Axel Thue’s 150th birthday

Résumé. Nous décrivons quelques résultats récents sur la suite
de Thue-Morse, ainsi que des questions ou conjectures, dont l’une,
due à Shevelev, est résolue dans cet article.

Abstract. We describe some recent results on the Thue-Morse
sequence. We also list open questions and conjectures, one of
which is due to Shevelev and proved in this paper.

1. Introduction

The birth of combinatorics on words, i.e., the study of finite sequences
(called words) taking their values in a finite set (called alphabet), aka the
study of the free monoid generated by a finite set, can be dated to 1906,
when the first of the two seminal papers [59, 60] of Axel Thue appeared.
Thue was interested in constructing an infinite sequence on three symbols
with no squares (i.e., without two consecutive identical blocks) in it, and/or
an infinite sequence on two symbols with no cubes (i.e., without three
consecutive identical blocks) in it. Thue’s sequence on two symbols was
actually already described in a number-theoretic paper by Prouhet [43]
addressing what is now known as the Prouhet-Tarry-Escott problem (see,
e.g., [15]), so that to some extent Prouhet might be considered as one of
the fathers of combinatorics of words (see [19]).

To begin with we would like to point out the first few lines of Thue’s
second paper [60], where he writes (translation by Berstel in [14]):

For the development of logical sciences it will be important, without con-
sideration for possible applications, to find large domains for speculation
about difficult problems. In this paper, we present some investigations in
the theory of sequences of symbols, a theory that has some connections with
number theory.
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Combinatorics on words developed extensively in the last forty years,
interacting with many fields, from number theory to harmonic analysis,
from theoretical computer science to physics, with incursions towards tiling,
music, etc.

We will briefly indicate some of these developments as well as pointers
to surveys or to the original bibliography. Then we will single out a few
conjectures or open problems to show that the domain is still full of really
nontrivial and interesting questions.

2. The Thue-Morse sequence and its numerous occurrences

2.1. Recalling the definition of the Thue-Morse sequence.

Definition. The Thue-Morse sequence is the sequence t = (t(n))n≥0 de-
fined by t(n) = 0 if the sum of the binary digits of the integer n is even, and
t(n) = 1 if the sum of the binary digits of n is odd. We let u = (u(n))n≥0

denote the sequence defined by u(n) = (−1)t(n).

Remark. Several equivalent definitions can be given for the sequences t

and u. In particular t is the infinite fixed point, beginning with 0, of the
(uniform) morphism 0 → 01, 1 → 10. For more about the sequences t and
u we refer the reader to, e.g., [6].

After the papers of Thue [59, 60] on what is now called the Thue-Morse
sequence (or the Prouhet-Tue-Morse sequence), the sequence was rediscov-
ered (in particular by Morse [40]) and/or studied in very many different
contexts. J. Shallit and the author wrote a survey some years ago entitled
“The ubiquitous Thue-Morse sequence” [6], but since that time, we have
gathered more and more new references on occurrences of this sequence
in the literature. We would like to briefly allude here to only two “new”
directions.

2.2. Nonrepetitive coloring of graphs. The seminal paper [9] intro-
duced the notion of coloring graphs “without repetitions”: a coloring of
the set of edges of a graph G is called non-repetitive if the sequence of
colors on any path in G is non-repetitive, i.e., has no squares (consecutive
identical blocks) in it. In the last ten years a very large number of papers
have been devoted to this subject, and it would deserve a full survey by
itself.

2.3. The Thue-Morse sequence in games, economics, etc. Suppose
that two players A and B are playing a sequential tournament where the
first mover may have some advantage (or disadvantage) just by playing first.
Then, if the players are to play several consecutive games, it seems fair that
the order be, e.g., A B A B A B . . . In order to try to improve the fairness of
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the tournament, one can imagine that the first player plays, then each player
–begining with the second one– plays twice (this is for example the case for
tiebreak in tennis), yielding the sequence A B B A A B B A A B B A . . .
Trying to improve again and again on this alternation leads to... the Thue-
Morse sequence: to cite but a few papers on this subject, see [16] cited in
[36]; also see [24, 35, 42, 44].

3. Some conjectures and open questions

3.1. A recent conjecture of Shevelev. V. Shevelev wrote recently sev-
eral papers on the Thue-Morse sequence or related problems, see [46]–[55],
see also the two papers by Moses and Shevelev [56, 57]. These papers con-
tain nice results, but also questions. One of Shevelev’s questions about
the Thue-Morse sequence is rather intriguing [55]. In order to give the
flavor of this question, let us recall that an integer is called evil [in French
päıen] (resp. odious [in French impie]) if the sum of its binary digits is even
(resp. odd) I learned in the paper of Fraenkel [32] that the terminology,
inspired phonetically by the words “even” and “odd”, was coined by the
authors of [11] when they were composing their book1, see [12, p. 463]. A
particular case of Shevelev’s question is: for any odd integer a, evil and
odious numbers alternate in the increasing sequence of integers n such that
u(n + a) = u(n) where u is the ±1 Thue-Morse sequence).

More generally Shevelev made the following conjecture that we will prove
here.

Theorem 3.1 (Shevelev’s conjecture). Let (u(n))n≥0 = ((−1)t(n))n≥0. Let
a be a positive integer. Let Ba := {ℓ0 < ℓ1 < ℓ2 < . . .} (resp. Ca =
{m0 < m1 < m2 < . . .}) denote the sequence of integers in increasing
order satisfying u(ℓ+ a) = −u(ℓ) (resp. u(m+ a) = u(m)).
Let (βa(n))n≥0 (resp. (γa(n))n≥0) be the ±1 sequences defined by

βa(n) := u(ℓn), γa(n) := u(mn).

Then the sequences β and γ are periodic, of smallest period 2v(a)+1 where
v(a) is the 2-adic valuation of a (i.e., the largest integer k such that 2k

divides a). They satisfy β = −γ. Furthermore the prefix of length 2v(a)+1

of the sequence γa is equal to the prefix of length 2v(a)+1 of the Thue-Morse
sequence u if u(a) = 1 and to “minus this prefix” (i.e., where all +1 are
replaced by −1 and conversely) if u(a) = −1.

Proof. We first prove the periodicity assertion for sequence γ. Note that,
in order to prove the assertions “equal to the prefix...” and “equal to minus

1In the papers [31, 32] the terms “vile” and “dopey” are proposed for other kinds of integers.
We also cite a suggestion of Ingrid Daubechies to call perfidy the fact of being evil or odious, as
parity is the fact of being even or odd, see http://blog.tanyakhovanova.com/?p=97

http://blog.tanyakhovanova.com/?p=97
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the prefix...”, it suffices to prove the assertion “equal to ±1 the prefix...”
thanks to the remark that the sequence γa begins with 1 when u(a) = 1
and in −1 when u(a) = −1. Namely (u(0), u(1), u(2)) = (+1,−1,−1); also,
since a is odd, a+ 1 even, thus u(a+ 1) and u(a+ 2) have opposite signs:
namely, if a = 2b+1, then u(a+1) = u(2b+2) = u(b+1), while u(a+2) =
u(2b+ 3) = u(2(b+ 1) + 1) = −u(b+ 1). Hence (u(a), u(a+ 1), u(a+ 2)) =
(u(a),+1,−1) or (u(a),−1,+1). So, if u(a) = +1, we have minCa = 0,
thus u(minCa) = u(0) = +1. If u(a) = −1, we have minCa = 2 or 1, thus
u(minCa) = −1.

Then the proof splits into two parts depending on the parity of a.

– If a is odd, then consider the sequence (wa(n))n≥0 where wa(n) :=
u(a + n) + u(n). Clearly wa(n) = ±2 if n belongs to Ca, and wa(n) = 0
otherwise. More precisely wa(n) = 2 if n belongs to Ca and u(n) = 1, and
wa(n) = −2 if n belongs to Ca and u(n) = −1. In other words (wa(n))n≥0

is the sequence obtained by interspersing blocks of zeros into the sequence
(2γa(n))n≥0. What we have to prove is that the sequence (2γa(n))n≥0 is
one of the alternating sequences (+2 − 2)∞ or (−2 + 2)∞. Since 2γa
takes only the values +2 and −2, this is equivalent to proving that the
summatory function of sequence wa either takes only the values 0, +2, or
only the values 0, −2. Now the summatory function of wa is the sequence of
coefficients of the formal power series Sa(X) := 1

1−X

∑

n≥0wa(n)X
n. We

have

Sa(X) =
1

1−X

∑

n≥0

(u(n+ a) + u(n))Xn

=
1

1−X





∑

m≥a

u(m)Xm−a +
∑

n≥0

u(n)Xn



 .

Hence, multiplying by Xa,

XaSa(X) = − 1

1−X





∑

0≤m≤a−1

u(m)Xm



+
1 +Xa

1−X

∑

n≥0

u(n)Xn.

But
∑

n≥0

u(n)Xn =
∑

n≥0

u(2n)X2n +
∑

n≥0

u(2n + 1)X2n+1

=
∑

n≥0

u(n)X2n −
∑

n≥0

u(n)X2n+1

= (1−X)
∑

n≥0

u(n)X2n
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(this is well-known, as is the iteration yielding that
∑

n≥0 u(n)X
n equals

∏

n≥0(1−X2n)).

(∗) XaSa(X) =
−1

1−X





∑

0≤m≤a−1

u(m)Xm



+ (1 +Xa)
∑

n≥0

u(n)X2n.

Now recall that a is odd, say a = 2b+ 1. Then,
∑

0≤m≤a−1

u(m)Xm =
∑

0≤m≤2b

u(m)Xm

=
∑

0≤m≤b

u(2m)X2m +
∑

0≤m≤b−1

u(2m+ 1)X2m+1

=
∑

0≤m≤b

u(m)X2m −
∑

0≤m≤b−1

u(m)X2m+1

= u(b)X2b + (1−X)





∑

0≤m≤b−1

u(m)X2m



 .

Using (∗) we have

XaSa(X) =
−1

1−X





∑

0≤m≤2b

u(m)Xm



+ (1 +X2b+1)
∑

n≥0

u(n)X2n

hence

XaSa(X) = −u(b)X2b

1−X
−

∑

0≤m≤b−1

u(m)X2m + (1 +X2b+1)
∑

n≥0

u(n)X2n.

Thus

(∗∗) XaSa(X) = −u(b)X2b
∑

j≥0

Xj −
∑

0≤m≤b−1

u(m)X2m

+ (1 +X2b+1)
∑

n≥0

u(n)X2n.

In order to finish the proof of the case a odd, we have to prove that all the
coefficients of Sa(X) either take only the values 0, 2, or take only the values
0, −2. Of course it suffices to prove the same claim for the coefficients of
XaSa(X). Write XaSa(X) =

∑

ckX
k. Looking at (∗∗) we see that

• for k ≤ a− 1, we have clearly ck = 0;
• for 2k ≥ a, we have c2k = −u(b) + u(k) ∈ {−u(b) ± 1};
• for 2k + 1 ≥ a, we have c2k+1 = −u(b) + u(k − b) ∈ {−u(b)± 1}.

Hence, either u(b) = +1 and all coefficients of XaSa(X) belong to {−2, 0},
or u(b) = −1 and all coefficients of XaSa(X) belong to {0, 2}, and we are
done.
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– To address the case a where even, it suffices to prove that if the state-
ment in Theorem 3.1 is true for some integer a ≥ 1, then it is true for 2a.
Recall that the Thue-Morse sequence can be generated by iteratively apply-
ing to +1 the morphism σ defined on {+,−} := {+1,−1} by σ(+) = + −,
σ(−) = − +. Thus the prefix of length 2d+1 of the Thue-Morse sequence is
equal to the image by σ of the prefix of length 2d. Hence it suffices to prove
that for any a ≥ 1 one has C2a = 2Ca∪(2Ca+1). The property u(2n) = u(n)
and u(2n+1) = −u(n) then gives us the desired conclusion. But n belongs
to C2a if and only u(n + 2a) = u(n). This happens if and only if either
n = 2k and u(2k+2a) = u(2k), or n = 2k+1 and u(2k+1+2a) = u(2k+1).
This is equivalent to either n = 2k and u(k + a) = u(k), or n = 2k + 1 and
−u(k + a) = −u(k). This is exactly saying that n belongs to C2a if and
only if either n belongs to 2Ca or n belongs to 2Ca+1 (note that these sets
are, of course, disjoint).

– To finish the proof, we follow exactly the same steps, with u(n+a)+u(n)
replaced by u(n + a) − u(n). Note that this gives in passing the fact that
βa = γa.

Remark. Shevelev proved in [55] his conjecture for the case where a = 2r.
The case a = 1 was actually proven by Bernhardt [13] (see also [10]). It
was also given by P. Deléham (see his comment dated March 16 2004 in
[41, sequence A003159]). Note that this case is related to the properties
of the period-doubling sequence (z(n))n≥0. The period-doubling sequence
is defined as the infinite fixed point of the morphism defined on {+,−} =
{+1,−1} by − → − +, + → − −. This morphism occurs, in particular, in
the study of iterations of unimodal continuous functions. It is not difficult
to see that u(n) =

∏

0≤k≤n−1 z(k) (where, as usual, an empty product is

equal to +1). Thus C1 is the set of n’s such that z(n) = 1.

The first values of the sequences Ba and Ca for small values of a’s are
given in the On-Line Encyclopedia of Integer Sequences [41], e.g., C1 =
A079523; C2 = A081706; C3 = A161579; C4 = A161627; C5 = A161817;
C6 = A161824; C7 = A162311; C8 = A161639; C9 = A161890.

There is a straightforward generalization of Shevelev’s question. Let
(z(n))n≥0 be a ±1 sequence taking each of the values ±1 infinitely often.
For each integer a ≥ 1, let Ba := {ℓ0 < ℓ1 < ℓ2 < . . .} (resp. Ca =
{m0 < m1 < m2 < . . .}) denote the sequence of integers in increasing
order satisfying z(ℓ + a) = −z(ℓ) (resp. z(m + a) = z(m)). These two
sequences of integers reflect how different sequence u and each of its shifted
sequences are. Now evaluate this difference in terms of the sequence u
iteself: let (βa(n))n≥0 (resp. (γa(n))n≥0) be the ±1 sequences defined by
βa(n) := z(ℓn) (resp. γa(n) := z(mn). What can be said about sequences
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βa and γa? Or for which sequences u do the sequences βa and γa have
interesting properties?

3.2. The zeros of the Thue-Morse Dirichlet series. In a 1985 paper

[4] H. Cohen and the author looked at the Dirichlet series
∑

n≥0
u(n)

(n+1)s

a priori defined for ℜs > 1. They proved in particular that this series
admits an analytic continuation to the whole plane. This continuation
admits “trivial zeros” (all non-positive integers), and “non-trivial zeros”
(the complex numbers 2ikπ/ log 2 for k integer). This suggests the following
Riemann-like hypothesis.

Question. Is it true that
∑

n≥0
u(n)

(n+1)s has no other non-trivial zeros than

the complex numbers 2ikπ/ log 2 for k integer?

Remark. It might well be that this question is very difficult to answer. It
might also well be the case that the answer would have no interest at all: a
proof of the Riemann hypothesis for the zeta function would give precious
information on the prime numbers, but we do not know of any consequence
of the Riemann-like hypothesis above.

3.3. Looking for a “simple” expression for a certain infinite prod-

uct. The following infinite product and its simple expression were given in
[61, 45]

P :=
∏

n≥0

(

2n + 1

2n + 2

)u(n)

=

√
2

2
·

While several generalizations can be found in the literature (see, e.g., [4,
5, 8, 37]), no “simple” value is known for a very similar product Q given
below. Namely a strange product appears in [30, p. 193]:

R :=
∏

n≥1

(

(4n + 1)(4n + 2)

4n(4n + 3)

)u(n)

.

Actually it is easily proven that R = 3
2Q , where

Q :=
∏

n≥1

(

2n

2n + 1

)u(n)

.

Question. Does the infinite product Q above have a “simple” value? Is
it a transcendental number? Is the Flajolet-Martin constant ϕ defined by
ϕ := 2−1/2eγ 2

3R = 0.77351... transcendental?

Remark. The author gave an easy proof for the value of P (which was
written down in [7] and [8]) by computing the product PQ. We do not
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resist giving an even easier proof. Using the relations u(2n) = u(n) and
u(2n + 1) = −u(n), we can write

P =
∏

n≥0

(

2n+ 1

2n+ 2

)u(n)

=





∏

n≥0

(

2n + 1

2n + 2

)u(2n+1)




−1

=















∏

n≥1

(

n

n+ 1

)u(n)

∏

n≥1

(

2n

2n + 1

)u(2n)















−1

=















∏

n≥1

(

n

n+ 1

)u(n)

∏

n≥1

(

2n

2n + 1

)u(n)















−1

=





∏

n≥1

(

2n+ 1

2(n + 1)

)u(n)




−1

.

Hence, multiplying by P ,

P 2 =





∏

n≥1

(

2n+ 1

2(n+ 1)

)u(n)




−1
∏

n≥0

(

2n + 1

2n + 2

)u(n)

=
1

2
·

Thus
∏

n≥0

(

2n+ 1

2n+ 2

)u(n)

=
1√
2
·

3.4. Looking for “another” proof of Cobham’s theorem. Cobham’s
theorem asserts that a sequence which is both q- and r-automatic, where q
and r are multiplicatively independent (i.e., log q/ log r irrational), must be
ultimately periodic [23]. The proof of Cobham is very technical, as are more
recent proofs. The quest for a “simple” –or at least more “conceptual”–
proof whose early start was [33] is still open.

3.5. Almost everywhere automatic sequences. Deshouillers, whose
motivation was the results in [25, 26], asked the following question [27].
Call a sequence (v(n))n≥0 almost everywhere d-automatic if there exists a
d-automatic sequence (w(n))n≥0 such that v and w are equal almost every-
where (i.e., such that the set of n for which u(n) 6= v(n) has natural density

0, i.e., lim
N→∞

1

N
♯{n ≤ N, vn 6= wn} = 0). Define similarly almost every-

where periodic sequences, almost everywhere ultimately periodic sequences,
and almost everywhere constant sequences. A simple example is the char-
acteristic function of squares: this sequence is almost everywhere constant
(actually almost everywhere equal to 0).
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Question. Is the following generalization of Cobham’s theorem true? Let
d1 and d2 be two multiplicatively independent integers (i.e., log d1/ log d2
is irrational). If the sequence (v(n))n≥0 is both almost everywhere d1-
automatic and almost everywhere d2-automatic, then it is almost every-
where ultimately periodic.

3.6. Sum of digits, pseudo-randomness, distribution modulo 1.
The Thue-Morse sequence or its version not reduced modulo 2 (i.e., the
sum of binary digits of the integers) was used in several questions related
to pseudo-randomness (in the sense of Bass or in the sense of Bertrandias),
see, e.g., the paper of Mendès France (see [39] and the references therein),
or to distribution modulo 1. The subject continues to be explored, see, e.g.,
[1]. A nice question of Gelfond was recently answered in [38].

Theorem 3.2 (Mauduit-Rivat). The sum of q-ary digits of the prime num-
bers is uniformly distributed in the non-trivial arithmetic progressions.

3.7. Algebraic independence of power series on a finite field. Let
p be a prime number. Christol’s theorem (see [20, 22]) asserts that the
formal power series

∑

anX
n in Z/pZ[[X]] is algebraic over Z/pZ(X) if and

only if the p-kernel of the sequence (an)n≥0, i.e., the set of subsequences
{(apkn+r)n≥0

, k ≥ 0, r ∈ [0, pk−1]} is finite. In other words a combinatorial

property of the sequence (an)n≥0 is equivalent to the algebraicity of the
associated formal power series. A tempting question is then whether there
exists some combinatorial property of two sequences (an)n≥0 and (bn)n≥0

that is equivalent to the property that the formal power series
∑

anX
n

and
∑

bnX
n are algebraically dependent over Z/pZ(X). Such a condition

could be the finiteness of some “kernel” of sequence (an)n≥0, where the
extracted subsequences would somehow depend on sequence (bn)n≥0. G.
Christol told us (private communication) that he does not believe that such
a condition can exist in general. If so, we might be able to find subcases
where it would be possible to find such a combinatorial condition?

3.8. D-finite formal power series and automatic sequences. The
formal power series

∑

n≥0 t(n)X
n considered as an element of Q[[X]] is

transcendental over Q(X). This is, e.g., a consequence of a theorem of Fa-
tou [29]: a power series

∑

n≥0 anz
n with integer coefficients that converges

inside the unit disk is either rational or transcendental over Q(X). Actually
more is known: the formal power series

∑

n≥0 t(n)X
n being irrational and

having its radius of convergence equal to 1, it admits the unit circle as natu-
ral boundary (from a theorem of Carlson [18] extending Fatou’s). Another
proof of this transcendence using Christol’s theorem can be given. If the
formal power were algebraic, then the series

∑

n≥0(tn mod 2)Xn (resp. the

series
∑

n≥0(tn mod 3)Xn) would be algebraic over F2(X) (resp. F3(X)).
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Hence, the sequence (tn)n≥0 with values 0, 1 would be both 2-automatic
and 3-automatic. From a theorem of Cobham [23] the sequence (tn)n≥0

would thus be ultimately periodic which is not true (recall that (tn)n≥0

does not contain cubes).

More generally, if a formal power series
∑

anX
n has all its coefficients in

the field of rational numbers Q, and is algebraic of degree d over Q(X), we
know, as a consequence of Eisenstein’s theorem (announced by Eisenstein
in [28], and proved by Heine in [34]) that the set of prime numbers P
that divide the denominator of at least one coefficient an is finite. Hence it
makes sense to reduce the series modulo any prime not in P. The reduction
modulo such a prime p is clearly algebraic over the field Fp(X) of degree
dp ≤ d. Hence from Christol’s theorem, the sequence (an mod p)n≥0 is p-
automatic. A strategy for proving that the series

∑

anX
n is transcendental

over Q(X) can thus be to prove that either it is algebraic of degree dp for
all but finitely many primes p, but that the dp’s are unbounded, or to prove
that for some prime p that does not divide any of the denominators of the
an’s the sequence (an mod p)n≥0 is not p-automatic. Several examples of
this strategy are given, e.g., in [2].

Now, a notion generalizing algebraicity for power series is the notion of
D-finiteness, also called holonomy. A very good reference is [58]. A formal
power series is called differentiably finite (D-finite for short) or holonomic
if it satisfies a linear differential equations with polynomial coefficients.
Examples are the exponential series f(X) = eX that satisfies f ′ = f or the
series g(X) = log(1 +X) that satisfies (1 +X)g′(X) = 1. It is not hard to
see that any algebraic formal power series is D-finite. This notion makes
sense in zero characteristic (in characteristic p the pth derivative of any
formal power series is equal to 0). A natural question is thus whether there
is a way to prove that a formal power series with say integer coefficients is
not D-finite by proving that its projections modulo prime numbers do or do
not satisfy some specific properties? The following question is a conjecture
due to Christol [21].

Question. It is true that a globally bounded D-finite formal power series
is globally automatic? In other words, is it true that a formal power series
∑

anX
n belonging to Q[[X]] having a non-zero radius of convergence as

a series on C and for which there exist α, β in Q such that α
∑

an(βX)n

belongs to Z[[X]] has the property that for all but finitely many primes p
and for all positive integers h the sequence (an mod ph)n≥0 is is p-automatic
(or equivalently ph-automatic).
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Remark. As noted by Christol the answer to the above question is yes if
two classical conjectures respectively due to Bombieri and Dwork are true
(see precise formulations in [21]).

3.9. Transcendence of morphic real numbers and morphic contin-

ued fractions. Several questions can be asked about the “transcendence”
of the Thue-Morse sequence t. For example:

• is the real number
∑

n≥0 t(n)/2
n transcendental?

• is the formal power series
∑

n≥0 t(n)X
n ∈ Q[[X]] transcendental over

Q(X)?
• is the formal power series

∑

n≥0(t(n) mod 2)Xn ∈ Z/2Z[[X]] tran-

scendental over Z/2Z(X)?
• is the formal power series

∑

n≥0(t(n) mod 3)Xn ∈ Z/3Z[[X]] tran-

scendental over Z/3Z(X)?
• is the continued fraction [1+ t(0), 1+ t(1), 1+ t(2), . . .] transcendental
over Q?

Similar questions can be asked by replacing the Thue-Morse sequence (which,
as recalled above, is the iterative fixed point beginning with 0 of the –
uniform– morphism 0 → 01, 1 → 10) by iterative fixed points of –not
necessarily uniform– morphisms, or even by morphic sequences, i.e., point-
wise images of iterative fixed points of morphisms. A survey about these
questions, and in particular the fact that the answers to the questions above
about transcendence are respectively “yes, yes, no, yes, yes” can be found
in [3]. More results that were either not published, or not proved at the
time of that survey, are due in particular to Adamczewski and Bugeaud,
and can be found in the nice book [17]. But, though we now know that
“automatic real numbers” (real numbers whose expansion in some integer
base is automatic, i.e., is the pointwise image of the iterative fixed point of
a uniform morphism) are either rational or transcendental, and that “au-
tomatic continued fractions” (i.e., continued fractions whose sequences of
partial quotients are automatic) are either quadratic or transcendental, the
general question about transcendence of real numbers whose expansion in
some integer base, or whose continued fraction expansion, is the pointwise
image of the iterative fixed point of some general morphism is still open.
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