
THE INNER PRODUCT ON EXTERIOR POWERS
OF A COMPLEX VECTOR SPACE

GUNNAR ÞÓR MAGNÚSSON

Abstract. We give a formula for the inner product of forms on a
Hermitian vector space in terms of linear combinations of iterates of the
adjoint of the Lefschetz operator. As an application, we reprove the
Kobayashi–Lübke inequality for Hermite–Einstein bundles.

Introduction

Let V be a complex vector space of dimension n, equipped with a Hermitian
inner product h whose positive (1, 1)–form we denote by ω = − Im h. The
inner product on V induces an inner product on the exterior algebra

∧∗V ∗.
If we denote the Hodge star operator by ∗, then this inner product is also
defined by

〈u, v〉ω[n] = u ∧ ∗v,
where ω[k] := ωk/k! for k ≥ 0 and u, v are elements of the exterior algebra.

There are two cases where we can easily calculate this inner product
without writing u and v in local coordinates and painfully calculating minors
of the resulting matrices: If v is a primitive (p, q)–form, then

〈u, v〉ω[n] = u ∧ v ∧ ω[n−p−q];

and if u and v are (1, 1)–forms then we eventually find that

〈u, v〉ω[n] = −u ∧ v ∧ ω[n−2] + Λu ∧ Λv ∧ ω[n]

by decomposing the forms into primitive components. These formulas are no
better for explicit calculations than the ones involving minors of matrices, but
they come in handy when calculating things that let the inner product ω vary
and give amusing matrix identities when written in an orthonormal basis.

In this note we generalize the above formulas to arbitrary (p, q)–forms u
and v. In Theorem 1.1 we show that there exist integers bl, independent of
the vector space V , such that

(−1)k(k+1)/2〈u, v〉ω[n] =
n∑
l=0

(−1)lbl Λ[l]u ∧ Λ[l]Iv ∧ ω[n−k+2l]

for any k–forms u and v. The integers bl have actually been studied in quite
a different context [Car55, Rio64, OEI13]; they are the coefficients in the
series expansion of the reciproqual of a Bessel function of the first kind.

The proof of this result is mostly by formal calculations with the Lefschetz
operator and its adjoint on the exterior algebra of V , the only slight difficulty
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2 GUNNAR ÞÓR MAGNÚSSON

is showing that the coefficients bl are the indicated ones. We do this in
Section 1. There I go into considerable detail in all calculations, which I
hope the reader will forgive me, but I decided it was best to make all the
steps explicit for the sake of error-checking. In Section 2 we apply our results
to calculate the norm of a curvature form of a Hermitian vector bundle and
reprove the Kobayashi–Lübke inequality for Hermite–Einstein vector bundles.
The resulting proof is very likely the same as the usual differential-geometric
one if we write all the calculations in local coordinates.

Remark — We state and prove all our results on a finite-dimensional vector
space V equipped with a Hermitian inner product. However, since our
calulations are formal the same proofs work verbatim on a vector space V
equipped with a representation of sl(2), such as the cohomology algebra of a
compact Kähler manifold or a projective variety over a field k.

1. Inner products of exterior forms

Let V be a complex vector space of dimension n and ω a Hermitian inner
product on V . The Hodge star operator of ω is ∗, the Lefschetz operator is L
and its adjoint is Λ. We write I =

∑
p,q i

p−qπp,q, where πp,q :
∧∗V ∗ → ∧p,q V ∗

is the orthogonal projection.
Recall that a k–form u on V is primitive if Λu = 0. This is equivalent

to Ln−k−1u = 0. Any k–form u on V admits a primitive decomposition
u =

∑
Lk−juj , which is an orthogonal decomposition of u where each form

uj is a primitive (k − 2j)–form.
If A is an element of an algebra then we define A[k] = Ak/k! for k ≥ 0.

This entails that
A[j] ·A[k] =

(j+k
j

)
A[j+k].

We will use this convention for the element ω of the exterior algebra
∧∗V ∗

and the operators L and Λ on that algebra.
Consider the sequence of integers defined recursively by b0 = 1 and

(1.1)
p∑
l=0

(−1)l
(p
l

)2
bl = 0

for p ≥ 1. This is sequence number A000275 in the On-line encyclopedia
of integer sequences [OEI13]; see also [Car55] and [Rio64] for not unrelated
information about the sequence. Its first few values are:

1 1 3 19 211 3651 90.921 3.081.513 136.407.699 7.642.177.651

Our objective in this section is to prove the following theorem.

Theorem 1.1 Let u be a k–form on an n–dimensional complex vector
space V . Then

(−1)k(k+1)/2|u|2ω[n] =
n∑
l=0

(−1)lbl Λ[l]u ∧ Λ[l]Iu ∧ ω[n−k+2l].
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We will actually prove this result for a (p, q)–form u with p ≤ q and
p+ q = k. By conjugation the restriction p ≤ q is irrelevant and it is just a
matter of basic combinatorics and degree reasoning to see that if the result
holds for (p, q)–forms with p+ q = k then it also holds for k–forms, i.e., that
the right-hand side respects the orthogonal decomposition of

∧k V ∗. Proving
this result demands a certain amount of preparation, all of which rests on
the following formula.

Proposition 1.2 ([Huy05, Proposition 1.67]) Let u be a primitive (p, q)–
form on V . Set k = p+ q. Then

∗L[j]u = (−1)k(k+1)/2L[n−j−k]Iu.

Example 1.3 If u is a primitive (p, q)–form, then this formula gives

|L[j]u|2ω[n] =
(n−k
j

)
|u|2ω[n]

after some manipulations. Working out the details of this is a fine way to
appreciate how error-prone these calculations become.

If u is a (p, q)–form with p ≤ q, then we write u =
∑p
j=0 L

[p−j]uj for its
primitive decomposition, where each uj is a primitive (j, j + q − p)–form.
This decomposition is orthogonal, so

|u|2 =
p∑
j=0
|L[p−j]uj |2 =

p∑
j=0

(n−2j−q+p
p−j

)
|uj |2.

Proposition 1.4 Let u =
∑p
j=0 uj ∧ω[p−j] be the primitive decomposition

of a (p, q)–form u, where p ≤ q and each uj is a primitive (j, j + q− p)–form.
Then

Λ[l]u =
p−l∑
j=0

(n−j−q+l
l

)
L[p−j−l]uj ,

and the decomposition of Λ[l]u is primitive.

Proof. By linearity it is enough to prove this for a (p, q)–form u = L[p−j]uj ,
where uj is a primitive (j, j + q − p)–form. Let v be a form of degree
(n− p+ l, n− q + l) and set k = 2j + q − p. Then

〈v,Λ[l](L[p−j]uj)〉ω[n] = 〈L[l]v, L[p−j]uj〉L[n]

= L[l]v ∧ iq−p(−1)(
k+1

2 )L[n−j−q]uj

= v ∧ iq−p(−1)(
k+1

2 )(n−j−q+l
l

)
L[n−j−q+l]uj

= v ∧ ∗
((n−j−q+l

l

)
L[p−j−l]uj

)
= 〈v,

(n−j−q+l
l

)
L[p−j−l]uj〉ω[n].

Since the equality holds for all v, the result is proved for forms of type
L[p−j]uj , where uj is primitive. Note that the decomposition of Λ[l](L[p−j]uj)
is again primitive, so the same will hold for an arbitrary form u. �
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Proposition 1.5 Let u =
∑p
j=0 uj ∧ ωp−j be the primitive decomposition

of a (p, q)–form u, where p ≤ q and uj is a primitive (j, j+q−p)–form. Then

u ∧ Iu ∧ ωn−p−q =
p∑
j=0

uj ∧ Iuj ∧ ωn−2j−q+p.

Proof. We induct on p, the result being clear for p = 0 or q = 0. If u is a
(p+ 1, q+ 1)–form we have u = ω∧vp+up+1, where vp is a (p, q)–form whose
primitive decomposition is evident. Then

u ∧ Iu = ω2 ∧ vp ∧ Ivp + ω ∧ vp ∧ Iup+1 + ω ∧ up+1 ∧ Ivp + up+1 ∧ Iup+1,

so

u ∧ Iu ∧ ωn−p−q−2 = vp ∧ Ivp ∧ ωn−p−q + vp ∧ Iup+1 ∧ ωn−p−q−1

+ up+1 ∧ Ivp ∧ ωn−p−q−1 + up+1 ∧ Iup+1 ∧ ωn−p−q−2.

The two middle terms are zero because up+1 is primitive, so up+1∧ωn−p−q−1 =
0 and vp ∧ Ivp ∧ ωn−p−q is of the announced form by induction. �

Remark — Here the reader may wonder what happens for a (p, q)–form with
p+ q > n. The Lefschetz theorems tell all: That Lk :

∧n−k V ∗ → ∧n+k V ∗ is
an isomorphism entails that there are no primitive (p, q)–forms with p+q > n,
so no information is lost here by the wedge product of such forms.

Proposition 1.6 Let u =
∑p
j=0 uj ∧ω[p−j] be the primitive decomposition

of a (p, q)–form u, where p ≤ q and each uj is a primitive (j, j + q− p)–form.
Then

Λ[l]u ∧ Λ[l]Iu ∧ ω[n−p−q+2l]

=
p−l∑
j=0

(−1)j(−1)(q−p)(q−p+1)/2(p−j
l

)(n−j−q+l
p−l−j

)(n−j−q+l
l

)
|L[p−j]uj |2 ∧ ω[n].

Proof. We first apply Proposition 1.5 to our (p, q)–form u =
∑
j L

[p−j]uj =∑
j(uj/(p− j)!) ∧ ωp−j . That gives

u ∧ Iu ∧ ω[n−p−q] =
p∑
j=0

1
(n− p− q)!

( uj ∧ Iuj
(p− j)!2

)
∧ ωn−2j−q+p

=
p∑
j=0

1
(n− p− q)!

(n− 2j − q + p)!
(p− j)!2 uj ∧ Iuj ∧ ω[n−2j−q+p]

=
p∑
j=0

(n−j−q
p−j

)(n−2j−q+p
p−j

)
uj ∧ Iuj ∧ ω[n−2j−q+p]

=
p∑
j=0

(−1)(
2j+q−p+1

2 )(n−j−q
p−j

)(n−2j−q+p
p−j

)
|uj |2ω[n]

=
p∑
j=0

(−1)j(−1)(q−p)(q−p+1)/2(n−j−q
p−j

)(n−2j−q+p
p−j

)
|uj |2ω[n].
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To get the general result, we apply this to the (p− l, q − l)–form Λ[l]u. That
gives (by letting p 7→ p− l, q 7→ q − l)

Λ[l]u ∧ Λ[l]Iu ∧ ω[n−p−q+l]

=
p−l∑
j=0

(−1)(
2j+q−p+1

2 )(n−2j−q+p
p−l−j

)(n−j−q+l
p−l−j

)(n−j−q+l
l

)2|uj |2 ∧ ω[n]

=
p−l∑
j=0

(−1)(
2j+q−p+1

2 )
(n−2j−q+p

p−l−j
)(n−j−q+l

p−l−j
)(n−j−q+l

l

)2(n−2j−q+p
p−j

) |L[p−j]uj |2 ∧ ω[n].

Once we remark that (n−2j−q+p
p−j−l

)(n−j−q+l
l

)(n−2j−q+p
p−j

) =
(p−j
l

)
the proof is finished. �

This last result is the key to proving what we want. It tells us how to write
the square of the norm of a (p, q)–form u with p ≤ q as a linear combination
of traces of the form: Define two vector spaces

X = Span(Λ[l]u ∧ Λ[l]Iu ∧ ω[n−p−q+2l] | l = 0, . . . , p),

Y = Span(|L[p−j]uj |2ω[n] | j = 0, . . . , p).

(By a Zariski-open argument it is enough to prove our result on the open
set of forms u where all the above symbols are nonzero.) Proposition 1.6
defines a linear morphism A : X → Y ; a morphism that only depends on the
dimension of V and the degree p, but is otherwise independent of the form u.
Since |u|2ω[n] =

∑
|L[p−j]uj |ω[n], the coefficients of the linear combination

we seek are the coordinates of the vector A−1(1, . . . , 1). This observation
shows that coefficients like the ones we seek exist, the task is now to show
that they coincide with our integer sequence.

Remark — I’ll say a little about how we originally found the main result
of this paper in case the reader is curious. First, we guessed that some
kind of linear combination like the one in Theorem 1.1 existed, but assumed
that its coefficients at least depended on the dimension of the underlying
vector space. Then we calculated our way to Proposition 1.6. Once there,
we calculated A−1(1, . . . , 1) for (1, 1), (2, 2), (3, 3), (4, 4) and (5, 5)–forms
with the help of computer algebra software, from which we guessed that the
coefficients were in fact independent of the vector space. Searching the OEIS
then revealed the coefficients probably formed a known sequence, and from
there it was not difficult to prove the main result.

Proof of Theorem 1.1. If u is a (p, q)–form with p ≤ q then we set k = p+ q

and write

|u|2ω[n] =
n∑
l=0

(−1)l+k(k+1)/2bl(p, n) Λ[l]u ∧ Λ[l]Iu ∧ ω[n−p−q+2l],
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where bl(p, n) is the coefficient whose existence is guaranteed by Proposi-
tion 1.6. We will prove that bl(p, n) = bl by induction on p.

We first remark that b0(p, n) = b0 = 1 for all p, q, n, because the norm of
a primitive (p, q)–form u is |u|2ω[n] = (−1)k(k+1)/2u ∧ Iu ∧ ω[n−p−q].

For the induction step, we assume that bl(p, n) = bl for l = 0, . . . , p−1 and
want to prove that bp(p, n) = bp. For this, first recall that if u =

∑
j L

[p−j]uj
is the primitive decomposition of a (p, q)–form with p ≤ q, then

|u|2ω[n] =
∑
j

|L[p−j]uj |2.

Let’s record for immediate use that if p ≤ q then (−1)(q−p)(q−p+1)/2 =
(−1)p(−1)(p+q)(p+q+1)/2. Then we can also write the above as

|u|2ω[n]

=
n∑
l=0

(−1)k(k+1)/2+lbl(p, n) Λ[l]u ∧ Λ[l]Iu ∧ ω[n−2(p−l)]

=
n∑
l=0

(−1)k(k+1)/2+lbl(p, n)
l∑

j=0
(−1)j(−1)(q−p)(q−p+1)/2

×
(p−j
l

)( n−j−q+l
n−p−q+2l

)(n−j−q+l
l

)
|L[p−j]uj |2 ∧ ω[n]

=
n∑
l=0

(−1)l+pbl(p, n)
l∑

j=0
(−1)j

(p−j
l

)( n−j−q+l
n−p−q+2l

)(n−j−q+l
l

)
|L[p−j]uj |2 ∧ ω[n].

By comparing the coefficients of |L[p]u0|2 in these two expressions we find

1 =
p∑
l=0

(−1)l+pbl(p, n)
(p
l

)( n−q+l
n−p−q+2l

)(n−q+l
l

)
=
(n
p

)
bp(p, n) +

p−1∑
l=0

(−1)l+pbl
(p
l

)(n−q+l
p−l

)(n−q+l
l

)
for all n ≥ p+ q. The binomial coefficient

(n
k

)
is a polynomial of degree k in

n whose leading term is 1/k!. Comparing the top-degree coefficients of n in
the above equation we find that

0 = 1
p!bp(p, n) +

p−1∑
l=0

(−1)l+pbl
(p
l

) 1
l!(p− l)! .

Since this equation expresses bp(p, n) in terms of things that do not depend on
n, we conclude that bp doesn’t depend on n either. The defining recurrance
relation (1.1) for the integers bl, now shows that bp(p, n) = bp.

Finally, we remark that by conjugating the form u it is enough to prove
our formula for forms u with p ≤ q. �

Corollary 1.7 If u and v are complex (p, q)–forms on V , then

(−1)k(k+1)/2〈u, v〉ω[n] =
n∑
l=0

(−1)lbl Λ[l]u ∧ Λ[l]Iv ∧ ω[n−p−q+2l].
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Proof. Immediate from polarization. �

Example 1.8 In addition to the well-known formula for the square of
the norm of a (1, 1)–form, Theorem 1.1 gives these formulas for the norms
of higher-degree forms, that have not appeared before to the best of my
knowledge. We a few here, for real forms to simplify notation.
(i) For a real (2, 2)–form u on V we have

|u|2ω[n] = u2 ∧ ω[n−4] − (Λu)2 ∧ ω[n−2] + 3(Λ[2]u)2 ∧ ω[n].

(ii) For a real (3, 3)–form u our formula gives

|u|2ω[n] = −u2∧ω[n−6] +(Λu)2∧ω[n−4]−3(Λ[2]u)2∧ω[n−2] +19(Λ[3]u)2∧ω[n].

(iii) For a real (4, 4)–form u we get

|u|2ω[n] = u2 ∧ ω[n−8] − (Λu)2 ∧ ω[n−6] + 3(Λ[2]u)2 ∧ ω[n−4]

− 19(Λ[3]u)2 ∧ ω[n−2] + 211(Λ[4]u)2 ∧ ω[n].

Our theorem allows us to express the scalar product of two forms as a
wedge product of forms derived from the original ones. Doing things the
other way around, or expressing a wedge product in terms of inner products
is also possible:

Corollary 1.9 If u and v are (p, q)–forms on V and k = p+ q, then

(−1)k(k+1)/2u ∧ Iv ∧ ω[n−k] =
n∑

m=0
(−1)m〈Λ[m]u,Λ[m]Iv〉ω[n].

Proof. We remark that as usual it is enough to prove our statement for
(p, q)–forms with p ≤ q, so we assume this holds. Plugging Λ[m]u and Λ[m]Iv
into our formula gives

(−1)km(km+1)/2〈Λ[m]u,Λ[m]Iv〉ω[n]

=
n∑
l=0

(−1)lbl
(l+m

l

)2(Λ[l+m]u) ∧ (Λ[l+m]Iv) ∧ ω[n−k+2(l+m)],

where we write km = k − 2m. Remark that

(−1)km(km+1)/2 = (−1)k(k+1)/2(−1)m.

If we sum both sides of the above equation for the scalar product over m
from 0 to n and then change the variable in the first sum from m to ν = l+m
we get

(−1)k(k+1)/2
n∑

m=0
(−1)m〈Λ[m]u,Λ[m]Iv〉ω[n]

=
n∑
ν=0

( ν∑
l=0

(−1)lbl
(ν
l

)2)(Λ[ν]u) ∧ (Λ[ν]Iv) ∧ ω[n−k+2ν]

= u ∧ Iv ∧ ω[n−k],

because
∑ν
l=0(−1)lbl

(ν
l

)2 = 0 for all ν ≥ 1 by definition. �
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Remark — Our formula for the inner product is given by numbers related
to Bessel functions. It is possible to write our results in compact form by
letting holomorphic functions define sesquilinear operators on V . For this,
let

f(z) = J0(2
√
z) =

∑
m≥0

(−1)m 1
m!2 z

m.

This is a Bessel function of the first kind and if we set z = xy and look at
its reciproque we find

1
f(xy) =

∑
l≥0

(−1)lbl x[l]y[l];

see [Car55, Rio64]. This function defines a sesquilinear operator on
∧∗V ∗ if

we declare that

x[a]y[b](Λ,Λ) := (u, v) 7→ Λ[a]u ∧ Λ[b]v.

We can then write

(−1)k(k+1)/2u ∧ Iv ∧ ω[n−p−q] = πn,n
(
f(xy)(Λ,Λ)(u, Iv) ∧ exp(ω)

)
,

(−1)k(k+1)/2〈u, v〉ω[n] = πn,n
( 1
f(xy)(Λ,Λ)(u, Iv) ∧ exp(ω)

)
,

where πn,n :
∧∗V ∗ → ∧n,nV ∗ is the projection onto the subspace of (n, n)–

forms and exp(ω) :=
∑
k≥0 ω

[k]. In applications we would most likely consider
differential forms on a manifold X and be interested in the global inner
product 〈〈u, v〉〉 =

∫
X〈u, v〉ω[n] instead of the pointwise one. There integration

kills all but the top-degree forms, so we can write

(−1)k(k+1)/2〈〈u, v〉〉 =
∫
X

1
f(xy)(Λ,Λ)(u, Iv) ∧ exp(ω).

Consider now the set U of complexified Hermitian inner products on V ,
that is the set of (1, 1)–forms α+ iω, where α and ω are real and ω is an inner
product. We have a trivial holomorphic vector bundle F k → U whose fiber
is the space of k–forms on V , and the inner products ω define a Hermitian
metric h on F k. The words “mirror symmetry” may be waived around here
in certain crowds (but then we should perhaps look at Gk=

⊕
p−q=n−k

∧p,q V ∗
instead of F k).

It is tempting to use the differential equation that J0 satisfies to say
something about the curvature tensor of h, but in practice this seems difficult
at best and should in fact depend heavily on how the space of primitive
k–forms varies with ω inside

∧k V ∗. The preprint [Huy] may be useful here.

2. Curvature tensors and the Kobayashi–Lübke inequality

Linear algebraic preliminaries In this section, we will (morally speak-
ing) be viewing the curvature form R as a form defined on the total space
of its vector bundle E and equipping that space with a metric induced by
the ones on the underlying space X and on E. This lets us use the Hodge
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star and Lefschetz operators on that bigger space and apply the results from
Section 1.

Let V and E be complex vector space of dimensions n and r, equipped
with Hermitian metrics ω and h. Let R be a curvature-type tensor, or an
element of

∧1,1 V ∗ ⊗ EndE that is Hermitian. We view R as a (2, 2)–form
on the space E ⊕ V , equipped with the Hermitian metric α = ω + h, where
we abuse notation and do not write α = p∗V ω + p∗Eh as we should.

Let e be a form on E and v a form on V . By picking orthonormal
coordinates we quickly verify that

∗α(p∗V v ∧ p∗Ee) = p∗V (∗ωv) ∧ p∗E(∗he).

Since the exterior algebra of V ⊕ E is generated by elements of the type
p∗V v ∧ p∗Ee this lets us calculate with the Hodge star operator on that space.

Let Λω and Λh be the adjoints of the Lefschetz operators of ω and h,
pulled back to V ⊕ E. These operators commute by general facts on trace
operators in Coffman’s [Cof] or by calculations in an orthonormal basis.

We also note that Newton’s binomial formula gives

α[l] =
l∑

k=0
ω[k] ∧ h[l−k]

and that many of those terms will be zero for l big for degree reasons. A
similar formula expresses Λ[l]

α in terms of Λ[k]
ω and Λ[l−k]

h .
Finally we set k!ck := Λ[k]

h (
∧kR) for k = 0, . . . , r. The notation is so

chosen because when R is the curvature tensor of an actual Hermitian metric
on a vector bundle, the ck will be the Chern forms defined by R. The k!
factor deserves an explanation:

The inner product h is an isomorphism h : E → E
∗. It induces inner

products on both EndE and
∧1,1E∗ and a morphism h ⊗ idE∗ : EndE →∧1,1E∗. The trace of an endomorphism of E is just its scalar product again

the identity morphism. Taking k–th exterior powers we get a canonical
morphism hk ⊗ id∧kE∗ : End

∧kE → ∧k,kE∗. This morphism is however not
an isometry, but h[k] is; this can be seen by comparing the norms of id∧kE

and its image h[k]. We now want to find a morphism
∧1,1E →

∧k,kE that
makes the diagram

EndE
f 7→∧kf //

h⊗idE∗
��

End
∧kE
h[k]⊗id∧kE∗
��∧1,1E // ∧k,kE

commute. This morphism is clearly u 7→ uk/k!, whence the factor of k! above.

The norm of a curvature tensor Here we calculate the norm of a
curvature tensor of a vector bundle. The identity we find is implicit in the
literature on the Kobayashi–Lübke inequality (compare with [CO75], [Lüb82]
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and [Siu87]); the inequality is actually a corollary of a simple application of
Cauchy–Schwarz to the equation for the norm of the curvature tensor.

Theorem 2.1 Let E → X be a holomorphic vector bundle of rank r over
a complex manifold X of dimension n. Let ω and h be Hermitian metrics on
X and E, respectively. Let i

2πΘ be the curvature form of (E, h) and let ck
be the Chern forms defined by the curvature form. Then∣∣∣ i2πΘ

∣∣∣2ω[n] = (2c2 − c2
1) ∧ ω[n−2] +

∣∣∣trω i

2πΘ
∣∣∣2ω[n]

at every point of X. If (E, h) is Hermite–Einstein, then we also have

0 ≤ (2rc2 − (r − 1)c2
1) ∧ ω[n−2]

pointwise on X with equality if and only if i
2πΘ = (λ/n) idE ⊗ω, where λ is

the Hermite–Einstein constant of (E, h).

Proof. The announced result is local on X, so we pick a point x ∈ X and
write V = TX,x, abuse notation to write E = Ex and write R for the image
of i

2πΘ under the isometry
∧1,1TX ⊗ EndE →

∧2,2(TX ⊗ E)∗ defined by h.
Then R is a (2, 2)–form on V ⊕E. We write α = ω+ h for the induced inner
product on V ⊕ E, in slight abuse of notation.

The norm of R as a (2, 2)–form on V ⊕ E is

|R|2α[n+r] = R2 ∧ α[n+r−4] − (ΛαR)2 ∧ α[n+r−2] + 3(Λ[2]
α R)2 ∧ α[n+r].

We’ll indicate the general steps in the calculation of each of these factors but
leave the details mostly to the reader. We have

R2 ∧ α[n+r−4] = R2 ∧
( 4∑
k=0

ω[n−k] ∧ h[r+k−4]
)

= R2 ∧ ω[n−2] ∧ h[r−2] = 2c2 ∧ ω[n−2] ∧ h[r],

where the second equality holds for degree reasons. Similarly we get

(ΛαR)2 ∧ α[n+r−2] = (ΛωR)2 ∧ ω[n] ∧ h[r−2]

+ 2(trω c1)2ω[n] ∧ h[r] + c2
1 ∧ ω[n−2] ∧ h[r]

because
ΛωR ∧ ΛhR ∧ ω[n−1] ∧ h[r−1] = (trω c1)2ω[n] ∧ h[r].

Finally,

(Λ[2]
α R)2 ∧ α[n+r] = (ΛωΛhR)2 ∧ ω[n] ∧ h[r] = (trω c1)2 ∧ ω[n] ∧ h[r],

again for degree reasons and commutativity of the adjoints of the Lefschetz
operators. From this we reap

|R|2ω[n] ∧ h[r] = (2c2 − c2
1) ∧ ω[n−2] ∧ h[r]

+ (trω c1)2 ∧ ω[n] ∧ h[r] − (ΛωR)2 ∧ ω[n] ∧ h[r−2]

which yields

|R|2ω[n] = (2c2 − c2
1) ∧ ω[n−2] + (trω c1)2 ω[n] − Λ[2]

h (ΛωR)2 ω[n].
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We now use the formula for the norm of a (1, 1)–form and see that

|ΛωR|2h = (ΛhΛωR)2 − Λ[2]
h (ΛωR)2 = (trω c1)2 − Λ[2]

h (ΛωR)2,

thus obtaining our first announced result (in equivalent notation):

|R|2 ω[n] = (2c2 − c2
1) ∧ ω[n−2] + |ΛωR|2h ω[n].

Now assume that (E, h) is Hermite–Einstein. By definition, this means
that trω i

2πΘ = λ idE . Under our isometries, this translates into ΛωR = λh.
The factor λ satisfies rλ = trω c1, so we get

0 ≤ |R|2 ω[n] = (2c2 − c2
1) ∧ ω[n−2] + r|λ|2 ω[n].

= (2c2 − c2
1) ∧ ω[n−2] + 1

r (trω c1)2ω[n].

Multiplying by r and rearranging gives

0 ≤ r|R|2 ω[n] = (2rc2 − (r − 1)c2
1) ∧ ω[n−2] + |c1|2ω[n].

Proposition 2.2 below, which is just the Cauchy–Schwarz inequality in dis-
guise, says that

|c1|2 ≤ r|R|2,
with equality if and only if R = u ∧ ω, where u is the pullback of a form on
E. By the Hermite–Einstein condition we necessarily have u = (λ/n)h in
that case. This proves the Kobayashi–Lübke inequality. �

Proposition 2.2 We have |ΛωR|2 ≤ n|R|2 and |c1|2 = |ΛhR|2 ≤ r|R|2,
with equalities if and only if R = u ∧ ω or R = v ∧ h, where u and v are
pullbacks of (1, 1)–forms from E and V , respectively.

Proof. We just prove the first result since the proof of the second differs from
that in notation only. The primitive decomposition of R as a (2, 2)–form on
E ⊕ V is

R = r0ω ∧ h+ rω1 ∧ h+ rh1 ∧ ω + r2.

Here r0 is a scalar, rh1 is a primitive form that’s a pullback from E, similar
for rω1 . By orthogonality we see that Λωrj = 0 for these primitive forms.
This gives ΛωR = n(r0h+ rh1 ), so

|ΛωR|2 = n2(|r0h|2 + |rh1 |2) = n(|r0ω ∧ h|2 + |rh1 ∧ ω|2)

≤ n(|r0ω ∧ h|2 + |rh1 ∧ ω + rω1 ∧ h|2 + |r2|2) = n|R|2

with equality if and only if R = u ∧ ω for a form u that’s a pullback
from E. �

Example 2.3 (1) Let (X,ω) be a Kähler–Einstein manifold, so that
Ricω = λω for some λ ∈ R. Then

|R|2ω[n] = c2 ∧ ω[n−2] + (nλ)2ω[n],

where c2 is the second Chern form defined by ω.
(2) Let (X,ω) now be a Kähler manifold of constant sectional curvature

λ; like projective space with the Fubini–Study metric, a torus with its flat
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metric or the unit ball with the Bergman metric. Then the curvature tensor
of ω is

Rjklm = λ(ωjkωlm − ωjlωmk)
in local coordinates and we have Ricω = λ(n− 1)ω. Some calculations give

|R|2 = 2n(n− 1)λ2,

so we see that

c2 ∧ ω[n−2] = −λ2(n− 2)(n− 1)n(n+ 1)ω[n].

Remark — The original motivation for all of this was that I didn’t understand
where the differential-geometric proofs of the Kobayashi–Lübke inequality
came from (see [CO75, Lüb82, Siu87]), since they all brutally calculate
things in local coordinates. I also naively thought that if I found a more
coordinate-invariant proof of the inequality it would be possible to use it
to find inequalities involving higher Chern classes, because if calculating
| i2πΘ|2 gives an inequality involving c2 then calculating |

∧k i
2πΘ|2 should

give an inequality involving c2k. Unfortunately this does not seem to be
possible, basically because we cannot calculate Λ(u ∧ v) or ∗(u ∧ v) in terms
of u, v and Λ or ∗, which again is not possible because the wedge product of
primitive forms is not primitive. I leave to the reader the pleasure of trying
to estimate |

∧k i
2πΘ|2 in terms of things we know and are interested in and

seeing where things go wrong.
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