
ar
X

iv
:1

40
1.

60
54

v2
 [

cs
.D

M
]

 1
9

A
pr

 2
01

4

Computing the (number or sum of) inverses of

Euler’s totient and other multiplicative functions

Max A. Alekseyev

George Washington University, Washington, DC, U.S.A.

Abstract. We propose a generic algorithm for computing the inverses of
a multiplicative function. We illustrate our algorithm with Euler’s totient
function and the sum of k-th powers of divisors. Our approach can be fur-
ther adapted for computing certain functions of the inverses, such as their
quantity, sum, or the smallest/largest inverse, which may be computed
without and possibly faster than the inverses themselves.

1 Introduction

A value of multiplicative function f on a positive integer n equals the product
of its values on the prime powers in the prime factorization of n. That is, if
n = pe1

1
· pe2

2
· · ·pem

m where p1 < p2 < · · · < pm are primes, then

f (n) =

m
∏

i=1

f (pei

i
).

In particular, f (1) = 1.

Famous examples of multiplicative functions include τ(n), the number of
divisors of n (with τ(pe) = e + 1); σk(n), the sum of k-th powers of divisors

of n (with σk(pe) =
pk(e+1)−1

pk−1
); and Euler’s totient function ϕ(n) (with ϕ(pe) =

(p − 1) · pe−1)).

In our work, we propose a generic algorithm for computing the set of in-
verses (full pre-image) f−1(n) of a multiplicative function f for a given integer n
with a known factorization (which otherwise may be a bottleneck to obtain; e.g.,
Contini et al. [2] proved that computing ϕ−1(n) is as hard as factorization of n).
While computing inverses of Euler’s totient function was studied to some ex-
tent [3,2,1], computing inverses of other multiplicative functions (with a notable
and simple exception of τ(n)), to the best of our knowledge, was not addressed
in the literature. Our algorithm may be viewed as a generalization and stream-
lining of the “intelligent exhaustive search” for ϕ−1(n) in [2]. We present an
underlying idea of the algorithm in the elegant form of formal Dirichlet series
and extend it to computing certain functions of the inverses, without computing
the whole set of inverses.

http://arxiv.org/abs/1401.6054v2

2 Formal Dirichlet series formulae

From now on, we assume that f is a fixed multiplicative function.
We find it convenient to define binary multiplication× and addition+ on sets

of positive integers as follows: U×V = {u · v : u ∈ U, v ∈ V} and U+V = U∪V.
Equipped with these operations the set Pfin(Z>0) of finite nonempty subsets
of positive integers forms a commutative semiring (with the multiplicative
identity {1}) and allows us to consider Dirichlet series with coefficients from this
semiring.

Theorem 1. We have the following identity for Dirichlet series of variable s over the
semiring (Pfin(Z>0),×,+):

∑

n≥0

f−1(n)

ns
= ×

prime p

∞
∑

e=1

{pe}

f (pe)s
. (1)

For a fixed integer n > 0 and every d | n, we further have:

f−1(d) = Coeffd−s ×
prime p

∑

e: f (pe)|n

{pe}

f (pe)s
. (2)

Proof. Multiplicativity of f implies that if n = f (m) for some positive integers
m, n and m has factorization m = pe1

1
· pe2

2
· · · pek

k
where p1 < p2 < · · · < pk are

primes, then n = f (pe1

1
) · f (pe2

2
) · · · f (pek

k
). It follows that n is the product of factors

of the form f (pe), where p is prime and e is a positive integer and no two factors
share the same p. In other words,

f−1(n) =
∑

f (p
e1
1

)··· f (p
ek
k

)=n

k

×
i=1

{pei

i
}, (3)

where the sum is taken over various vectors of primes p1 < p2 < · · · < pk and
various positive integer exponents e1 , e2, . . . , ek that satisfy f (pe1

1
)· f (pe2

2
) · · · f (pek

k
) =

n. Multiplying (3) by n−s, we get

f−1(n)

ns
=

∑

f (p
e1
1

)··· f (p
ek
k

)=n

k

×
i=1

{pei

i
}

f (pei

i
)s
.

Summing over n ≥ 0, we obtain (1).
We remark that for a prime power pe, f (pe) may participate in a factorization

of n only if f (pe) | n. Hence, to obtain the full pre-image f−1(n) from (1) for a
given n, we can restrict our attention only to such prime powers:

f−1(n) = Coeffn−s ×
prime p

∑

e: f (pe)|n

{pe}

f (pe)s
. (4)

We further remark that for every d | n, the coefficients of d−s in the series in the
right hand side of (4) and (1) coincide, which implies formula (2). ⊓⊔

2

Let (X,⊗,⊕) be a commutative semiring. We call a mapping C :
(Pfin(Z>0),×,+) → (X,⊗,⊕) a weak homomorphism if for any U,V ∈ Pfin(Z>0),
we have C(U × V) = C(U) ⊗ C(V) whenever the sets U and V are element-wise
coprime (i.e., gcd(u, v) = 1 for any u ∈ U and v ∈ V) and C(U +V) = C(U) ⊕ C(V)
whenever U,V are disjoint. It is easy to see that if C is a homomorphism, then it
is also a weak homomorphism.

Theorem 2. Let (X,⊗,⊕) be a commutative semiring and C : (Pfin(Z>0),×,+) →
(X,⊗,⊕) be a weak homomorphism, then

⊕

n≥0

C(f−1(n))

ns
=
⊗

prime p

∞
⊕

e=1

C({pe})

f (pe)s
(5)

and for a fixed positive integer n and every d | n,

C(f−1(d)) = Coeffd−s

⊗

prime p

⊕

e: f (pe)|n

C({pe})

f (pe)s
. (6)

Proof. We remark that the sets inside the product in (3) are coprime, while the
products inside the sum are disjoint. Since C is a weak homomorphism, we have

C(f−1(n)) =
∑

f (p
e1
1

)··· f (p
ek
k

)=n

k

×
i=1

C({pei

i
}),

which further implies identity (5).
Formula (6) is derived from (5) by the same arguments we used to derive (2)

from (1). ⊓⊔

The formula (6) under appropriate choice of the homomorphism C and its
codomain (X,⊗,⊕) allows us to efficiently compute certain functions of the pre-
images without computing the pre-images themselves. In the next section we
give some particular examples.

3 Examples of weak homomorphisms

Our first, rather trivial example is given by (X,⊗,⊕) = (Pfin(Z>0),×,+) with C
being the identity homomorphism. In this case, formulae (5) and (6) simply
represent the original formulae (1) and (2) for the full pre-images. We will still
keep this example in mind to fit computation of the full pre-images into our
generic algorithm.

Our second example is given by (X,⊗,⊕) = (Z>0, ·,max), which is a com-
mutative semiring of positive integers with the standard integer multiplica-
tion and a binary maximum operation (i.e., u ⊕ v = max{u, v}). The mapping
C(U) = max U, giving the maximum element of a set, represents a homomor-
phism between (Pfin(Z>0),×,+) and (Z>0, ·,max).

3

Similarly, the mapping C(U) = min U represents a homomorphism between
(Pfin(Z>0),×,+) and the commutative semiring (Z>0, ·,min).

An example of a weak homomorphism, which is not a homomorphism, is
given by (X,⊗,⊕) = (Z≥0, ·,+), i.e., semiring of nonnegative integers with the
standard integer multiplication and addition, and Cq(U) =

∑

u∈U uq, where q ≥ 0
is a fixed integer. In particular, C0(U) = |U| represents the cardinality of a set U,
while C1(U) is the sum of elements of U.

4 Algorithm for computing C(f−1(n))

In addition to a multiplicative function f , we now fix a commutative semiring
(X,⊗,⊕) and a weak homomorphism C : (Pfin(Z>0),×,+)→ (X,⊗,⊕). For a given
integer n (and its prime factorization), computing C(f−1(n)) naturally splits into
three major steps.

First, from the known prime factorization of n, we easily compute the set of
its divisors D = {d1, d2, . . . , dk}, where k = τ(n).

Second, we iteratively compute the right hand side of (6) restricted to the
terms with denominators ds for d ∈ D. Namely, we compute the atomic series

Lp =
⊕

e: f (pe)|n

C({pe})

f (pe)s
=
⊕

d∈D

Ad

ds

for every prime p that possesses at least one integer e > 0 with f (pe) | n.1 Here

Ad =
⊕

e: f (pe)=d

C({pe}). (7)

Internally we represent each such series Lp as an associative array d 7→ Ad for
d ∈ D.

Third, we multiply the constructed atomic series Lp1
, Lp2
, . . . , Lpℓ and compute

partial products P0 =
C({1})

1s , P1 = P0 ⊗D Lp1
, . . ., Pℓ = Pℓ−1 ⊗D Lpℓ , where ⊗D

denotes restriction of the result of ⊗ to the terms with denominators from D.
Each multiplication is computed by the formula:















⊕

d∈D

Bd

ds















⊗D















⊕

d∈D

Ad

ds















=
⊕

d∈D

⊕

t|d
Bt ⊗ Ad/t

ds
.

That is, if the associative array d 7→ Bd represents the partial product P j then we

replace it with the associative array d 7→
⊕

t|d
Bt ⊗ Ad/t representing the partial

product P j+1. This can be done in-place by computing new coefficients for d
going over the elements of D in decreasing order.

The coefficient of n−s in the final product Pℓ gives us C(f−1(n)).

1 We remark that if there is no such e > 0, then Lp =
C({1})

1s represents the identity for
⊗-multiplication of Dirichlet series.

4

We remark that the second step of the algorithm is specific to particular
function f . We will illustrate this step with some examples in the next section.
Below we briefly analyze space and time requirements for the generic third step.

The space complexity is proportional to τ(n) times the maximum size of
C(f−1(d)) for d | n. For C giving size, sum, maximum or minimum elements,
under the assumption that the size of f (x) is not significantly smaller than the
size of x, the space complexity becomes simply O(τ(n) · log n).

The time complexity is bounded by O(ℓ · τ(n)) ⊗-multiplications and ⊕-
additions of values of C (assuming constant time for associative array queries).
E.g., in computing the size/maximum/minimum of Euler’s totient function in-
verses, we have ℓ ≤ τ(n) and thus O(τ(n)2) multiplications and additions of
integers of size O(log(n)), which can be done in O(τ(n)2 · log(n)2) time.

5 Examples

We remark that our algorithm is generic and works for any multiplicative func-
tion f , provided that we can construct atomic series Lp1

, . . . , Lpℓ . Namely, we
need to determine suitable p and compute the corresponding coefficients Ad

defined by (7). Below we give specific examples.

5.1 Euler’s totient function,ϕ

Since for e > 0, ϕ(pe) = (p − 1)pe−1, ϕ(pe) | n implies that p − 1 divides d and
e ≤ νp(d) + 1, where νp(d) is the p-adic valuation of d, i.e., the maximum integer
t such that pt | d but pt+1 ∤ d. So we need to compute the set S = {p : p − 1 ∈
D and p is prime}, which can be done by going over the elements d of D and
testing if p = d + 1 is prime. The set S gives us the indicies of atomic series. For
every prime p ∈ S, we compute the corresponding atomic series:

Lp =
C({1})

1s
⊕

νp(n)+1
⊕

e=1

C({pe})

((p − 1)pe−1)s
.

5.2 Sum of k-th powers of divisors, σk

Suppose that σk(pe) = d for some d ∈ D. Since σk(pe) = 1 + p + p2 + · · · + pe, we
have pe < d ≤ (1 + p)e, implying that p = ⌊(d − 1)1/e⌋.

So to find pe such that σk(pe) | n, we let d run over the divisors of n and
e run incrementally from 1 to ⌊log2(d − 1)⌋. For each such pair d, e, we test if

p = ⌊log2(d − 1)⌋ is prime and if so, add term
C({pe})

ds to Lp. Here we assume that

initially all Lp =
C({1})

1s and only those Lp that were enriched with additional terms
in the above process represent the atomic series.

5

5.3 Sequences in the OEIS

The Online Encyclopedia of Integer Sequences [4] contains a number of se-
quences, for which the proposed algorithm allows one to compute many terms:2

ϕ−1(n!) σ−1(n!) ϕ−1(10n) σ−1(10n) σ−1(pn#)

size A055506 A055486 A072074 A110078 A153078
min A055487 A055488 A072075 A110077 A153076
max A165774 A055489 A072076 A110076 A153077

References

1. Coleman, R.: On the image of Euler’s totient function. arXiv preprint arXiv:0910.2223
(2009)

2. Contini, S., Croot, E., Shparlinski, I.: Complexity of inverting the Euler function.
Mathematics of computation 75(254), 983–996 (2006)

3. Gupta, H.: Euler’s totient function and its inverse. Indian Journal of Pure and Applied
Mathematics 12(1), 22–30 (1981)

4. The OEIS Foundation: The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://oeis.org (2014)

2 Some of the current records in the number of computed terms belong to Ray Chandler.

6

http://oeis.org

	Computing the (number or sum of) inverses of Euler's totient and other multiplicative functions

