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SPECIES WITH AN EQUIVARIANT GROUP ACTION

ANDREW GAINER-DEWAR

Abstract. Joyal’s theory of combinatorial species provides a rich and elegant framework
for enumerating combinatorial structures by translating structural information into algebraic
functional equations. We also extend the theory to incorporate information about “structural”
group actions (i.e. those which commute with the label permutation action) on combinatorial
species, using the Γ-species of Henderson, and present Pólya-theoretic interpretations of the
associated formal power series for both ordinary and Γ-species. We define the appropriate
operations +, ·, ◦, and � on Γ-species, give formulas for the associated operations on Γ-
cycle indices, and illustrate the use of this theory to study several important examples of
combinatorial structures. Finally, we demonstrate the use of the Sage computer algebra system
to enumerate Γ-species and their quotients.

1. Preliminaries

1.1. Classical Pólya theory. We recall here some classical results of Pólya theory for conve-
nience.

Let Λ denote the ring of abstract symmetric functions and pi the elements of the power-sum
basis of Λ. Further, let P denote the ring of formal power series in the family of indeterminates
x1, x2, . . . , and let η : Λ → P denote the map which expands each symmetric function in the
underlying x-variables.

Let G be a finite group which acts on a finite set S of cardinality n. The classical cycle index
polynomial of the action of G on S is the power series

(1) ZG(p1, p2, . . . , pn) =
1

|G|

∑

σ∈G

pσ

where pσ = pσ1

1 pσ2

2 . . . for σi the number of i-cycles of the action of σ on S. (In particular, if
G ⊆ Sn, we frequently consider the action of G on [n] as permutations; then pσ simply counts
the i-cycles in σ as a permutation.)

In this language, the celebrated Pólya enumeration theorem then has a simple form:

Theorem 1.1 (Pólya enumeration theorem). Let ZG be the classical cycle index polynomial of a
fixed action of the finite group G on the finite set S and let π = 〈π1, . . . , πk〉 be a vector of positive
integers summing to n. Then the number of G-orbits of colorings of S having πi instances of
color i is equal to the coefficient of xπ = xπ1

1 xπ2

2 . . . xπk

k in η(ZG).

1.2. Combinatorial species. The theory of combinatorial species, introduced by André Joyal
in [9], provides an elegant framework for understanding the connection between classes of com-
binatorial structures and their associated counting series. We adopt the categorical perspective
on species; the reader unfamiliar with these constructs should first consult the “species book”
[1] for a primer on the associated combinatorics.

Let FinSet denote the category of finite sets with set maps and FinBij denote its “core”,
the groupoid1 of finite sets with bijections. A combinatorial species F is then a functor F :

1Recall that a groupoid is a category whose morphisms are all isomorphisms.
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2 ANDREW GAINER-DEWAR

FinSet → FinBij. Specifically, F carries each set A of “labels” to the set F [A] of “F -structures
labeled by A”, and each permutation σ : A → A to a permutation F [σ] : F [A] → F [A]. (Thus,
for example, for the species Graph of graphs labeled at vertices, a permutation σ ∈ S4 is
transported to a permutation Graph[σ] on the class of labeled graphs with four vertices.) The
crucial combinatorial insight of species theory is that, for enumerative purposes, it is the algebraic
structure of the group F [SA] of “relabelings of F -structures over A” which is important, and
not the combinatorial details of the F -structures themselves.

Associated to each species F are several formal power series which enumerate various sorts of
F -structures. Classically, the generating functions for labeled and unlabeled F -structures have
received the most attention; species-theoretic analysis instead uses the cycle index series, given
by

(2) ZF =
∑

n≥0

1

n!

∑

σ∈Sn

fix(F [σ])pσ1

1 pσ2

2 . . .

where σi is the number of i-cycles in σ and pi is a formal indeterminate. It is easily shown
(cf. [1]) that we can recover the generating functions for labeled and unlabeled F -structures from
ZF , essentially by applying Burnside’s lemma to the actions of Sn; however, the algebra of cycle
index series captures the calculus of combinatorial structures more fully than that of generating
functions. Thus, we generally work at the cycle-index level until we have characterized a species
of interest, then extract the desired enumerations.

It is often meaningful to speak of maps between combinatorial classes; for example, there is
a natural map from the class Tree of trees to the class Graph of simple graphs which simply
interprets each tree as a graph. Indeed, this map is “natural” in the sense that it respects the
structure of the trees and is not dependent on labelings; this can be captured either by saying
that it acts on “unlabeled trees and graphs” or by noting that it commutes with the actions of Sn

on labels. Since Tree and Graph are each functors, it turns out that this “naturality” condition
is equivalent to the category-theoretic notion of a natural transformation. We can then define the
category Spec of species as simply the functor category FinBijFinSet. As noted in [5, §1.1], the epi-,
mono-, and isomorphisms of this category have natural combinatorial interpretations as “species
embeddings”, “species coverings”, and “species isomorphisms”. (Of course, this sort of category-
theoretic approach obscures the combinatorial applications of the theory, but the compactness
of the representation is attractive, and it suggests that this is a “natural” structure.)

1.3. Pólya theory for species. Once again, let F be a combinatorial species and let ZF be
its cycle index series. The formal indeterminates pi in equation (2) may be interpreted as
the elements of the power-sum basis of the ring Λ of abstract symmetric functions introduced
in Section 1.1. To demonstrate the usefulness of this interpretation, we note that the Pólya-
theoretic cycle index polynomial of equation (1) and the species-theoretic cycle index series of
equation (2) are intimately related.

Lemma 1.2 ([9, § 3.2.1, Prop. 13, eq. 3]). Let F be a combinatorial species. Denote by Ω(F ) the
collection of orbits2 of F -structures under the actions of the symmetric groups. For each such
orbit ω ∈ Ω(F ), let stabω be the subgroup of Sn which fixes3 some element of ω. Then

(3) ZF =
∑

ω∈Ω(F )

Zstabω.

2Note that Ω(F ) corresponds to the molecular decomposition of F .
3For a given ω, all available choices of subgroup will be conjugate, and so the formula will not be affected by

this choice.
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Thus, we may reasonably hope to extend the classical Pólya theory which results from The-
orem 1.1 to the species-theoretic context. Typical species-theoretic analysis requires treating all
structures as labeled and considering the orbits of structures under the actions of symmetric
groups on those labels. To connect this idea with the Pólya-theoretic idea of colors, we introduce
an intermediate notion.

Definition 1.3. Let F be a combinatorial species and fix a positive integer n. Let P denote the
set of positive integers and let Pn denote the set of colorings c : P → [n]. Let Sn act on Pn

by (σ · c)(i) = c
(

σ−1(i)
)

. Then an element of F [n]×Pn is a colored F -structure, and a specific
element (T, c) ∈ F [n]×Pn is said to have coloring c.

Fix a vector π = 〈π1, . . . , πk〉 of positive integers summing to n and let cπ ∈ Pn be the coloring
where the first π1 integers are the fiber of 1, the next π2 are the fiber of 2, and so on. Then a
partially-labeled F -structure with profile π is an orbit of an F -structure with coloring cπ under
the action of Sn.

Example 1.4. Let Graph denote the species of simple graphs. Fix the profile vector π = 〈3, 1〉.
Figure 1 shows a colored Graph[4]-structure (with the colors represented by node shapes) and
its orbit under the action of S4 (in schematic form, where the labels may be assigned freely).

1

23

4

−→

Figure 1. A colored simple graph with 4 vertices and its associated partially-
labeled graph with profile 〈3, 1〉 (in schematic form)

This notion of a partially-labeled F -structure refines the classical Pólya-theoretic notion of a
‘colored’ F -structure. In particular, if we can enumerate partially-labeled F -structures with all
profiles, we can use this information to count the classical k-colored structures by summing over
all profile vectors with k parts. In fact, the enumeration of partially-labeled F -structures can be
completed with no more than the cycle index series ZF , as is shown in [1, eq. 4.3.23].

Theorem 1.5 (Pólya’s theorem for species). Let F be a combinatorial species with cycle index
series ZF and fix a vector π = 〈π1, π2, . . . , πk〉 of positive integers. Let η : Λ → P be the map
which expands each abstract symmetric function as a formal power series in variables xi. Then
the number of partially-labeled F -structures of profile π is equal to the coefficient of xπ in η(ZF ).

This notion of “partially-labeled” structures allows us to interpolate between labeled and
unlabeled structures. In particular, the notion of unlabeled F -structures of order n may be
recovered by taking the partially-labeled F -structures of profile π = 〈n〉, while the labeled F -
structures of order n may be recovered by taking the partially-labeled F -structures of profile
π = 〈1, 1, . . . , 1〉. This leads to a straightforward proof of two important enumerative results on
species.

Theorem 1.6 ([1, §1.2, Thm. 8]). Let F be a combinatorial species. Denote by F (x) the expo-

nential generating function of labeled F -structures and by F̃ (x) the ordinary generating function
of unlabeled F -structures. Then we have the following identities of formal power series:

F (x) = ZF (x, 0, 0, . . .)(4a)

F̃ (x) = ZF (x, x
2, x3, . . .)(4b)
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1.4. Species-theoretic enumeration of rooted binary leaf-multi-labeled trees. As an
example of the application of this theory, we now investigated the “rooted binary leaf-multi-
labeled trees” of [2]. To begin, we will consider the species RBLT consisting of rooted binary
trees whose internal nodes are unlabeled. Letting Lin2 denote the species of lists of length 2, we
clearly have that

(5) RBLT = X+ Lin2(RBLT).

This allows for recursive calculation of the two-sort cycle index series of RBLT.
In light of the application in [2], we are interested in the enumeration of RBLT-structures

which are partially-labeled from a set of k labels. Let ηk : Λ → P denote the map which
expands each symmetric variables in the family {x1, . . . , xk} of k indeterminates and let λ =
[λ1, λ2, . . . , λi] ⊢ n be a partition with no more than k parts. Then, by Theorem 1.5, the
coefficient of xλ in ηk

(

ZRBLT

)

is the number of RBLT-structures with n leaves with λ1 of them
labeled 1, λ2 labeled 2, and so forth. The total number of k-multi-labeled RBLT-structures
with n vertices is then simply the sum of the coefficients of the degree-n terms in ηk

(

ZRBLT

)

.
We can compute these numbers using the Sage code appearing in Listing 1. This code is

shown configured to compute the number of rooted binary leaf-multi-labeled trees with 8 leaves
labeled from [4], which it finds to be 366680 (in agreement with [2, Table 1]).

Listing 1. Sage code to compute numbers of rooted binary leaf-multi-labeled trees

1 from sage.combinat .species .library import SingletonSpecies , LinearOrderSpecies

3 X = species .SingletonSpecies ()

L2 = species .SetSpecies (size =2)

5

RootedBinaryLeafTrees = species .CombinatorialSpecies ()

7 RootedBinaryLeafTrees.define (X + L2( RootedBinaryLeafTrees ))

9 RBLT_sf = RootedBinaryLeafTrees .cycle_index_series ().expand_as_sf(4)

11 print sum(RBLT_sf .coefficient (8).coefficients())

2. Γ-species

2.1. Groups acting on species. Now let us consider, for a fixed species F , the case of a species
isomorphism φ : F → F , which we hereafter call a species automorphism. Diagramatically, this
is a choice of a “set automorphism” (i.e. permutation) φA : A → A for each A ∈ FinSet such
that the diagram in Fig. 2 commutes for all σ ∈ SA.

In other words, φA is just a permutation of F [A] which commutes with all the permutations
F [σ]. This corresponds to the combinatorial notion of a “structural” or “label-independent”
operation, such as taking the complement of a graph, permuting the colors of a colored graph,
or cyclically rotating a finite sequence.

Many important problems in enumerative combinatorics arise when considering the classes
of structures which are “equivalent” under the operation of such a structural operation (or,
often, several such operations acting in concert). In particular, if a group Γ acts “structurally”
(i.e. by structural operations) on a combinatorial class, the equivalence classes under Γ are the
“Γ-quotient structures”.

We can capture this idea efficiently in the language of species; we simply want to describe
a group Γ acting by species isomorphisms F → F for a fixed species F . Since the collection
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A A

F [A]

F [A]

F [A]

F [A]

σ

F

F

F

F

F [σ]

F [σ]

φA φA

Figure 2. Diagram which must commute if φ is a species automorphism

Aut(F ) of all species automorphisms of F already forms a group, we can achieve this classically
by taking a specified homomorphism Γ → Aut(F ).

Categorically, Γ is simply a groupoid with a single object, so we can also achieve our association
of Γ with some of F ’s automorphisms by constructing a functor sending Γ to F and each element
γ of Γ to some automorphism γ′ of F in a structure-preserving way. In other words, we need a
functor from Γ to Spec whose object-image is F .

This leads to a very compact definition: for a group Γ, a Γ-species is a functor F : Γ → Spec.
If F is a Γ-species, its quotient is the species F/Γ defined as follows:

• For a given label set A, each element of F/Γ[A] is a set of F -structures which form an
orbit under the action of Γ.

• For a given permutation σ ∈ [A], the transport F/Γ[σ] sends each Γ-orbit of F -structures
labeled by A to the orbit containing the images of the original structures under σ. (This
is well-defined because the images of the morphisms of Γ are natural isomorphisms of F
and thus commute with permutations.)

Just as with ordinary species, we can associate to each Γ-species a formal power series which
encodes much of the relevant enumerative data. This is the Γ-cycle index series, which associates
to each element γ of Γ a classical cycle index series. The Γ-cycle index series of a Γ-species F is
given by

(6) ZΓ
F (γ) =

∑

n≥0

1

n!

∑

σ∈Sn

fix(γ[n] · F [σ])pσ1

1 pσ2

2 . . .

where [n] = {1, 2, . . . , n} is a canonical n-element set, γA is the permutation A → A induced by
γ, and γA · F [σ] is the operation which first permutes the F -structures using σ and then applies
γA. By functorality, fix(γ[n] · F [σ]) is actually a class function on permutations σ ∈ Sn, so we
can instead work at the level of conjugacy classes (indexed by partitions of n). In this light, the
Γ-cycle index of a Γ-species F is given by

(7) ZΓ
F (γ) =

∑

n≥0

∑

λ⊢n

fix(γ[n] · F [λ])
pλ1

1 pλ2

2 . . .

zλ

for fixF [λ] = fixF [σ] for some choice of permutation σ ∈ Sn of cycle type λ, for λi the number
of i parts in λ, and for zλ =

∏

i i
λiλi! the number such that there are n!/zλ permutations of

cycle type λ. (Note that, in particular, for e the identity element of the group Γ, we necessarily
have ZΓ

F (e) = ZF , the ordinary cycle index of the underlying actionless species F .)
The algebra of Γ-cycle indices is implemented by the GroupCycleIndexSeries class of Sage

[13]. We will demonstrate its use in Section 7.
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2.2. Γ-species maps. Continuing in the categorical theme, we now define an appropriate notion
of “morphism” for the context of Γ-species. Since a Γ-species is a functor, one reasonable
approach is simply to say that a morphism of Γ-species F and G is a natural transformation
φ : F → G. However, since Γ-species are functors whose codomains are themselves functor
categories, this requires some unpacking. Additionally, this definition would in fact allow for the
possibility of morphisms between the groups acting on the species, creating additional complexity
for limited benefit (since we will generally only be interested in isomorphisms at this level). Thus,
we will take a more concrete approach to the definition.

Suppose F and G are Γ-species and let φ : F → G be a species map of the underlying
combinatorial species. We wish to characterize the sense in which φ may be “compatible” with
the Γ-actions on F and G. For any two label sets A and B with bijection σ : A → B and any
element γ ∈ Γ, the fact that F and G are Γ-species implies the existence of several maps:

• bijections F [σ] : F [A] → F [B] and G[σ] : G[A] → G[B];
• permutations γF [A] : F [A] → F [A], γF [B] : F [B] → F [B], γG[A] : G[A] → G[A], and
γG[B] : G[B] → G[B];

• and set maps φA : F [A] → G[A] and φB : F [B] → G[B].

We can construct a diagram which encodes the relationships among all these maps; this is
shown in Fig. 3. This diagram automatically has substantial commutativity: the inner and
outer squares commute because F and G are species, and the top and botton squares commute
because φ is a species morphism. All that is required to make φ compatible with γ is that the
left and right squares commute as well. This gives us our more concrete defintion of a Γ-species
morphism.

Definition 2.1. Let F and G be Γ-species. Then a Γ-species map φ : F → G is a choice of a
set map φA : F [A] → G[A] for each finite set A such that the diagram in Fig. 3 commutes for
every set bijection σ : A → B. (Equivalently, φ is a natural transformation F → G.) If every
map φL is a bijection, φ is a Γ-species isomorphism. If every map φL is an injection, φ is a
Γ-species embedding. If every map φL is a surjection, φ is a Γ-species covering.

F [A]

F [A]

F [B]

F [B]

G[A]

G[A]

G[B]

G[B]

F [σ]

F [σ]

γF [A] γF [B]

G[σ]

G[σ]

γG[A] γG[B]

φA

φA

φB

φB

Figure 3. Diagram which must commute if φ is a Γ-species map

We note that he definitions of Γ-species isomorphism, embedding, and covering are simply
the definitions of species isomorphism, embedding, and covering from [5, Def. 1.1.4] combined
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with the compatibility condition. When there exists a Γ-species isomorphism φ : F → G, we will
often simply write F = G, omitting reference to the specific isomorphism.

With this notion of Γ-species morphism in hand, we note that the class of all Γ-species forms
a category, which we denote SpecΓ.

2.3. Pólya theory for Γ-species. We now revisit the core ideas of Section 1.3 in the context
of Γ-species. First, we present a useful generalization of Burnside’s lemma, which appears (in an
unweighted form) as [1, eq. A1.51].

Lemma 2.2 (Weighted generalized Burnside’s lemma). Let G and H be groups with commuting
actions on a finite set X. Let W : X → A be a weight function from X to a Q-module A which is
constant on (G×H)-orbits. For any endofunction f : X → X, let FixX(f) =

∑

x∈X,f(x)=xW (x)

denote the sum of the weights of the fixed points of f . Then the sum of the weights of H-orbits
fixed by a given element g ∈ G is

(8) FixX/H(g) =
1

|H |

∑

h∈H

FixX(g, h).

Now let F be a Γ-species and let ZΓ
F be its Γ-cycle index series. Partial labelings of F -

structures are easily seen to be Γ-equivariant. Thus, we can extend our Pólya theory for species
to incorporate Γ-species.

Theorem 2.3 (Pólya’s theorem for Γ-species). Let F be a Γ-species with Γ-cycle index series ZΓ
F

and fix a vector π = 〈π1, . . . , πk〉 of positive integers. Let η : Λ → P be the map which expands
each abstract symmetric function as a formal power series in variables xi. Then the number of
partially-labeled F -structures of profile π which are fixed by the action of γ ∈ Γ is equal to the
coefficient of xπ in η

(

ZΓ
F (γ)

)

.

Proof. Following the notions introduced in Definition 1.3, we let Sn act on Pn and thus on
F [n] ×Pn. Let Γ act trivially on Pn; then Γ acts on F [n]×Pn also, and the actions of Γ and
Sn commute.

Let P denote the Q-module of formal power series in the countably infinite family of variables
x1, x2, . . . . Define a weight function W : F [n] × Pn → P by W (T, c) =

∏

i∈[n] xc(i). It is clear

that W is constant on (Γ×Sn)-orbits.
Fix some γ ∈ Γ. By Lemma 2.2, the sum of the weights of all the Sn-orbits fixed by γ in

F [n]×Pn is given by

(9) Fix(F [n]×Pn)/Sn
(γ) =

1

n!

∑

σ∈Sn

FixF [n]×Pn(γ, σ).

For a given σ ∈ Sn, it is clear that a pair (T, c) ∈ F [n]×Pn is fixed by (γ, σ) if and only if the
F -structure T and the coloring c are fixed separately.

For a coloring c ∈ Pn to be fixed by (γ, σ), it must be fixed by σ. This occurs if and only if c
is constant on each orbit of σ in [n], so the sum of all the weights of the colorings c fixed by σ is
exactly η(pσ). Let fix(γ, σ) denote the number of F [n]-structures fixed by (γ, σ). Then the sum
of the weights of the fixed points of (γ, σ) in F [n]×Pn is given by

(10) FixF [n]×Pn(γ, σ) = fix(γ, σ)η(pσ).

Combining equations (9) and (10), we have

(11) Fix(F [n]×Pn)/Sn
(γ) =

1

n!

∑

σ∈Sn

fix(γ, σ)η(pσ).

The desired result follows from summing over all n in equation (11). �
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We note that Theorem 1.5 is an immediate consequence of Theorem 2.3, providing a proof
which does not require Lemma 1.2. It is also natural to extend Theorem 1.6 to the Γ-species
context.

Theorem 2.4. Let F be a Γ-species and let γ ∈ Γ. Denote by Fγ(x) the exponential generating

function of labeled F -structures fixed by γ and by F̃γ(x) the ordinary generating function of
unlabeled F -structures fixed by γ. Then we have the following identities of formal power series:

Fγ(x) = ZΓ
F (γ)(x, 0, 0, . . .)(12a)

F̃γ(x) = ZΓ
F (γ)(x, x

2, x3, . . .)(12b)

Proof. There is a natural bijection between labeled γ-fixed F -structures with n vertices and
partially-labeled γ-fixed F -structures of profile 〈1, 1, . . . , 1〉. Thus, the number of labeled γ-
fixed F -structures with n vertices is the coefficient of x1x2 . . . xn in η

(

ZΓ
F (γ)

)

. Such a term can
only appear in η(pσ) if σ is the identity permutation, so this is equal to the coefficient of pn1 .
Equation (12a) follows.

Similarly, there is a natural bijection between unlabeled γ-fixed F -structures with n vertices
and partially-labeled γ-fixed F -structures of profile 〈n〉. Thus, the number of unlabeled γ-fixed
F -structures with n vertices is the coefficient of xn

1 in η
(

ZΓ
F (γ)

)

. Every symmetric function pσ
contributes such a term, so this is the sum of all the coefficients on terms of degree n in ZΓ

F (γ).
Equation (12b) follows. �

Observation 1. Crucially, each of Fγ(x) and F̃γ(x) counts structures which are fixed by γ with
respect to their partial labelings. Thus, Fγ(x) counts only those labeled F -structures which are

fixed as labeled structures, while F̃γ(x) counts unlabeled F -structures which are fixed as unlabeled
structures.

3. Algebra of Γ-species

3.1. Species quotients. Classical species-theoretic enumeration uses the cycle index series to
“keep the books” on the actions of symmetric groups on the labels of combinatorial structures,
then apply Burnside’s lemma to take quotients at an appropriate time. Γ-species theory extends
this practice, using the Γ-cycle index series to analogously “keep the books” on these actions
and some structural group action simultaneously, then apply Burnside’s lemma to one or both
as appropriate.

Lemma 3.1 ([5, Thm. 1.5.11]). Let F be a Γ-species. Then we have

(13) ZF/Γ =
1

|Γ|

∑

γ∈Γ

ZΓ
F (γ).

where ZF/Γ is the classical cycle index of the quotient species F/Γ and ZΓ
F is the Γ-cycle index of

F .

(The proof of Lemma 3.1 is essentially a careful application of Burnside’s Lemma and appears
in full in [5].)

It remains, of course, to develop an algebraic theory facilitating the computation of Γ-cycle
indices analogous to that available for classical cycle indices. Fortunately, this is not difficult.
Each of the standard species operators +, −, ·, ◦, �, •, and ′ has a natural analogue for Γ-species,
corresponding to a suitable operation on Γ-cycle indices.

With the exception of ◦ and �, the definitions of these Γ-species operations and their associ-
ated Γ-cycle index operations are completely natural, so we omit them here. However, the two
composition operators are more subtle.
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3.2. Plethystic composition of Γ-species. In the classical setting, if F and G are species, an
(F ◦ G)-structure is an “F -structure of G-structures”. Extending this to the Γ-species setting
does not require changing our understanding of the structures; the difficulty is in making sense
of how an element γ of Γ should act on such a structure.

Consider a schematic (F ◦G)-structure, as in Fig. 4.

F

G G G

Figure 4. A schematic of an (F ◦G)-structure

The “parent F -structure” and each of the “descendant G-structures” is modified in some way
by the action of a particular element γ ∈ Γ. To obtain a action of γ ∈ Γ on the aggregate
(F ◦G)-structure, we can simply apply γ to each of the descendant G-structures independently
and then to the parent F -structure, as illustrated in Fig. 5.

F

G G G

γ γ γ

γ γ

Figure 5. A schematic of an (F ◦G)-structure with an action of γ ∈ Γ

It is shown in [8, §4] that there is a corresponding operation ◦, the “Γ-cycle index plethysm”,
given by

(14) ZΓ
F◦G =

(

ZΓ
F ◦ ZΓ

G

)

(γ)[p1, p2, p3, . . .] =

ZΓ
F (γ)

[

ZΓ
G(γ)[p1, p2, p3, . . .], Z

Γ
G(γ

2)[p2, p4, p6, . . .], Z
Γ
G(γ

3)[p3, p6, p9, . . .], . . .
]

.

It is crucial to note a subtle point in equation (14): the ZΓ
G terms are evaluated at different

powers of γ. To see why, recall that the coefficients of ZΓ
F (γ) count F -structures that are fixed

by the combined action of γ and some σ ∈ Sn. In equation (14), each evaluation of ZΓ
G which

is substituted for pi corresponds to a G-structure which is set into a i-cycle of the parent F -
structure; if the overall (F ◦G)-structure is to be fixed by γ, this descendant G-structure must
be returned to itself after it moves around its i-cycle, which results in an application of γi. Thus,
the appropriate Γ-cycle index to substitute is ZΓ

G(γ
i).

The operation ◦ is implemented by the composition()method of the GroupCycleIndexSeries
class in Sage [13]. We will demonstrate its use in Section 7.

3.3. Functorial composition of Γ-species. Since a combinatorial species is a functor FinSet →
FinBij and thus can be lifted to a functor FinSet → FinSet, it is at least algebraically meaning-
ful to consider the composition as functors of two species. This operation yields the “fuctorial
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composition” F �G. An (F � G)-structure on a label set A is an F -structure on the set G[A]
of G-structures labeled by A. Although this operation is not as combinatorially natural as the
plethystic composition ◦, it nevertheless is useful for certain constructions; for example, letting
Subs denote the species of subsets (i.e. Subs = E ·E) and Graph the species of simple graphs,
we have Graph = Subs � Subs2.

Since a Γ-species is formally a functor Γ → Spec, it is not meaningful to compose two Γ-species
as functors. However, if F and G are Γ-species, we can consider the functorial composition F �G
of their underlying classical species. Each γ ∈ Γ induces a permutation on the set G[A] of G-
structures which commutes with the action of SA.

Therefore, we can obtain a structural action of Γ on F �G in the following manner. Consider
a structure s ∈ (F �G)[A] and fix an element γ ∈ Γ. s consists of an F -structure whose labels
are all the G-structures in G[A]. Replace each G-structure with its image under γ, then apply γ
to the parent F -structure. The result is a new (F �G)-structure over A, since γ must act by a
bijection on G[A] and F [G[A]]. That this action commutes with label permutations is clear.

Therefore, F�G is in fact a Γ-species. In light of the relationship to the functorial composition
of classical species, we dub this the functorial composition of F and G, although (as previously
noted) the composition of F and G as functors is not in fact well-defined.

It remains to compute the Γ-cycle index of the functorial composition of two Γ-species. By
definition,

ZΓ
F�G(γ) =

∑

n≥0

1

n!

∑

σ∈Sn

fix(γ · F [γ ·G[σ]])pσ,

so we need only compute the values fix(γ · F [γ ·G[σ]]) for each γ ∈ Γ and σ ∈ Sn. Since γ ·G[σ]
is a permutation on G[n], this value already occurs as a coefficient in ZΓ

F (γ). We therefore take
the following definition.

Definition 3.2. Let F and G be Γ-species. The functorial composite ZΓ
F � ZΓ

G of their Γ-cycle
indices is the Γ-cycle index given by

(15)
(

ZΓ
F � ZΓ

G

)

(γ) =
∑

n≥0

1

n!

∑

σ∈Sn

fix(γ · F [γ ·G[σ]])pσ.

That this corresponds to Γ-species functorial composition follows immediately.

Theorem 3.3. Let F and G be Γ-species. The Γ-cycle index of their functorial composition is
given by

(16) ZΓ
F�G = ZΓ

F � ZΓ
G.

It remains only to find a formula for the cycle type of the permutation γ ·G[σ] on the set G[n].

Lemma 3.4. Let G be a Γ-species and fix γ ∈ Γ, σ ∈ Sn, and k ≥ 1. The number of cycles of
length k in γ ·G[σ] as a permutation of G[n] is then given by

(17) (γ ·G[σ])k =
1

k

∑

d|k

µ

(

k

d

)

fix
(

γd ·G
[

σd
])

,

where µ is the integer Möbius function.

The proof is similar to that of [1, §2.2, Prop. 3]. We present it here in full for completeness.

Proof. We clearly have that

(18) fix
(

(γ ·G[σ])
k
)

=
∑

d|k

d · (γ ·G[σ])d.
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Applying Möbius inversion to equation (18), we obtain that

(19) (γ ·G[σ])k =
1

k

∑

d|k

µ

(

k

d

)

fix
(

(γ ·G[σ])
d
)

.

Since γ commutes with G[σ], we can distribute the power of d to the two rightmost terms in

equation (19); furthermore, by functorality, G[σ]d = G
[

σd
]

. Equation (17) follows immediately.
�

Thus, the cycle type of the permutation γ · G[σ] may be computed using only the values of
fix(γ′ · [σ′]) (allowing γ′ to range over Γ and σ′ to range over Sn). This justifies Definition 3.2,
since it implies that ZΓ

F �ZΓ
G may be computed using only information taken from the coefficients

of the Γ-cycle indices.
This operation is implemented by the functorial_composition()method of the GroupCycleIndexSeries

class in Sage [13]. We will demonstrate its use in Section 7.

4. Multisort Γ-species

Let FinSetk denote the category of finite k-sort sets (i.e. k-tuples of finite sets) whose mor-
phisms are k-sort set maps. A k-sort species F is then a functor F : FinSetk → FinBij. (Note
that a 1-sort species is simply a classical combinatorial species.) k-sort species are useful for
studying the combinatorics of structures which carry labels on several different “parts”; a nat-
ural example is the 2-sort species of graphs with one sort of label on vertices and the other on
edges. (The use of 2-sort set maps corresponds to the combinatorial fact that edge and vertex
labels cannot be shuffled with each other.)

The algebraic theories of generating functions and cycle index series and the combinatorial
calculus of species may all be extended naturally to the k-sort case for each k. This is discussed
at length in [1, §2.4]. We record here for future reference that the k-sort cycle index of a k-sort
species F is given by

(20) ZF (p1,1, p1,2, . . . ; p2,1, p2,2, . . . ; . . . ; pk,1, pk,2, . . .) =
∑

n1,n2,...,nk≥0

1

n1!n2! . . . nk!

∑

σi∈Sni

|fixF [σ1, σ2, . . . , σk]| p
σ1,1

1,1 p
σ1,2

1,2 . . . p
σk,1

k,1 p
σk,2

k,2 . . .

where pi,j are a two-parameter infinite family of indeterminates and σi,j is the number of j-cycles
of σi.

Since a k-sort species F admits a group Aut(F ) of automorphisms, we can translate the
notion of a Γ-species to the k-sort context easily. Specifically, a k-sort Γ-species is a functor
F : Γ → Speck. (As expected, a 1-sort Γ-species is a classical Γ-species.) Then the k-sort
Γ-cycle index of F is given by

(21) ZΓ
F (γ)(p1,1, p1,2, . . . ; p2,1, p2,2, . . . ; . . . ; pk,1, pk,2, . . .) =
∑

n1,n2,...,nk≥0

1

n1!n2! . . . nk!

∑

σi∈Sni

∣

∣fix γ[n1],...,[nk] · F [σ1, σ2, . . . , σk]
∣

∣ p
σ1,1

1,1 p
σ1,2

1,2 . . . p
σk,1

k,1 p
σk,2

k,2 . . .

where γA1,...,Ak
is the k-sort permutation (A1, . . . , Ak) → (A1, . . . , Ak) induced by γ, pi,j are a

two-parameter infinite family of indeterminates, and σi,j is the number of j-cycles of σi.
As always, the k-sort Γ-cycle index is compatible with the appropriate operations + and ·

on k-sort Γ-species. In addition, it is compatible with a suitable notion of “sorted substitution”
which involves specifying a species to substitute for each sort of labels.
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5. Virtual Γ-species

The theory of virtual species (developed by Yeh in [14]) elegantly resolves several algebraic
problems in the theory of combinatorial species; in particular, it allows for subtraction of arbitrary
species and the computation of compositional inverses of many species. The key idea is simply
to complete the semiring of combinatorial species with respect to the operations of species sum
and species product. Specifically, taking any two combinatorial species F and G, we define their
difference F −G to be the equivalence class of all pairs of species (A,B) of combinatorial species
satisfying F +B = G+A by species isomorphism.

This definition satisfies many desirable properties; perhaps most importantly, if H = F +G,
then H − F = G as an isomorphism of virtual species, and F − F = 0 for any virtual species F .

To extend this notion to the context of Γ-species is merely a matter of definition. First, we
define the relation which forms the classes.

Definition 5.1. Fix a group Γ and let F , G, H, and K be Γ-species. We write (F,G) ∼ (H,K)
if F +K = G+H as an isomorphism of Γ-species in the sense of Definition 2.1.

It is straightforward to show that this relation ∼ is an equivalence. Thus, we can use it as the
basis for a definition of virtual Γ-species.

Definition 5.2. Fix a group Γ and let SpecΓ denote the category of Γ-species. Then a virtual
Γ-species is an element of Spec

Γ
× Spec

Γ/∼, where ∼ is the equivalence relation defined in Defi-
nition 5.1. If F and G are Γ-species, their difference is the virtual Γ-species (F,G), frequently
denoted F −G.

We note that the elementary species 0 and 1 each admit a single (trivial) Γ-action for any
group Γ. These are the additive and multiplicative identities of the ring of virtual Γ-species.

We also note that any virtual Γ-species Φ = F − G has a Γ-cycle index series given by
ZΓ
Φ = ZΓ

F − ZΓ
G. The fact that ∼ is an equivalence relation implies that we may choose any

representative pair (F,G) for Φ and obtain the same Γ-cycle index series, so this is well-defined.
The remainder of Yeh’s theory of virtual species extends automatically to the Γ-species con-

text, so we will not develop it explicitly here.

6. A library of elementary Γ-species

To illustrate the use of Γ-species, we will now compute explicitly the Γ-cycle indices of several
important examples.

6.1. Trivial actions. Any (virtual) species F may be equipped with a trivial action by any
group Γ (that is, an action where every element of Γ acts as the identity map on F -structures).
The Γ-cycle index of the (virtual) Γ-species F obtained in this way is given by

(22) ZΓ
F (γ) = ZF .

6.2. Linear and cyclic orders with reversal. Let Lin denote the species of linear orders and
Cyc denote the species of cyclic orders. Each of these admits a natural S2-action which sends
each ordering to its reversal, and so we also have associated S2-species Lin and Cyc.

Theorem 6.1. The S2-cycle index series of the species Lin of linear orderings with the order-
reversing action is given by

ZS2

Lin(e) = ZLin =
1

1− p1
= 1 + p1 + p21 + p31 + . . .(23a)

ZS2

Lin(τ) =

∞
∑

k=1

pk2 + pk2p1(23b)
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where e denotes the identity element of S2 and τ denotes the non-identity element.

Proof. Equation (23a) appears with proof as [1, eq. 1.2.15].

In light of equation (7), to compute ZS2

Lin(τ), we need to compute for each n ≥ 0 and each
λ ⊢ n the number of linear orders which are fixed by the combined action of τ and a permutation
of cycle type λ. Clearly this is 0 unless λ is composed entirely of 2’s and possibly a single 1,
as illustrated in Fig. 6. If it does have this form, a permutation σ of cycle type λ will act by
reversing the order of the lists L which are constructed by the following process:

(1) Choose an ordering on the ⌊n/2⌋ 2-cycles of σ.
(2) For each 2-cycle, choose one of the two possible orderings of the pair of elements in that

cycle.
(3) If applicable, place the element in the 1-cycle in the center.

Thus, there are 2⌊
n/2⌋ · ⌊n/2⌋! lists whose order is reversed by the action of this σ. But, for a

partition λ of this form, we also have that zλ = 2⌊
n/2⌋ · ⌊n/2⌋!, and so the contribution to the

cycle index series term ZS2

Lin(τ) is simply 1pλ. Equation (23b) follows. �

a b . . . c . . . d e

Figure 6. Schematic of a permutation (dashed arrows) which reverses a linear
order (solid arrows)

The S2-cycle index ZS2

Lin of Lin is available in Sage [13]:

module:: sage.combinat.species.group_cycle_index_series_library

class:: LinearOrderWithReversalGroupCycleIndex()

Theorem 6.2. The S2-cycle index series of the species Cyc of cyclic orderings with the order-
reversing action is given by

ZS2

Cyc(e) = ZCyc = −
∞
∑

k=1

φ(k)

k
ln

1

1− p1
(24a)

ZS2

Cyc(τ) =

∞
∑

k=1

1

2

(

pk2 + pk−1
2 p21

)

+ pk2p1(24b)

where φ is the Euler φ-function, e is the identity element of S2, and τ is the non-identity element
of S2.

Proof. Equation (24a) appears with proof as [1, eq. 1.4.18].
Proof of equation (24b) proceeds essentially identically to that of equation (23b). Once again,

we note that the combined action of τ and a permutation of cycle type λ ⊢ n can only fix a cyclic
order if λ satisfies very strong constraints. If n is odd, λ must consist of ⌊n/2⌋ 2’s and a single 1,
as illustrated in Fig. 7.

If, on the other hand, if n is even, λ may consist either of n/2 2’s or (n/2 − 1) 2’s and two 1’s,
as illustrated in Fig. 8.

Counting arguments analogous to those in the previous proof then yield the desired result by
explaining the coefficients 1

2 and 1 in equation (24b). �
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a

b

c

d

e

Figure 7. Schematic of a permutation (dashed arrows) which reverses the di-
rection of a cyclic order (solid arrows) of odd length

a

bc

d

e f

(a) All 2’s

a

bc

d

e f

(b) Two 1’s

Figure 8. Schematics of permutations (dashed arrows) which reverse the di-
rection of a cyclic order (solid arrows) of even length

The S2-cycle index ZS2

Cyc of Cyc is available in Sage [13]:

module:: sage.combinat.species.group_cycle_index_series_library

class:: CyclicOrderWithReversalGroupCycleIndex()

6.3. Linear k-orders with arbitrary interchange. Fix k ∈ N and a permutation group
Γ ⊆ Sk. The species Link of linear k-orders admits a natural action of Γ which permutes the
“slots” of each Link-structure. For example, Link[(132)]([A,B,C]) = [B,C,A]. Thus, Link is a
Γ-species with respect to such an action of any Γ ⊆ Sk.

Theorem 6.3. If Γ ⊆ Sk, the Γ-cycle index of the Γ-species Link of linear k-orders with
interchange group Γ is given by

(25) ZΓ
Link

(γ) = pγ

where pγ = pγ1

1 pγ2

2 . . . for γi the number of i-cycles in γ as a permutation of [k].

Proof. Per equation (7), the coefficient of pλ in ZΓ
Link

(γ) is equal to 1/zλ times the number of
Link-structures fixed by the combined action of γ and a label permutation of cycle type λ. If γ
is not of cycle type λ, this is clearly 0; otherwise, the number of linear k-orders which are fixed
by the combined action of γ and some permutation of cycle type λ is clearly zλ. Equation (25)
follows. �
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7. Examples of Γ-species enumeration

7.1. Graphs with complementation. Let Graph denote the species of simple graphs. It is
well-known (see [1]) that

(26) Graph = Lin2(E)� (E2 · E).

The species Graph admits a natural action of S2 in which the nontrivial element τ sends each
graph to its complement. By construction, if we give E the trivial S2-action and Lin2 the
order-reversing action of Section 6.2, then equation (26) may be read as an isomorphism of
S2-species.

The quotient of Graph under this action of S2 is the species GraphC = Graph/S2 of “com-
plementation classes”—that is, of pairs of complementary graphs on the same vertex set. Ad-

ditionally, per Theorem 2.3, Z
Graph

S2
(τ)(x, x2, x3, . . .) is the ordinary generating function for

unlabeled self-complementary graphs. This analysis is conceptually equivalent to that given by
Read [11], although of course the Γ-species approach may be written much more compactly.

Sage code to enumerate complementarity classes of graphs is available from the author on
request. It is necessary to implement the S2-cycle index of Graph manually, which results in
code of considerable length.

7.2. Digraphs with reversal. Let Digraph denote the species of directed graphs. In natural
language, “a digraph is a subset of the set of ordered pairs of vertices”, so in the algebra of
species we conclude that

(27) Digraph = Subs � (Lin2 · E).

The species Digraph admits a natural action of S2 in which the nontrivial element τ reverses
the direction of all edges. By construction, if we give Subs and E trivial S2-actions and Lin2

the order-reversing action of Section 6.2, then equation (27) may be read as an isomorphism of
S2-species.

The quotient of Digraph under this action of S2 is the species DigraphC = Digraph/S2 of
“conversity classes” of digraphs—that is, of digraphs identified with their converses. In light of
equation (28), we can compute the cycle index of DigraphC using the Sage code appearing in
Listing 2. We note that the results in Table 1 agree with those given in [12, A054933], although
in this case our method is much less computationally-efficient than others referenced there.

Listing 2. Sage code to compute numbers of conversity classes of digraphs

1 from sage.combinat .species . group_cycle_index_series import

GroupCycleIndexSeriesRing

from sage.combinat .species .library import SetSpecies , SubsetSpecies

3 from sage.combinat .species . group_cycle_index_series_library import

LinearOrderWithReversalGroupCycleIndex

5 S2 = SymmetricGroup (2)

GCISR = GroupCycleIndexSeriesRing (S2)

7

P = GCISR (SubsetSpecies(). cycle_index_series ())

9 E = GCISR (SetSpecies (). cycle_index_series ())

L2 = LinearOrderWithReversalGroupCycleIndex ().restricted (min =2, max =3)

11

D = P. functorial_composition (L2*E)

13

print D.quotient ().isotype_generating_series ().counts (6)
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n DigraphCn

0 1
1 1
2 3
3 13
4 144
5 5158
6 778084

Table 1. Number DigraphCn of isomorphism classes of conversity classes of
digraphs with n vertices

Again, per Theorem 2.3, Z
Digraph

S2
(τ)(x, x2, x3, . . .) is the ordinary generating function for

unlabeled self-complementary digraphs. This analysis is conceptually analogous to that given by
Harary and Palmer [7, §6.6], but, again, the Γ-species account is much more compact.

7.3. Binary trees with reversal. Let BT denote the species of binary rooted trees. It is a
classical result that

(28) BT = 1 +X+X · Lin2(BT − 1)

for X the species of singletons.
BT admits a natural S2-action whose nontrivial element reflects each tree across the vertical

axis, and we may treat it as a S2-species with respect to this action. Thus, equation (28) also
holds as an isomorphism of S2-species with X equipped with the trivial S2-action and Lin2

equipped with the order-reversing action from Section 6.2.
The quotient of BT under this action of S2 is the species BTR = BT/S2 of “reversal classes”

of binary trees—that is, of binary trees identified with their reverses. In light of equation (28),
we can compute the cycle index of BTR using the Sage code appearing in Listing 3. We note
that the results in Table 2 agree with those given in [12, A007595].

Listing 3. Sage code to compute numbers of reversal classes of binary trees

from sage.combinat .species . group_cycle_index_series import

GroupCycleIndexSeriesRing

2 from sage.combinat .species .library import SingletonSpecies

from sage.combinat .species . group_cycle_index_series_library import

LinearOrderWithReversalGroupCycleIndex

4

S2 = SymmetricGroup(2)

6 GCISR = GroupCycleIndexSeriesRing (S2)

8 X = GCISR( SingletonSpecies().cycle_index_series ())

L2 = LinearOrderWithReversalGroupCycleIndex ().restricted (min =2, max =3)

10

BT = GCISR (0)

12 BT.define (1+X+X*L2(BT - 1))

14 print BT.quotient ().isotype_generating_series ().counts (20)
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n BTRn

0 1
1 1
2 1
3 3
4 7
5 22
6 66
7 217
8 715
9 2438

Table 2. Number BTRn of isomorphism classes of binary trees up to reversal
with n internal vertices

7.4. k-ary trees with interchange. Let RTreek denote the species of k-ary rooted trees—that
is, rooted trees where each node has k linearly-ordered child trees. Any Γ ⊆ Sk acts naturally
on RTreek; an element γ ∈ Γ acts on a tree T by applying γ to the linear order on each node’s
children. Thus, RTreek is a Γ-species with respect to this action, and it satisfies

(29) RTreek = 1 +X+X · Link(RTreek)

for X the species of singletons with the trivial Γ-action and Link the Γ-species of linear k-orders
from Section 6.3. Its quotient is the species RTreek/Γ of Γ-equivalence classes of k-ary trees.

7.5. Paths and polygons. Recall from Section 6.2 the S2-species Cyc of cyclic orders and
Lin of linear orders with reversal. Their quotients are, respectively, the species Poly = Cyc/S2

of “necklaces” and Path = Lin/S2 of “paths”. This species of polygons is also studied using
similar methods in [10, §3].

We can compute the cycle indices of Path and Poly using the Sage code appearing in List-
ing 4. Of course, there is only one Path-structure and one Poly-structure for each n, so we do
not print the results here.

Listing 4. Sage code to compute numbers of paths and polygons

from sage.combinat .species . group_cycle_index_series_library import

LinearOrderWithReversalGroupCycleIndex ,

CyclicOrderWithReversalGroupCycleIndex

2

L = LinearOrderWithReversalGroupCycleIndex ()

4 Path = L.quotient ()

print Path.generating_series ().counts (8)

6 print Path. isotype_generating_series ().counts (8)

8 C = CyclicOrderWithReversalGroupCycleIndex ()

Poly = C.quotient ()

10 print Poly.generating_series ().counts (8)

print Poly. isotype_generating_series ().counts (8)
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7.6. Bicolored graphs. The species GraphBC of properly 2-colored graphs admits a struc-
tural S2-action in which the nontrivial element interchanges colors. In [4], Gessel and the author
compute theS2-cycle index ofGraphBC from first principles, then apply the results of Section 3
and some structural results to enumerate unlabeled bipartite blocks.

7.7. k-trees. In [3], the author enumerates k-trees using the theory of Γ-species. To achieve
this, we introduce the notion of an oriented k-tree (which is a k-tree together with a choice of
cyclic ordering of the vertices of each (k + 1)-clique, subject to a compatibility condition). We
then recast the problem as one of enumerating orbits of oriented k-trees under a suitable action
of Sk and calculate the relevant Sk-cycle index series using recursive structure theorems.

In [6], Gessel and the author simplify this approach, using colorings instead of cyclic orderings
to break the symmetries of k-trees. The results in that work are phrased in the language of
generating functions, without explicit reference to species-theoretic cycle indices.

Acknowledgments. The author is grateful to Ira Gessel for several helpful conversations, es-
pecially concerning the proof of Theorem 2.3.
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