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Abstract. A prefix normal word is a binary word with the property that no substring
has more 1s than the prefix of the same length. This class of words is important in the
context of binary jumbled string matching. In this paper we present an efficient algorithm for
exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the
fact that the language of prefix normal words is a bubble language, a class of binary languages
with the property that, for any word w in the language, exchanging the first occurrence of
01 by 10 in w results in another word in the language. We prove that each prefix normal
word is produced in O(n) amortized time, and conjecture, based on experimental evidence,
that the true amortized running time is O(polylog(n)).

1 Introduction

A binary word of length n is prefix normal if for all 1 ≤ k ≤ n, no substring of length k
has more 1s than the prefix of length k. For example, 1001010 is not prefix normal because
the substring 101 has more 1s than the prefix 100. These words were introduced in [13],
where it was shown that each binary word w has a canonical prefix normal form w′ of the
same length: w and w′ are equivalent in a certain sense.

The study of prefix normal words, and prefix normal forms, is motivated by the string
problem known as binary jumbled pattern matching. In that problem, we are given a text
of length n over a binary alphabet, and two numbers x and y, and ask whether the text
has a substring with exactly x 1s and y 0s. While the online version can be solved with a
simple sliding window algorithm in O(n) time, the offline version, where many queries are
expected, has recently attracted much interest: here an index of size O(n) can be generated
which then allows answering queries in constant time [9]. However, the best construction
algorithms up to date have running time O(n2/ log n) [6, 19]. Several recent papers have
yielded better results under specific assumptions, such as word level parallelism or highly
compressible strings [2, 10, 15, 20], or for constructing an approximate index [11]; but the
general case has not been improved. It was demonstrated in [2,13] that prefix normal forms
of the text can be used to construct this index. See the Appendix for a brief explanation
of this connection.

Jumbled Pattern Matching (JPM), over an arbitrary alphabet, is a variant of approxi-
mate pattern matching: We are given a text and a pattern, and want to answer the question
whether the text has a substring which is a permutation of the pattern (existence), or find
one or all occurrences of such substrings (occurrence, listing).6 This problem has also been
studied under the terms Abelian pattern matching, Parikh vector matching, and permuta-
tion matching. A closely related problem is that of Parikh fingerprints [1]. Applications in

6 Formally: the Parikh vector of a string s over a finite ordered alphabet Σ = {a1, . . . , aσ} is the vector
p(s) = (p1, . . . , pσ) s.t. for all 1 ≤ i ≤ σ, pi is the number of occurrences of ai in s. Given the text s and
pattern t, we want to find (occurrences of) substrings t′ of s s.t. p(t′) = p(t).
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computational biology include SNP discovery, alignment, gene clusters, pattern discovery,
and mass spectrometry data interpretation [3, 4, 5, 12,21].

For one query, the JPM problem can be solved in optimal linear time with a classi-
cal sliding window approach [8], while recently, interest has turned towards the indexing
problem [9, 17]. Moreover, several variants of the original problem have recently been in-
troduced: approximate JPM [7], JPM in the streaming model [18], JPM on trees and
graphs [10,14].

Bubble languages are an interesting new class of binary languages defined by the follow-
ing property: L is a bubble language if, for every word w ∈ L, replacing the first occurrence
of 01 (if any) by 10 results in another word in L [22,23,24]. A generic generating algorithm
for bubble languages was given in [24], leading to Gray codes for each of these languages,
while the algorithm’s efficiency depends only on a language-dependent subroutine. In the
best case, this leads to CAT (constant amortized time) generating algorithms. Many im-
portant languages are bubble languages, among them necklaces, binary Lyndon words,
and k-ary Dyck words.

In this paper, we show that prefix normal words form a bubble language and present
an efficient generating algorithm which runs in O(n) amortized time per word, and which
yields a Gray code for prefix normal words. The best previous generating algorithm for
prefix normal words ran in O(2n · n2) time, and consisted simply in testing each binary
word for the prefix normal property (unpublished). Based on experimental evidence, we
conjecture that the running time of our algorithm is in fact Θ(polylog(n)) amortized. We
also give a new characterization of bubble languages in terms of a closure property in
the computation tree of a certain generating algorithm for binary words. We prove new
properties of prefix normal words and present a linear time testing algorithm for words
which have been obtained from prefix normal words via a simple operation. This could lead
to a better understanding of prefix normal words and in the long run, to faster computation
of prefix normal forms, and thus contribute to the goal of strongly subquadratic algorithms
for binary jumbled pattern matching.

2 Basics

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite sequence of elements
from Σ. Its length n is denoted by |w|. For any 1 ≤ i ≤ |w|, the i-th symbol of a word w
is denoted by wi. We denote by Σn the words over Σ of length n, and by Σ∗ = ∪n≥0Σn

the set of finite words over Σ. The empty word is denoted by ε. Let w ∈ Σ∗. If w = uv
for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix of w. A substring of w
is a prefix of a suffix of w. A binary language is any subset L of Σ∗.

In the following, we will often write binary words w 6= 1n in a canonical form w = 1s0tγ,
where γ ∈ 1{0, 1}∗∪{ε} and s ≥ 0, t ≥ 1. In other words, s is the length of the first, possibly
empty, 1-run of w, t the length of the first 0-run, and γ the remaining, possibly empty,
suffix. Note that this representation is unique. We call 1s0t the critical prefix of w and
cr(w) = s+ t the critical prefix length of w. We denote by |w|c the number of occurrences
in w of character c ∈ {0, 1}, and by Bnd the set of all binary strings w of length n such
that |w|1 = d (the density of w is d).

Given a string w, we can obtain another string w′ = swap(w, i, j), the string obtained
from w by exchanging the characters in positions i and j.
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2.1 Prefix Normal Words

Let w ∈ Σ∗. For i = 0, . . . , n, we set

– P (w, i) = |w1 · · ·wi|1, the number of 1s in the i-length prefix of w.
– F (w, i) = max{|u|1 : u is a substring of w and |u| = i}, the maximum number of 1s

over all substrings of length i.

Definition 1. A binary word w is prefix normal if, for all 1 ≤ i ≤ |w|, F (w, i) = P (w, i).
In other words, a word is prefix normal if no substring contains more 1s than the prefix of
the same length.

For example, 1001010 is not prefix normal because the substring 101 has more 1s than
the prefix 100. We denote by LPN the language of prefix normal words. In [13] it was
shown that for every word w there exists a unique word w′, called its prefix normal form,
or PNF(w), such that for all 1 ≤ i ≤ |w|, F (w, i) = F (w′, i), and w′ is prefix normal.
Therefore, a prefix normal word is a word coinciding with its prefix normal form.

Note: In [13], the property ‘prefix normal’ was defined both with respect to 1 and with
respect to 0. Here we restrict ourselves to prefix normal words w.r.t. 1.

LPN ∩Σ5 words with this PNF LPN ∩Σ5 words with this PNF

11111 {11111} 11000 {11000, 011000, 00110, 00011}
11110 {11110, 011111} 10101 {10101}
11101 {11101, 10111} 10100 {10100, 01010, 00101}
11100 {11100, 01110, 00111} 10010 {10010, 01001}
11011 {11011} 10001 {10001}
11010 {11010, 10110, 01101, 01011} 10000 {10000, 01000, 00100, 00010, 00001}
11001 {11001, 10011} 00000 {00000}

Table 1. All prefix normal words of length 5 and their equivalence classes.

In Table 1 we list all prefix normal words of length 5, and, for each w′ ∈ LPN∩Σ5, the
set of binary words w such that PNF(w) = w′ (i.e., its equivalence class). Several methods
were presented in [13] for testing whether a word is prefix normal; however, all ran in
quadratic time. One open problem given there was that of enumerating prefix normal
words (counting). The number of prefix normal words of length n can be computed by
checking for each binary word whether it is prefix normal, i.e. altogether in O(2n ·n2) time.
In this paper, we present an algorithm that is far superior in that it generates only prefix
normal words, rather than testing every binary word; it runs in O(n) time per word; and
it generates prefix normal words in cool-lex order, constituting a Gray code (subsequent
words differ by a constant number of swaps or flips).

2.2 Bubble Languages and Combinatorial Generation

Here we give a brief introduction to bubble languages, mostly summarising results from [22,
24]. We also give a new characterization of bubble languages in terms of the computation
tree of a generating algorithm (Obs. 1).
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Definition 2. A language L ⊆ {0, 1}∗ is called a bubble language if, for every word
w ∈ L, exchanging the first occurrence of 01 (if any) by 10 results in another word in L.

For example, the languages of Lyndon words, necklaces and pre-necklaces are bubble
languages. A language L ⊆ {0, 1}n is a bubble language if and only if each of its fixed-
density subsets L∩Bnd is a bubble language [22]. This implies that for generating a bubble
language, it suffices to generate its fixed-density subsets.

Next we consider combinatorial generation of binary strings.

Let w be a binary string of length n. Let d be the number of 1s in w, and let i1, i2, . . . , id
denote the positions of the 1s in w. Clearly, we can obtain w from the word 1d0n−d with
the following algorithm: first swap the last 1 with the 0 in position id, then swap the
(d− 1)st 1 with the 0 in position id−1 etc. Note that every 1 is moved at most once, and
in particular, once the k’th 1 is moved into the position ik, the suffix wik · · ·wn remains
fixed for the rest of the algorithm.

These observations lead us to the following generating algorithm (Fig. 1), which we will
refer to as Recursive Swap Generation Algorithm (like Alg. 1 from [24], which in addition
includes a language-specific subroutine). It generates recursively all binary strings from
Bnd with fixed suffix γ, where γ ∈ 1{0, 1}∗ ∪ {ε}, starting from the string 1s0tγ. The call
Generate(d, n− d, ε) generates all binary strings of length n with density d.

Algorithm Generate(s, t, γ)
(∗ current string resides in array w ∗)
1. if s > 0 and t > 0
2. then for i = 1, 2, . . . , t
3. do w ← swap(w, s, s+ i)
4. Generate(s− 1, i, 10t−iγ)
5. w ← swap(w, s, s+ i)
6. Visit()

Fig. 1. The Recursive Swap Generation Algorithm

The algorithm swaps the last 1 of the first 1-run with each of the 0s of the first 0-run,
thus generating a new string each, for which it makes a recursive call. During the execution
of the algorithm, the current string resides in a global array w. In the subroutine Visit()
we can, but do not have to, print the contents of this array; we may just want to increment
a counter (for enumeration), or check some property of the current string. The main point
of Visit() is that it touches every object once.

Let Tn
d denote the recursive computation tree generated by a call to Generate(d, n −

d, ε). As an example, Fig. 2 illustrates the computation tree T 7
4 .

1111000

1110100 1110010 1110001

1101001

1011001
0111001

1100101 1100011

1010101 1001101
0110101 0101101 0011101

1010011
0110011

1001011
0101011 0011011 0100111

1000111
0010111 0001111

1101100

1011100
0111100

1101010 1100110

1011010
0111010

1010110 1001110
0110110 0101110 0011110

Fig. 2. The computation tree Tnd for n = 7, d = 4.
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The depth of the tree equals d, the number of 1s; while the maximum degree is n − d,
the number of 0s. In general, for the subtree rooted at v = 1s0tγ, we have depth s and
maximum degree t; in particular, the number of children of v is exactly t. In fact, v’s ith
child has the form 1s−10i10t−iγ. Moreover, the suffix γ remains unchanged in the entire
subtree, and the computation tree is isomorphic to the computation tree of 1s0t. This γ
is called fixed suffix [22]. Note also that the critical prefix length s + t strictly decreases
along any downward path in the tree.

The algorithm performs a post-order traversal of the tree, yielding an enumeration of
the strings of Bnd in what is referred to as cool-lex order [22, 24, 26]. A pre-order traversal
of the same tree, which implies moving line 4 of the algorithm before line 1, would yield
an enumeration in co-lex order. A crucial property of cool-lex order is that any two subse-
quent strings differ by at most two swaps (transpositions), thus yielding a Gray code [22].
This can be seen in the computation tree Tn

d as follows. Note that in a post-order traversal
of Tn

d , we have:

next(u) =

{
parent(u) if u is rightmost child

leftmost descendant of u’s right sibling otherwise.

Let u, u′ both be children of v. This means that for some s, t, i, j ∈ N and γ ∈ 1{0, 1}∗∪
{ε}, we have v = 1s0tγ, u = 1s−10i10t−iγ, and u′ = 1s−10j10t−jγ. Let v′ be a descendant
of v along the leftmost path, i.e. v′ = 1k01s−k0t−1γ for some k. Then

v = swap(u, s, s+ i) (parent) (1)

u′ = swap(u, s+ i, s+ j) (sibling)

v′ = swap(v, k, s+ 1) (descendant along leftmost path)

We now state a crucial property of bubble languages with respect to the Recursive Swap
Generating Algorithm which follows immediately from the definition of bubble languages:

Observation 1 A language L is a bubble language if and only if, for every d = 0, . . . , n,
its fixed-density subset L ∩ Bnd is closed w.r.t. parents and left siblings in the computation
tree Tn

d of the Recursive Swap Generating Algorithm. In particular, if L∩ Bnd 6= ∅, then it
forms a subtree rooted in 1d0n−d.

Using this property, the Recursive Swap Generating Algorithm can be used to generate
any fixed-density bubble language L, as long as we have a way of deciding, for a node
w = 1s0tγ, already known to be in L, which is its rightmost child (if any) that is still
in L. If such a child exists, and it is the kth child u = 1s−10k10t−kγ, then the bubble
property ensures that all children to its left are also in L. Thus, line 2. in the algorithm
can simply be replaced by “for i = 1, . . . , k”. Moreover, the Recursive Swap Generating
Algorithm, which visits the words in the language in cool-lex order, will yield a Gray code,
since because of this closure property, next(u) will again either be the parent, or a node
on the leftmost path of the right sibling, both of which are reachable within two swaps,
see (1).

In [24], a generic generating algorithm was given which moves the job of finding this
rightmost child k into a subroutine Oracle(s, t, γ). If Oracle(s, t, γ) runs in time O(k),
then we have a CAT algorithm. In general, this will not be possible, and a generic Oracle
tests for each child from left to right (or from right to left) whether it is in the language.
Because of the bubble property, after the first negative (positive) test, it is guaranteed



6

that no more children will be in the language, and the running time of the algorithm is
amortized that of the membership tester. The crucial trick is that it is not necessary to
have a general membership tester, since all we want to know is which of the children of
a node already known to be in L are in L; moreover, the membership tester is allowed to
use other information, which it can build up iteratively while examining earlier nodes.

3 Combinatorial Generation of Prefix Normal Words

In this section we prove that the set of prefix normal words LPN is a bubble language.
Then, by providing some properties regarding membership testing, we can apply the cool-
lex framework to generate all prefix normal words of a given length n and density d in
O(n)-amortized time. By concatenating the lists together for all densities in increasing
order, we obtain an O(n)-amortized time algorithm to list all prefix normal words of
length n.

Lemma 1. The language LPN is a bubble language.

Proof. Let w be a prefix normal word containing an occurrence of 01. Let w′ be the word
obtained from w by replacing the first occurrence of 01 with 10. Then w = u01v, w′ = u10v
for some u, v ∈ Σ∗. Let z be a substring of w′. We have to show that |z|1 ≤ P (w′, |z|).

Note that for any k, P (w, k) ≤ P (w′, k). In fact, P (w′, |u| + 1) = P (w, |u|) + 1, and
for every k 6= |u| + 1, P (w, k) = P (w′, k). Now if z is contained in u or in v, then z is a
substring of w, and thus |z|1 ≤ P (w, |z|) ≤ P (w′, |z|). If z = u′10v′, with u′ suffix of u
and v′ prefix of v, then |z|1 = |u′01v′|1 ≤ P (w, |z|) ≤ P (w′, |z|). If z = 0v′, with v′ prefix
of v, then |z|1 < |1v′|1, and 1v′ is a substring of w, thus |z|1 ≤ P ((w, |z|) ≤ P (w′, |z|).
Else z = u′1, with u′ suffix of u. We can assume that u′ is a proper suffix of u. Let z′ be
the substring of w′ of the same length as z and starting one position before z (in other
words, z′ is obtained by shifting z to the left by one position). Since u does not contain
01 as a substring, we have u = 1n0m for some n ≥ 1,m ≥ 0. If z′ is a power of 0’s,
then |z|1 = 1 and the claim holds. Else, |z|1 = |z′|1, and z′ is a substring of w. Thus
|z|1 ≤ P (w, |z|) ≤ P (w′, |z|). ut

In Fig. 3, we give the computation tree T 7
4 and highlight the subtree corresponding to

LPN. Since LPN is a bubble language, by Obs. 1 it is closed w.r.t. left siblings and parents.
However, we still have to find a way of deciding which is the rightmost child of a node
that is still in LPN.

1111000

1110100 1110010 1110001

1101001

1011001
0111001

1100101 1100011

1010101 1001101
0110101 0101101 0011101

1010011
0110011

1001011
0101011 0011011 0100111

1000111
0010111 0001111

1101100

1011100
0111100

1101010 1100110

1011010
0111010

1010110 1001110
0110110 0101110 0011110

Fig. 3. The computation tree T 7
4 for n = 7, d = 4. Prefix normal words in bold.

The following lemma states that, given a prefix normal word w, in order to decide
whether one of its children in the computation tree is prefix normal, it suffices to check
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the PN-property for one particular length only: the critical prefix length of the child node.
Moreover, this check can be done w.r.t. γ only. This fact will be crucial in the generating
algorithm.

Lemma 2. Let w ∈ LPN, with w = 1s0tγ, with γ ∈ 1{0, 1}∗ ∪ {ε}. Let γ̄ = γ0s+t, i.e. γ
padded with 0s to length n. Let w′ = swap(w, s, s + i). Then w′ ∈ LPN, unless one of the
following holds:

1. γ̄ has a substring of length s+ i− 1 with at least s 1s, or

2. the string w′s+i · · ·w′2(s+i−1) has at least s 1s.

Moreover, the latter is the case if and only if P (γ̄, s+ 2(i− 1)− t) ≥ s− 1 (where by
convention, we regard a prefix of negative length as the empty word).

Proof. Let’s assume that w′ 6∈ LPN. Then there is a substring u of w′ s.t. |u|1 > P (w′, |u|).
Let m be the length of u.

Case 1. u is a substring of w. Since w ∈ LPN, therefore |u|1 ≤ P (w,m). Since also
|u|1 > P (w′,m), this implies s ≤ m ≤ s + i − 1, because for all other arguments, P (w, ·)
and P (w′, ·) coincide. Note that u must have an occurrence in w′ which contains neither of
the swapped bits, else it would not be a substring of w. Thus u starts at some position to
the right of s+ i. Therefore we can write u = 0rv, with v a substring of γ; in particular, if
u is a substring of γ, then r = 0 and v = u; otherwise, v is a prefix of γ. Now set u′ = vv′,
with v′ the substring of γ̄ of length s + i − 1 − m + r following v. Then u′ has length
s+ i− 1, and since |v′|1 ≥ 0 = |0r|1, it contains at least s many 1s.

Case 2. u is not a substring of w. Therefore it contains at least one of the two swapped
bits. It cannot contain the swapped 0 (in position s) because then it would be preceded
only by 1s, in which case the prefix of w′ of length m could not have fewer 1s than u.
Thus, u contains the swapped 1 only (in position s+ i). If m > s+ i− 1, then the prefix
of w′ of length m overlaps with u, i.e. we can write w′1 · · ·w′m = vv′ and u = v′u′ for some
non-empty v′ containing the swapped 1. Since |u|1 > P (w′,m), this implies that also u′

has more 1s than the prefix of the same length. Since u′ is a substring of w, we are back
in Case 1.

So we have m ≤ s+ i− 1. We can write u = 0r10t−iv, with v prefix of γ. Now remove
the starting 0s from u and extend it to the right to get u′ = 10t−iv′, with v′ be the prefix
of γ̄ of length k = s+2(i−2)− t. Then |u′| = s+ i−1 and |u′|1 ≥ |u|1 > P (w′, |u|) = s−1.
Moreover, |u′|1 = 1 + P (γ̄, s+ 2(i− 1)− t). ut

Corollary 1. Given w = 1s0tγ ∈ LPN. If we know F (γ, ·) and P (γ, ·), then it can be
decided in constant time whether w′ = swap(w, s, s+ i) is prefix normal.

Lemma 3. Let γ′ = 10rγ, with γ ∈ 1{0, 1}∗ ∪ {ε}. Then for all i = 0, 1, . . . , |γ′|,

F (γ′, i) =

{
max(P (γ′, i), F (γ, i)) for i ≤ |γ|
max(P (γ′, i), F (γ, |γ|)) for i > |γ|.

Proof. A substring of length i either uses the new 1 in the first position, or it does not.
If it does, then it is a prefix of γ′ and its number of 1s is given by P (γ′, i). Else it is a
substring of 0r−1γ, and its number of 1s is given by F (γ, i) for i up to the length of γ, or
by the number of 1s in γ, F (γ, |γ|), if i spans all of γ. ut
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Corollary 2. The F -function of γ for node w = 1s0tγ can be computed in linear time
based on the F -function of w’s parent node.

By applying these results, the algorithm GeneratePN(d, n−d, ε) can be used to generate
LPN ∩ Bnd in cool-lex Gray code order. Starting from the left child and proceeding right
(with respect to the computation tree T d

n), the algorithm will make a recursive call until
a child is no longer prefix normal. The membership test is done in the subroutine isPN,
which uses the conditions of Lemma 2. The algorithm maintains an array F which contains
the maximum number of 1s in i-length substrings of γ (the F -function of γ), and a variable
z. Before testing the first child, in update(F, s+ t), it computes the current γ’s F -function
based on the parent’s (Corollary 2). Note that it is not necessary to compute all of the
F -function, since all nodes in the subtree have critical prefix length smaller than s + t,
thus this update is done only up to length s+ t. After the recursive calls to the children,
the array is restored to its previous state in restore(F, s+ t). The variable z contains the
number of 1s in the prefix of γ which is spanned by the substring of case 2. of Lemma 2,
for the first child. It is updated in constant time after each successful call to isPN, to
include the number of 1s in the two following positions in γ.

Algorithm GeneratePN(s, t, γ)
(∗ w = 1s0tγ must be prefix normal ∗)
1. if s > 0 and t > 0
2. then update(F, s+ t)
3. z ← P (γ, s− t)
4. i← 1
5. while i ≤ t and isPN(swap(w, s, s+ i))
6. do w ← swap(w, s, s+ i)
7. GeneratePN(s− 1, i, 10t−iγ)
8. update(z)
9. i← i+ 1
10. w ← swap(w, s, s+ i)
11. restore(F, s+ t)
12. Visit()

Fig. 4. Algorithm generating all prefix normal words in the subtree rooted in 1s0tγ.

By concatenating the lists of prefix normal words with densities 0, 1, . . . , n, we obtain an
exhaustive listing of LPN ∩ Σn.

Algorithm GeneratePN(n)
(∗ generates all prefix normal words of length n ∗)
1. for d = 0, 1, . . . , n
2. do initialize F of length n with all 0s
3. GeneratePN(d, n− d, ε)

Fig. 5. Algorithm generating all prefix normal words of length n.

As an example, a call to GeneratePN(5) produces the following list of prefix normal
words of length 5:

00000, 10000, 10100, 10010, 10001, 11000, 11010, 10101, 11001, 11100, 11011, 11101, 11110, 11111.
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These strings are also given in Sec. 2.1. Since the fixed-density listings are a cyclic Gray
code (Theorem 3.1 from [22]), it follows that this complete listing is also a Gray code. In
fact, if the fixed-density listings are listed by the odd densities (increasing), followed by
the even densities (decreasing), the resulting listing would be a cyclic Gray code.

Theorem 1. Algorithm GeneratePN(n) generates all prefix normal words of length n in
amortized O(n) time per word.

Proof. Since 1d0n−d is prefix normal for every d, we only need to show that the correct
subtrees of Tn

d are generated by the algorithm. By Lemma 2, only those children will be
generated that are prefix normal; on the other hand, by the bubble property (Obs. 1), as
soon as a child tests negative, no further children will be prefix normal. The running time
of the recursive call on w ∈ LPN consists of (a) updating and restoring F (lines 2 and 9):
the number of steps equals the critical prefix length of w, which is O(n); (b) computing
z (line 3): again cr(w) ≤ n, the critical prefix length of w, many steps, so O(n); and (c)
work within the while-loop (lines 5 to 8), which, for a word with k prefix normal children,
consists of k positive and 1 negative membership tests, of k updates of z, and the recursive
calls on the positive children. The membership tests take constant time by Corollary 1,
so does the update of z. Since w has k prefix normal children, we charge the positive
membership tests and the z-updates to the children, and the negative test to the current
word. So for one word w ∈ LPN, we get 3 ·O(n) +O(1) + 2 ·O(1) = O(n) work. ut

4 Experimental results

In this section we present some theoretical and numerical results about the number of prefix
normal words and their structure. These have become available thanks to the algorithm
presented, which allowed us to generate LPN up to length 50 on a home computer. Let
pnw(n) := |LPN ∩Σn|. The following lemma follows from the observation that 1dn/2ew is
a prefix normal word of length n for all words w of length bn/2c.

Lemma 4. The number of prefix normal words grows exponentially in n. We have that
pnw(n) ≥ 2bn/2c.

The first members of the sequence pnw(n) are listed in [25], and these values suggest
that the lower bound above is not sharp. We turn our attention to the growth rate of
pnw(n) as n increases. Note that 1 ≤ pnw(n)/pnw(n − 1) ≤ 2. The lower bound follows
form the fact that all prefix normal words can be extended by adding a 0 to the end, and
the upper bound is implied by the prefix-closed property of LPN. Fig. 6 (left) shows the
growth ratio for small values of n. The figure shows two interesting phenomena: the values
seem to approach 2 slowly, i.e., the number of prefix normal words almost doubles as we
increase the length by 1. Second, the values show on oscillation pattern between even and
odd values. We have so far been unable to establish these observations theoretically.

The structure of prefix normal words is also relevant for the generation algorithm,
since the amortized running time of the algorithm is bounded above by the average value
of the critical prefix length s+ t taken over all prefix normal words. This differs from the
expected critical prefix length of the prefix normal form of a uniformly random word. For
the latter we have the following result.

Lemma 5. Given a random word w, let w′ = PNF(w). Let Z denote the critical prefix
length of w′. Then for the the expected value of Z we have E(Z) = Θ(log n).
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Fig. 6. The value of pnw(n)/pnw(n− 1) (left), and of E(S+T ) for prefix normal words for n ≤ 50 (right).

Proof. Write w′ = 1s
′
0t
′
γ′ in the usual form, i.e. with γ′ ∈ 1{0, 1}∗∪{ε}, and consider the

random variables S′ = s′ and T ′ = t′. It is known that the expected maximum length of
a run of 1s in a random word is Θ(log n) [16]. Clearly, S′ equals the length of the longest
run of 1s of w, thus Exp(S′) = Θ(log n). To determine E(T ′), consider a 1-run of w of
maximum length s′. If w has at least another occurrence of 1, then there is a substring of
w consisting of the maximal 1-run and one more 1; the number of 0’s in this substring is
an upper bound on t′. Since these 0s form a single 0-run, their number is again O(log n)
in expectation. If on the other hand, all occurrences of 1 in w are in the maximal run,
then w′ = 1s

′
0n−s

′
, so t′ = n − s′ ≤ n. The number of words with at most one 1-run is(

n+1
2

)
+ 1. So we have:

E(S′ + T ′) = Θ(log n) +

(
1− Θ(n2)

2n

)
O(log n) +

Θ(n2)

2n
n = Θ(log n) ut

The expected value of the critical prefix length for prefix normal words is shown in
Fig. 6 (right) for n ≤ 50, on a loglinear scale. We conjecture that E(S + T ) is polylog-
arithmic for prefix normal words. The linear alignment of the data points together with
lemma 5 seems to support that.

5 Conclusion and Open Problems

We presented a new generating algorithm for prefix normal words, which produces all
prefix normal words of length n in amortized linear time per word. Notice that the num-
ber of words that are not prefix normal also grows exponentially and greatly dominates
prefix normal words (e.g., pnw(30)/230 < 0.05), so the gain of any algorithm that runs
in amortized time per word, over brute-force testing of all binary words, is considerable.
We believe, moreover, that our algorithm actually runs in time O(polylog(n)) per word.
This could be proved by showing that the expected critical prefix length of a prefix normal
word is polylogarithmic in n.

In Sec. 3 we gave a linear time testing algorithm for words which are derived from a
word w already known to be prefix normal, via a particular operation (swapping the last
1 of the first 1-run with a 0 in the first 0-run). This testing algorithm relies both on the
knowledge that w is prefix normal, and on the presence of a data structure for w (the
F -function). We pose as an open problem to find a strongly subquadratic time testing
algorithm for arbitrary words. Another open problem is the computation of prefix normal
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forms. Solving this problem would lead immediately to an improvement for indexed binary
jumbled pattern matching.

The observation that our language is a bubble language has opened up completely new
roads. An efficient implementation of the generating algorithm led to new experimental
results which were not available with our previous approach. The obtained data led to
new conjectures and results. We are confident that the connection to bubble languages
will also help in establishing theoretical results about the number and structure of prefix
normal words, and could hopefully lead to a strongly subquadratic testing algorithm.
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Appendix: Connection between prefix normal forms and binary jumbled
pattern matching

The linear space solutions for binary pattern matching all rely on a simple property of
binary strings, which we refer to as Interval Lemma (folklore): For a binary string w and
any fixed length 1 ≤ k ≤ |w|, if w has two substrings of length k, with one containing x
1s, and the other y 1s, where x < y, then, for any x ≤ z ≤ y, w also contains a substring
of length k with exactly z 1s. In other words, all Parikh vectors of substrings of the same
length build an interval. The lemma implies that in order to be able to answer existence
jumbled pattern matching queries, it suffices to store, for every length k, the maximum
and minimum number of 1s in any substring of length k: When querying whether w
has a substring with Parikh vector (x, y), we can simply ask whether x lies between the
maximum and minimum number of 1s for length x + y. This list of minima and maxima
for every length is the linear size index used. The big open question is how to compute it
faster than the current O(n2/ log n) time.

Now, prefix normal forms of a word w can be used to compute this index. We know
that two words have the same Parikh set (Parikh vectors of substrings) if and only if they
have the same prefix normal forms both w.r.t. 1 and to 0 (see [13], Thm. 2).

In Fig. 7, we present the word w = 10011011001001 and its prefix normal forms in
a standard representation for binary words: Draw in the Euclidean plane the word w
by representing each letter 1 by an upper unit diagonal and each letter 0 by a lower unit
diagonal, starting from the origin (0, 0). The region between PNF1(w) and PNF0(w) forms
exactly the Parikh set of w. For example, all substrings of length 6 have one of the Parikh
vectors (4, 2), (3, 3), (2, 4).

w

PNF1(w)

PNF0(w)

1s

0s

w = 10011011001001
PNF1(w) = 11011001001001
PNF0(w) = 00100110110011

Fig. 7. The word w = 10011011001001 (dashed line) and its prefix normal forms (grey lines). The area
between the two PNFs is the Parikh set of w. The vertical line shows all Parikh vectors of substrings of
length 6, namely (4, 2), (3, 3), (2, 4).
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