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Abstract

In this paper we establish several results concerning the generalized Ramanujan primes. Forn € IN
and k£ € R we give estimates for the nth k-Ramanujan prime which lead both to generalizations
and to improvements of the results presently in the literature. Moreover, we obtain results about
the distribution of k-Ramanujan primes. In addition, we find explicit formulae for certain nth k-
Ramanujan primes. As an application, we prove that a conjecture of Mitra, Paul and Sarkar [9]
concerning the number of primes in certain intervals holds for every sufficiently large positive integer.

1 Introduction

Ramanujan primes, named after the Indian mathematician Srinivasa Ramanujan, were introduced by
Sondow [I7] in 2005 and have their origin in Bertrand’s postulate.

Bertrand’s Postulate. For each n € IN there is a prime number p with n < p < 2n.

Bertrand’s postulate was proved, for instance, by Tchebychev [19] and by Erdés [6]. In 1919, Ramanujan
[13] proved an extension of Bertrand’s postulate by showing that

m(x) —m (g) > 1 (respectively 2,3,4,5,...)
for every
x > 2 (respectively 11,17,29,41,...).

Motivated by the fact 7(z) — m(x/2) — oo as # — oo by the Prime Number Theorem (PNT), Sondow
[17] defined the number R,, € IN for each n € IN as the smallest positive integer such that the inequality
m(xz) —m(x/2) > n holds for every x > R,,. He called the number R,, the nth Ramanujan prime, because
R, € P for every n € IN, where P denotes the set of prime numbers.

This can be generalized as follows. Let k € (1,00). Again, the PNT implies that m(x) — w(x/k) — oo
as x — oo and Shevelev [I6] introduced the nth k-Ramanujan prime as follows.

Definition. Let £ > 1 be real. For every n € IN, let

R® = min{m € N | 7(z) — 7(z/k) > n for every x > m}.
This number is prime and it is called the nth k-Ramanujan prime. Since R%Q) = R, for every n € IN, the
numbers R%k) are also called generalized Ramanujan primes.

In 2009, Sondow [17] showed that
Ry ~ pan (n — o0), (1)

where p,, denotes the nth prime number. Further, he proved that

R, > pon (2)
for every n > 2. In 2011, Amersi, Beckwith, Miller, Ronan and Sondow [I] generalized the asymptotic

formula () to k-Ramanujan primes by showing that

R ~ prin (-1 (n — 00). (3)
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In view of (B]), one may ask whether the inequality ([2)) can also be generalized to k-Ramanujan primes. We
prove that this is indeed the case. In fact, we derive further inequalities concerning the nth k-Ramanujan
prime, by constructing explicit constants ng, n1,n2,n3 € IN depending on a series of parameters including
k (see (IO, 24), Theorem [£4] Theorem 53] respectively), such that the following theorems hold.

Theorem A. Lett € Z witht > —[k/(k—1)]. Then for every n > no,

Rﬁk) > Plen/(k—1)]+t- (4)

Another problem which arises is to find a minimal bound m = m(k,t) such that the inequality (@) holds
for all n > m. For the case t = 0, we introduce the following

Definition. For k > 1 let
N(k) = min{m € N| R® > Plin/(k—1)] for every n > m}.

In Section 3.2 we prove the following theorem giving an explicit formula for N (k).

Theorem B. If k > 745.8, then
N(k) =m(3k) — 1.

Theorem [A]is supplemented by the following upper bound for nth k-Ramanujan prime.

Theorem C. Lete; >0, e2 >0 and &1 + €3 # 0. Then for every n > nq,

R < (1+ €1)P[(14e2)kn/(k—1)]

By [1], there exists a positive constant 81 = f1(k) such that for every sufficiently large n,
|R7(lk) — Plkn/(i—1)) | < B1nloglogn. (5)

In Theorem [Al we actually obtain a lower bound for RS{“) — Plkn/(k—1)] improving the lower bound given
in ([@). The next theorem yields an improvement of the upper bound.

Theorem D. There exists a positive constant vy, depending on a series of parameters including k, such
that for every n > na,

R — prin/(h-1y] < ¥n-
Let 7 (z) be the number of k-Ramanujan primes less than or equal to z. Using PNT, Amersi, Beckwith,

Miller, Ronan and Sondow [I] proved that there exists a positive constant 82 = f2(k) such that for every
sufficiently large n,

< B2 1oglogn. (6)

k—1 m(n)
logn

k w(n)

In Section 4 we prove the following two theorems which lead to an improvement of the lower and upper
bound in (@).

Theorem E. [fxz > Rg\]fzk) with N (k) defined above, then

ne) ko
m(x) S TR

Theorem F. There exists a positive constant c, depending on a series of parameters including k, such

that for every x > ngs,
k—1 7p(x) c

k n(z) logz’

In 2009, Mitra, Paul and Sarkar [9] stated a conjecture concerning the number of primes in certain
intervals, namely that
w(mn) —7w(n) >m—1

for all m,n € N with n > [1.11log(2.5m)]. In Section 5 we confirm the conjecture for large m.

Theorem G. If m is sufficiently large and n > [1.1log(2.5m)], then w(mn) —w(n) > m — 1.



2 Some simple properties of k-Ramanujan primes
We begin with
Proposition 2.1. The following three properties hold for R%k).

(i) Let k1, ks € R with ko > ky > 1. Then R > R

(ii) R%k) > py, for everyn € N and every k > 1.

(iii) For each k, the sequence (R%k))n is strictly increasing.
Proof. The assertions follow directly from the definition of R%k). O
Proposition 2.2. Let k > 1 and let n € IN so that R%k) = pn. Then Rgf) = pm for every m < n.
Proof. The assertion follows from the fact that R%k) € P and Proposition 211 O

For the next property we need the following

Lemma 2.3. Let m,n € IN. Then
w(m) + 7(n) < w(mn).

Proof. By [7], we have w(m) 4+ m(n) < w(m + n) for every m,n € N with m,n > 2 and max{m,n} > 6.
Now it is easy to check that the desired inequality holds in the remaining cases. [l

Proposition 2.4. If k > 2, then
R®
r(k) — Pr(k)-

Proof. Let t = |k] and z > k. Let m € IN be such that mk < 2 < (m + 1)k. Using Lemma [Z3] we get
m(x) —7 (%) > w(mt) — w(m) > w(k),

ie. Rfrk&) < k < pr(ky+1- Using Proposition ZTJ(ii), we obtain the required equality. O

Corollary 2.5. Ifk > 2, then R%k) = py for everyn =1,...,w(k).
Proof. The claim follows from Proposition and Proposition 2.4 O
For 1 < k < 2 we can give more information on R%k).
Proposition 2.6. We have:
(i) If 1 < k < 5/3, then RW > Dpn for every n € IN.
(ii) If5/3 <k < 2, then RY = py if and only if n = 1.

Proof. (1) If 1 < k < 3/2, we set x = 2k and obtain w(x) — w(xz/k) = 0, i.e. ng) > 2k > p;. It remains
to use Proposition 21(iii). If 3/2 < k < 5/3, we set = 3k and proceed as before.

(ii) Let n = 1 and 5/3 < k < 2. By Proposition 2ZI[(ii) we get p1 < R§5/3) = p1, ie. ng) = p;. Let
n > 2. Then Rék) > Rg) > po and we use Proposition 2J[(iii) as in the previous case. O

The following property will be useful in Section 4.

Proposition 2.7. For every n and k,

(k)
T(R®) — 7 <R%> =n.

Proof. This easily follows from the definition of R,(lk). O



Finally, we formulate an interesting property of the k-Ramanujan primes.

Proposition 2.8. Ifp € P\ {2}, then for every n € N
R® o fp— 1.

Proof. Tt suffices to consider the case kp € IN. Assume R%k) = kp — 1 for some n € IN. Since kp — 1 > 2,
we obtain kp ¢ P. Let r € R with 0 < r < 1. Using Proposition 27 we get

(k)
w(kp+r)—m (k:pl:—r) =n(RW) — 7 (%) —1=n-1,

which contradicts the definition of R%k). O

3 Estimates for the nth k-Ramanujan prime

From here on, we use the following notation. Let my € IN and s,aq,...,a,, € R with s > 0. We define
maq s
Alx) = J
(z) Z log’ =
j=1

and Y; = Y(a1,...,am,) so that

x
m(w) > logz —1— A(z) +e (™)
for every > Y;. Further, for mg € IN and by, ..., by, € R>¢ we define
B(z) = mz bi
o log’ x
and Xo = Xo(b1,...,bm,) so that
x
7(x) (8)

< logz — 1 — B(x)
for every x > Xj. In addition, let X7 = X1(k,a1,...,am,,b1,...,bm,) be such that
logk — B(kz) + A(x) > 0 (9)

for every = > X;.

Remark. Tt is clear that B(x) > A(x) for every & > max{Xo, X;}. Hence by > a;.

3.1 A lower bound for the nth k-Ramanujan prime

The theorem below implies that the inequality (2)) can be generalized, in view of (@), to k-Ramanujan
primes.

Theorem 3.1. Lett € Z witht > —[k/(k—1)] and let r = (t +1)(k —1)/k. Then
R > Dlkn/(k—1)]+¢

for every n € N with
-1
nZnO: —(77'()(2)—15—{-1)7 (10)

where Xo = Xo(k,t,m1,ma,a1,...,am,,01,...,bm,) = max{Xo, kX1, kY, }.



Proof. Let x > Xo/k. Then the inequality (@) is equivalent to

x x
>
logz — 1 — A(x) ~ log(kx) — 1 — B(kx)

and we get
x x m(kx)
_ > _— . 11
@) > er 1= Aw T Z gk —1-BG) Tk (11)

By setting © = prin,(k—1)14+/k in [, we obtain

! S LU
T\ 7 Plen/(k=1)]+¢ PRI T

1
T(Dlkn/(k=1)]4t) — T (E p[kn/(k—l)]-i—t) <n,

Hence,

and we apply the definition of R,(lk). |

Corollary 3.2. We have
lim mf(Rgc) - pﬂcn/(k—lﬂ) = 0OQ.

n—o0
Proof. From Theorem [3.1] it follows that for every ¢ € IN there is an Ny € IN such that for every n > N,
RSLk) = Plkn/(k—=1)] = Plkn/(k—1)]+t — Plkn/(k—1)] = 2t.
This proves our corollary. (|

Remark. In 2013, Sondow [I8] raised the question whether the sequence (R, — p2n)n is unbounded.
Corollary B2 implies that this is indeed the case.

Corollary 3.3. If n > max{2, (k — 1)n(X2)/k}, then

R — pinse—1y] > 6.

Proof. We set t = 1 in Theorem Bl Then for every n > (k — 1)7(X2)/k we obtain

R > Dlkn/(k—1)142 = Plkn/(k—1)]+1 T 2 2 Plrns(k—1)] + 4
Since there is no prime triple of the form (p,p + 2,p +4) for p > 3, we are done. O
To find an explicit value for X5 in the case ¢t = 0, we need the following

Lemma 3.4. If x > 470077, then

x
>— +1.
() loge — 1 — — +

log z

Proof. We consider the function g(x) = 2.65x — log* z. Then g(x) > 0 for every x > e7 and we get

X €T

1 265
log = log? x

— +1
logz

>
logx — 1 — logx — 1 —
for every > e”. By Corollary 3.11 of [2], the inequality m(z) > x/(logx — 1 — 1/logx) + 1 holds for
every z > 38168363. We set h(z) = z/(logx —1 — 1/logx). Then h'(x) > 0 for every z > 12.8 and we
check with a computer that 7(p;) > h(piy1) + 1 for every m(470077) < i < 7(38168363). O



Proposition 3.5. Let X35 = X3(k) = max{470077k, kr(k)}, where
1 3.83
r(k) = 7 exP <\/max{@ - 1,0}) .

R > prrsie—1)

Then

for every
k—1
k
Proof. We choose t = 0 in Theorem Bl Then r = (k —1)/k. We set A(x) = 1/logx and Y, = 470077.
By Lemma B4 we get that the inequality (@) holds for every > Y,.. By choosing b; = 1, bs = 3.83 and
Xo = 9.25, we can use the third inequality in Corollary 3.9 of [2]. Let 2 > r(k). Then it is easy to show
that the inequality (@) holds. Now our proposition follows from Theorem Bl O

n =

(m(X3)+1).

Corollary 3.6. If n > 4, then
Rn — P2n 2 6.

Proof. We set t =1 and k = 2 in Theorem Bl Then r = 1. From Corollary B3] and from the proof of
Proposition B3] if follows that R,, — pa, > 6 for all n > m(X3(2))/2 = m(max{940154, 2r(2)})/2 = 37098.
We check with a computer that the inequality R,, — p2, > 6 also holds for every 4 < x < 37097. O

Remark. Since Ry — py = 4 and Rz — pg = 4, Corollary 3.0 gives a positive answer to the question raised
by Sondow [I8], whether min{R,, — pa,, | n > 2} = 4.
3.2 An explicit formula for N(k)
In the introduction we defined N (k) to be the smallest positive integer so that
R > prim k1)1
for every n > N(k). By Proposition B, we get
k—1

N(k) < [ (m(max{470077k, kr(k)}) + 1)—‘

for every k > 1. We can significantly improve this inequality in the following case.

Theorem 3.7. If k > 745.8, then
N(k) < w(3k) — 1.

k)

Proof. We have Rv(r(Bk)fl

> 3k. Since 3k > pr(ak), we obtain by Proposition 22 that

R > ppa (12)

for every n > m(3k) — 1. We set A(x) = —7.1/logz, s =1 and Y; = 3. Then, as in the proof of Lemma
B4 we obtain that the inequality (@) holds for every x > Y;. By setting B(x) = 1.17/logx and X = 5.43
and using Corollary 3.9 of [2], we see that the inequality (§]) holds. Let

_ 1 827\% 1 8.27
k)= 7.1+ - | logk — — —|{logk—
k) = exp \/ +4 (og logk) 2 (og logk)
It is easy to see that x > 7(k) implies the inequality ([@). By Theorem 3.1l we obtain
k—1

N < | S e + ). (13)
where X4 = X4(k) = max{5.43,3k, k7(k)}. Since 7(k) is decreasing, from 7(745.8) < 2.999966 we get
that 7(k) < 3. Hence, X4 = 3k for every k > 745.8. Since w(3k) + 1 < k for every k > 745.8, we obtain
N(k) < 7(3k) + 1 by ([[3). Finally, we apply ([I2). O



Next, we find a lower bound for N (k).
Proposition 3.8. For every k > 1,

N(k) > w(k).
Proof. First, let k > 2. Using Proposition [2Z4] we get
(k)
R ey < Prrn(l)/(k-1)]- (14)
Hence, N (k) > w(k) for every k > 2. The asserted inequality clearly holds for every 1 < k < 2. O

In order to prove a sharper lower bound for N(k), see Theorem B.I1] we need the following lemma.

Lemma 3.9. Letr,s € R withr > s> 0. Ift > s/r- R;?ii), then

rt

w(r)+n(t) <m (—) :

S

Proof. Since rt/s > RE:(T‘;), the claim follows from the definition of R(. O

Proposition 3.10. If m,n € N with m,n > 5 and max{m,n} > 18, then
w(m) +m(n) <= (%) .

Proof. Without loss of generality, let m > n. First, we consider the case m > n > 20. By [20], we have
m(z) < 8z/(5logx) for every x > 1. Using an estimate from [15] for 7(x), we get

> m(n).
So the proposition is proved, when m > n > 20. Now let m > 18 and min{m, 20} > n > 5. We have:

r 20 | 19 | 18

(3/r- RUT | 5 5] 4

We apply Lemma B9 with s =3, r =m and t = n. O

71_(mn) — n(m) > mn _ 8m S 8m
3 ~ 3log(mn/3) 5logm ~ 5logm

Theorem 3.11. For every k > 1,
N(k) > n(3k) — 1.

Proof. For every 1 < k < 5/3 the claim is obviously true. For every 5/3 < k < 7/3, we have

(k) (5/3) .
Rory—o S B < Pli(n(sk)—2)/(k-1)15
i.e., N(k) > w(3k) — 2. Similarly, for every p;/3 < k < p;+1/3, where i =4,...,8, we check that

(k)
R 31y—2 < Pri(x(3k)—2)/ (k1)1 -

Hence our theorem is proved for every 1 < k < 19/3. Now, let k > 19/3. For pr(3x)—1 < o < 3k and for
3k < x < 5k it is easy to see that w(x) — w(xz/k) > m(3k) — 2. So let x > 5k and let m € IN be such that
m > 5 and mk <z < (m+ 1)k. Since 3k > 19, we use Proposition B.10 to get the inequality

m(x) —m (%) > <@) —7(m) > 7(3k).
Hence, altogether we have
Rgrk()Bk)72 < Pr(3k)—1 = Plk(r(3k)—2)/(k—1)] (15)
and therefore N (k) > 7(3k) — 2. O

Remark. The proof of Theorem [B.17] yields Rfrk(ék) < Pr(sky for every k> 19/3.
From Theorem [B.7 and Theorem B.TT] we obtain the following explicit formula for N (k).

Corollary 3.12. If k > 745.8, then
N(k) =m(3k) — 1.



3.3 An explicit formula for Ny(k)
By replacing “>" with “>” in the definition of N(k), we get the following

Definition. For k£ > 1, let
No(k) = min{m € N | R%) > p(y/e—1y) for every n > m}.
Since No(k) > w(k) for every 1 < k < 2, it follows from (I4]) that
No(k) > n(k)
is fulfilled for every k > 1. In the following case we obtain a sharper lower bound for Ny(k).

Theorem 3.13. If k > 11/3, then
No(k) > m(2h).

Proof. First, we show that
x

m(x) —7 (E) >7m(2k) -1 (16)

for every @ > pr(ar)—1. For prary—1 < < 2k and for 2k < x < 3k, the inequality (IG)) is obviously true.
Let 3k < x < 5k. Since 7(3t) — 7(2t) > 1 for every t > 11/3 =1/3- R§3/2), it follows m(x) — w(x/k) >
w(2k) — 1. So let « > 5k and let [ € IN be such that [ > 5 and Ik < z < (I + 1)k. Similarly to the proof
of Proposition B.10, we get that

m(m)+7(n) <m (%) (17)

for every m,n > 4 with max{m,n} > 6. Since 2k > 7, using (I7) we obtain the inequality

2Lk
m(z) — 7 (%) > (7) —(l) > 7(2k). (18)
Hence, we proved that the inequality () holds for every z > pr(2x)—1- So,
rR® < < (19)
(2k)—1 < Pr(i)—1 < Plk(r(2k)~1)/(k-1)]»
which gives the required inequality. [l

Using ([I9), we get an improvement of Corollary 2.5

Corollary 3.14. If k > 11/3, then R = Dn for every 1 <n < 7(2k) — 1.

Proof. Follows from Proposition (210)(ii), the left inequality in (I9]) and Proposition 2.2 O
To prove an upper bound for Ny(k), the following proposition will be useful.

Proposition 3.15. If k > 29/3, then

(k)  _
Rw(2k) = Pr(2k)+1-

Proof. Since (2k) — m(2k/k) < m(2k) and 2k < pr(2k)+1, We have Rfrk()%) > Pr(2k)+1 for every k > 1. To

prove Rgf()%) < Pr(2k)41, it suffices to show that

m(z) — (%) > m(2k) (20)

for every © > priary41. It is clear that (20) is true for every pr(ox)+1 < o < 3k. Let 3k < o < 5k. We

have m(3t) — w(2t) > 2 for every t > 29/3 =1/3- R§3/2) and thus (20) holds. By (I8) we already have
that the inequality ([20) also holds for every = > 5k. O

We can show more than in Corollary BI4 for the following case.



Corollary 3.16. If k > 29/3, then:
(1) R =p, if and only if 1 <n < m(2k) — 1.
(ii) R%k) = ppt1 of and only if 7(2k) < n < w(3k) — 2.

Proof. (i) From Proposition 315, we get R%k) > py, for every n > w(2k) and then use Corollary B.14
(ii) Let w(2k) < n < 7(3k) — 2. By (i) and (), we obtain R = Pn+t1. Now let R = Dn1. Since

T(pngai) = (P ) < 7(3k) - 7(3) < 7(3k) — 1,

we obtain .
Rfr()sk)q > Pr(3k)- (21)
Hence, n < 7(3k) — 2. By (i), we get n > 7(2k). O

Remark. Similarly to the proof of (2II), we obtain in general that for every real r > 2/k,

(k)
Rﬂ'(’l‘k)—ﬂ'(’l‘)-‘,—l > Pr(rk)-

Remark. Corollary 316 implies that for every k& > 29/3 the prime numbers pr(2x) and pr(sr)—1 are not
k-Ramanujan primes.

Corollary 3.17. For each m € IN there exists k = k(m) > 29/3 such that prk)11,- - > Pr(2k)+m are all
k-Ramanujan primes.

Proof. By PNT, we obtain 7(3k) — 2 — w(2k) — oo as k — oo. Then use Corollary BT0\ii). O
The next lemma provides an upper bound for Ny(k).

Lemma 3.18. Let X5 = X5(k) = max{Xo, kX1,kYp}. Then the inequality

k
RP) > prinsr-1))
holds for every
kE—1
k
Proof. We just set ¢ = —1 in Theorem [3.11 O

n >

(m(X5) + 2).

The inequality in Theorem B.I3] becomes an equality in the following case.

Theorem 3.19. If k > 143.7, then
No(k) = 7 (2k).

Proof. We set A(x) = —3.3/logz, s = 0 and Yy = 2. Similarly to the proof of Corollary 3.11 from [2],
we get that (@) is fulfilled for every = > Yy. By setting B(x) = 1.17/logz and Xy = 5.43 and using
Corollary 3.9 from [2], we see that the inequality (§]) is fulfilled for every & > Xy. Let

1 447\% 1 4.47
p— . —_ 1 —_— — _ = 1 —
z(k) = exp \/33+ 1 (ogk 1ng) 5 (ogkz logk)

It is easy to show that = > z(k) is equivalent to the inequality ([@). By setting Xg = Xg(k) =
max{2k, 5.43, kz(k)} and using Lemma B.I8 we get that

k—1

Mol < | )+ 2)] (22)
In the proof of Theorem 3.7 we showed that 7(k) < 3 for every k > 745.8. Analogously, we get z(k) < 2
for every k > 143.7. Hence we obtain X = 2k and therefore Ny(k) < w(2k) + 2 for every k > 143.7.
Proposition and Theorem finish the proof. O



3.4 An upper bound for the nth k-Ramanujan prime

After finding a lower bound for the nth k-Ramanujan prime, we find an upper bound by using the
following two propositions, where T () is defined by

x ( 1 110gk—A(x)+B(w/k‘))_

Tlogr—1-A(@@) \' k k

T =7 a a Lyenr
#() = Yos, o iy (7) k& log(e/k) — L — B(a/k)

Proposition 3.20. If x > max{Yy, kXo}, then

w(z)—m (%) > Ti(x).

Proof. We have /
T T x/k
m(z) -7 (E) > logz —1 — A(z) log(z/k) — 1 — B(z/k)

and see that the term on the right hand side is equal to Tg(x). O

Proposition 3.21. For every sufficiently large x, the derivative Y} (x) > 0.
Proof. We set

and 1 logk — A(x) + B(z/k)

1
k klog(z/k)—1— B(z/k)
It is clear that there exists an X7 = X7(k,m1,m2,a1,...,Am,,b1,...,bm,) such that G(z) > 0 for

every x > X7. Since k > 1, we obtain B(z/k) > B(x) > A(z) as well as log(z/k) < logz and
log(z/k) — 1 — B(x/k) > 0 for every x > max{Yp, kXo}. It follows that

G(7) = Groay,..am, bire.bmy (T) = 1=

mi1

1 <X j-b; i-a;

(@) k(log(z/k) — 1 — B(z/k)) = log’ ™ ; log" ™ x (23)
for every x > max{Yp, kXo}. Since by > ai, there is an Xg = Xg(mi,ma,a1,...,am,,b1,...,bm,) such
that

= log/ ™t & = logz —
for every © > Xg. Hence, G'(xz) > 0 for every x > max{Yp, kXo, Xs}. We have F(x) > 0 for every
x > Yy. Further, there exists an X9 = Xg(m1,aq,...,a,) such that

<X i
logz —2 — A(z) — —— >0

g () ; .
for every x > Xg. Therefore,

1 o i-a

Fl(z) = logx — 2 — A(x) — —— >0
(2) (logz — 1 — A(x))? ( & (z) ;bg”lx)

for every > max{Yy, X9}. So, for every x > max{Yy, kXo, X7, Xg, Xo}, we get T/ (z) = F'(z)G(x) +
F(z)G'(z) > 0. O

Now, let m; = mg = 1. By Proposition B.21] there exists an X109 = X19(k, a1,b1) such that Y} (z) > 0
for every x > Xj0. Let X117 = X11(b1) € IN be such that

pn > n(logp, — 1 — b1/ logpy)

10



for every n > Xy;. Clearly, X11 < 7(Xo)+ 1. Let &1 > 0 and €2 > 0 be such that 1 + €5 # 0. We define

{51 if e £ 0,
E =

€9 otherwise

and

A= g + g2 - sign(eq) <1+ %)

Let S = S(k,a1,b1, Xo,€1,€2) be defined by

2(1+¢) ay logk 1 (1+e)logk\> 1 (14¢)logk
S= b+ ———= (b1 — S S = R -
exp \/1+(k1)5(1 a1+logkX0)+(2+ CEE +2+ = 1)e ,

and let T'=T'(a1,b1,e1,€2) be defined by

by —a1  aqlog(l+eq) 1 log(l4+)\> 1 log(l+e1)
T = b il
exp \/1+ S W R A MY
By deﬁning X12 = Xlg(k/’,al,bl,%,XQ,El,EQ,Xlo) by

Yo kXo kS(k,a1,b1,61,€2)
X12:maX ) )
l14+e1 146 1+e4

X
7T(a1;b1;€1;€2)7 1+12 }7
1

we get, in view of (@), the following result.

Theorem 3.22. The inequality

R < (14 e1)P[(14es)bns (k—1)]

holds for every
kE—1

k(l + 52)
Proof. For convenience, we write ¢t = t(n, k,e2) = [(1+e2)nk/(k—1)]. Using PropositionB:20, we obtain

n>n, =

maX{W(Xlg) + 1,X11}. (24)

nl@) = (3) > T +e0p)

for every @ > (1 4 &1)p;. So to prove the claim, it is enough to show that

T((1+e1)pt) > n. (25)
For this, we first show that
1 1logk—ai/log((1+e1)ps) + b1/ log((1 +€1)pe/k) . k—1 (1 € ) . (26)
ko k log((1+e1)pe/k) — 1 —bi/log((1+e1)pe/k) k 2(1+¢)
We have (1 +e1)p:/k > S(k,a1,b1, Xo,€1,¢2) and therefore
2€k(fl —|—1€)) (log((l +elpi/k) —1 - log((1 —l—blsl)pt/k)> loik * klog((1 ilsl)pt/k) B k:log(la—ll— €1)pe

From this inequality, we obtain (26]). So for the proof of (27), it suffices to show that the inequality

E 7 € . (1+e1)pe n
K < 2<1+s>> og(1 T e)pr — 1 —ar/log((1 + e1)ps) = 27)

is fulfilled. Since p; > T'(a1,b1,€1,€2), we get

k-1 <1 € ) - (I+er)t(logpe —1—bi/log(p))
k 2(1+¢)) log((1+e1)pe) — 1 —ai/log((1+e1)ps) —

Since ¢t > X1, we have p; > t(logp: — 1 — b1/ log(p:)). Using (28)), we get [27)) and therefore (23]). O

(28)

11



Now, let m1 =mg =1,a7 = 1 and b; = 1.17. In the next lemma, we determine an explicit X135 = X33(k)
such that Y} (x) > 0 for every x > Xi3.

Lemma 3.23. Let X13 = X13(k) = max{kX14, €257 5.43k}, where

1.17 1 logk \° 1  logk
X4 =X1a(k) = 1.1 — " 4o
14 = Xua(k) = exp \/ 7+/<;—1+<2+2(/<;—1)) HCRIPTTEE)
Then, Y} (x) > 0 for every x > Xi3.
Proof. We set F(z) =x/(logx —1—1/logz) and

k—1 1logk—1/logz +1.17/log(z/k)

G0 = "5 7 % Togla/h) — 1= 117/ log(a/F)

We have F'(x) > 0 for every x > 2547, Since F(e2%47) > 0, we get that F(z) > 0 for every x > 2547,
For every x > 5.43k we have log(x/k) — 1 — 1.17/log(z/k) > 0 and, using (23) we obtain G'(z) > 0.
Further, it is easy to see that x > kX4 implies G(z) > 0 and we get T} (z) = F'(z)G(z)+ F(z)G' (z) > 0
for every z > Xi3. O

For Ramanujan primes, we obtain the following result.

Proposition 3.24. Ift > 48/19, then for every n € N

Ry, < pren-

Proof. By [2], we choose Yy = 468049 and X, = 5.43, and by Lemma B.23] we choose X719 = X3 in
Theorem B:221 'We have p,, > n(logp, — 1 — 1.17/logp,) for every n > 4. Since this inequality is also
true for 1 < n < 3, we choose X717 = 1 in Theorem [3.22] Then we get

R < (1+ e1)P[(14es)bn/ (h-1)]

for every

k—1
n Z k (W(X15) + 1),

(1+e2)

where X15 = X15(k,€1,€2) = Xlg(k, 1, 117, 468049,62'547751752,Xlg). Let s = 48/19 and t > s. We set
k=2,e1 =0and ey = 5/19 in Theorem B.22 and we get R, < pr,,) for every n > 19536. By using a
computer, we check that R,, < Plsn] for every 20 < n < 19535 and for every 1 < n < 18. For n = 19, we
have prigs) < R19 = pag < prige]- O

Remark. By Proposition3.24) we obtain that R, < pra.s3,] for every n € IN, which improves the current
best upper bound R,, < 41ps,,/47 found by Nicholson, Noe and Sondow [I2] for every n > 11.

4 On the difference Rgﬂ) — Plak/(k—1)]

Another question that arises in view of (@), is the size of

R — pros(e—1)1- (29)

In Proposition33] we yield a lower bound for ([29), which improves the lower bound in (Bl). The goal in this
section is to improve the upper bound in ([&). In order to do this, we set A(z) = 0 and B(x) = b/ logx.
By [3], we choose Yy = 5393. Let ¢1, €2, 01 and d2 all be positive and let

1 1 log;k:2 1 logk
k)=k bi |14+ — - -
n(k) \/1<+61)+<2+261>+2+261

12



In addition, we set X1 = X16(k, b1, 01,02) = max{7477, kXo,n(k), ke®?*/%}. As in the proof of Lemma
B:23, we get that T} (z) > 0 for every z > X7 = Xy7(k) = max{5393, kX0, kX14}. Further, let

X8 = Xlg(k/’, b1352) = X12(ka 0, bla 5393, XOa 0,e2, X17)

as well as

k—1 kE—1)X
X19:Xlg(k,bl,Xo,EQ,(sl,(SQ):max{ﬂ'(Xlﬁ)—l—l, u}

m(ﬂ'(Xw)‘i‘l)a k(11 20) (30)

4.1 On the difference knlog R;k)/(k —-1)— R

We consider the difference .
_hn (k) (k)
1 log R,, Ry

The results below for this difference will be useful to find an upper bound of the difference ([29)).

Proposition 4.1. If n > Xi9, then

kn (14+e2)(1+61)(logk +02)\ kn
(k) _ pk) _ 2
k—llOgR” Ry ><1 = 1

Proof. Using an estimate for 7(z) proved by Dusart [3], we get

@ (k— 1z x log k + b1/ log(z/k)
(@) - (kz) k(logz — 1)  k(logz — 1) logz/k — 1 — by /log(z/k)

for every x > max{5393,kXo}. Since logax — 1 < (14 01)(loga/k — 1 —by/log(z/k)) for every x > n(k),
we can use ([3I) and the inequality by /log(x/k) < &, which is fulfilled for every = > ke?/%, to see that

(31)

x (k— 1z (14 61)(logk + d2) x
m@) - (E) k(logz —1) k " (logz — 1)2 (32)

for every x > X14. We choose z = R,(lk) in (B2) and, using Proposition 2.7 we get the inequality

(k)
k—1 k—1 k—1 1ogR$1k)f1
From Lemma 3.4 it follows that
— +1 4
7(z) > ogz — 1 + (34)

for every « > 470077. We check with a computer that ([B4]) also holds for every 7477 < x < 470077. Using
B3) and (34), we get

(k) _ p(k) _ (k) _
k:—llOgR" R > 1 1 (m(R;Y) —1). (35)
By Theorem B2ZZ, we obtain m(R¥) < (14 e2)nk/(k — 1) + 1 and then use (B5). O

Corollary 4.2. Let €3, 01 and 2 all be positive so that
(1 + 52)(1 + 51)(1ng/’ + (52) <k-—1.
If n > X19, where X9 is defined by B0), then

kn
k-1

log R,(lk) > R%k).

Proof. Follows directly from Proposition A1 O

13



Remark. Nicholson [I1] proved that R,, < 2nlog R, is fulfilled for every n > 33. Corollary [£.2] generalizes
the result of Nicholson to k-Ramanujan primes.

Remark. Amersi, Beckwith, Miller, Ronan and Sondow [I] showed that there exists a positive constant
¢ = ¢(k) such that
kn cR,(lk)
k — ~ log RY
for every sufficiently large n. With Corollary .2] we obtain an improvement of the lower bound in (Bg]).
We end this section by finding an upper bound for kn log(R%k))/(k —-1)— R

- log R _ RM| < (36)

Proposition 4.3. Let ¢ > 0. If

k—1
TLZ k (7T(X23)+1),
where
Xog = Xoz(k, b1, ) = max{Xo, 5393k, "/ eb1/1°8% X, (k 0,1,1,0,01)},
then k logk —ek\ k
n ogK —¢€ n
—log R®) — R®) < (1 — .
g1 st TS =1 k-1

Proof. Using an estimate for 7(z) given by Dusart [3], we obtain

(2) (x) - (k— 1z x logk — b1/ logx
m(z)—m (= - :
k k(logz —1—b1/logz) k(logz —1—by/logz) logz/k —1

for every x > max{5393k, Xo}. Since logz — 1 — b1/logx > log(z/k) — 1 for every o > e*1/1°8% e get
x (k— 1z z(logk — b1/ log x)

-7ml-)< - 37

m(@) 7T(k) k(logz —1—b1/logz) k(logz —1 —by/logx)? (37)

for every x > max{5393k, Xy, e?/1°8*} We set z = R% in B7) and, using Proposition 2.7 get

k log k — by / log R R k k b
R — E g g loah — i/ loa | ® O R ORI
k—1 k-1 logRY) —1—by/logRY k=1 k=1 logR)
Since R > X, and W(R%k)) > T(Prnk/(k—1y1) > nk/(k — 1), it follows from (B8) that
k
R _ K1 g S logh —bi/logRY kn  kn  kn_ b .
n T o et k-1 F—1 k-1 k-1 Jogp®
It remains to notice that by /log R,(lk) <e. O
4.2 An upper bound for Rglk) — DPnk/(k—1)]
Now, we find an upper bound for ([29]) which improves the upper bound in (&). We define
X0 = Xao(k,b1,61) = X12(k,0, 01,5393, Xo,€1,0, X17).
Let €3 > 0 and let X9 = X51(e3) be such that loglogz < e3logx for every z > Xo1. By setting
1+4+e2)(1+4+01)(logk + o k
v =(k,e1,€2,€3,01,02) = <( 2)( ’ _1)1( LA log((1+e1)(1+ 53») =1 9

and

k—1 k—1 k—1
X22Xzz(k,b17X0,€1,€2,€3,51,52)maX{TXll,Xlg, 2 (W(X20)+1)7TX21},

we obtain the following result.
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Theorem 4.4. Ifn > no = Xo9, then

R = praks-1) < yn.
Proof. By Theorem B.22] we get the inequality R < (14 €1)Prnky(k—1)]- By [15], we have

pn < n(logn + loglogn) (40)
for every n > 20. Hence,

kn

kn n kn kn kn kn
log R%) < " _1og(1 1 log (log | —— | +loglog | —— | ) .
Tlog Ry < — og( +€1)+k—1 Og[kl-‘—i_kl og(oghl-‘—l—ogog[kl-‘)
Since nk/(k — 1) > X1, we get

kn kn

log((1+e1)(1+€3)) + 1 log [k — 1—‘ R— log log [%—‘ . (41)

Using an estimate for p,, proved by Dusart [4], we get

kn
log R%) <
Fo et = Ty

kn

k—1

kn
log R — Plnk/(h—1)] < = (log((1 +¢e1)(1 +e3))+1).
Now use Proposition 1] O
Corollary 4.5. The sequence ((R%k) = Plnk/(k=1)])/1)n is bounded.

Proof. Follows from Proposition 3.5 and Theorem [£.4] O

Remark. In particular, Corollary gives a positive answer to the question raised by Sondow [I§] in
2013, whether the sequence ((R,, — pa2n)/n)y is bounded.

5 On the number of k-Ramanujan primes < x

Let mg(x) be the number of k-Ramanujan primes less than or equal to x. Amersi, Beckwith, Miller,
Ronan and Sondow [I] proved that

7::((;)) ~ % (= o0)

by showing that there exists a positive constant 82 = S2(k) such that for every sufficiently large n,

< B2 loglogn

42
)] < 22752 (42)
where L1 (@)
_ k-1 TE(T
Now we improve the lower bound in ([42)).
Proposition 5.1. If z > Rg\]fzk), then
pr(x) > 0.
Proof. Let n > N (k) be such that R <z < Rﬁfjl. Hence, RP > Pnk/(k—-1)], and we get m(z) >
nk/(k —1). Since 7 (z) = n, our proposition is proved. O

With the same method as in [I], we improve the upper bound of ([@2) by using the following lemma.
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Lemma 5.2. If s > 0 and
co(s) = max{4,4s, (7(2+ s) — 1) log 2},

then for every n € IN,
con

T(pn + sn) — T(pn) < Togp.

Proof. The claim obviously holds for s = 0. So let s > 0. If n = 1, we get
w(pn + sn) — 7(pn) =7(2+s) — 1.
Let n > 2. If n < 3/s, we obtain
7(pn + sn) — w(pn) < 1.
So let » > max{2,3/s}. Montgomery and Vaughan [10] proved that

2N

(M + N)—n(M) < Tog N

for every M, N € N with N > 2. By setting M = p,, and N = |sn], we get

2sn

— < .
F(pn + Sn) F(pn) = Togsn

Using the inequality p, < n?, which holds for every n > 2, we obtain

2max{l,s}n _ 4max{l,s}n
T(pn + sn) — w(pp) < {15} < {15} .
logn log py,

So the lemma is proved. O

Now we prove the following result, which leads to an improvement of the upper bound in [@2)). Let ¢4 > 0
and Xa4 = X24(e3,€4) be such that log(l +e3) 4+ log(x + 1) +log(z + log(x + 1)) < eqx for every x > Xaq.
In addition, we define

Cc1 = Cl(k, £1,€2,E3,¢&4, 51, 52) =1+ g4+ Co(’}/),

where v is defined by [B9)), and take co € R with ¢o > ¢;. Further, define

k
X25 = X25(]€,bl,X0,€1,€2,€3,€4,51,52> = max {X227X24,1Og k — 1}

and

k o—c
X6 = Xa6(k, b1, Xo,€1,€2,€3,€4,01,02,¢2) = maX{th [szs—‘ +1,7 (262/(”_‘1))} :

Theorem 5.3. If x > ng = px,,, then
C2

< .
pr(x) < log

Proof. First, we prove the claim for x = p,, with n > Xs5. By Theorem [£4], we have
R{E < prak/e-1) + 77 (43)

Let m € I be such that [mk/(k —1)] = n. Then m > Xs. Hence by (43), we have R < p, +ym.

Since m < n and v > 0, we get RM < Pn + 0. Tt follows g (pr) = m — (7r(pn + yn) — 7k (pn)). Since
every k-Ramanujan prime is prime, we obtain

Tk (Pn) = m — (7(pn + 1) — 7(pn))

and using Lemma [5.2] we get the inequality




Since

m _ k—1 1
e E——
n— k m
we get
1
n) < — . 44
Pr(pn) < erlogpn (44)
Using @0) as well as Xo1 <n < (m + 1)k/(k — 1), we obtain
log pn, < log - + log(1 +e3) + log(m + 1) + log <log = + log(m + 1)> .
Since m > log(k/(k — 1)), it follows that
log p, < m +log(1 + e3) + log(m + 1) + log(m + log(m + 1)).
Using m > Xa4, we get logp, < (14 e4)m and using (@), we get the inequality
C1
) < _ 45
(o) < oo (45)

So the theorem is proved in the case x = p,,.
Now let € R with & > px,, and let n > X be such that p, < x < p,41. Using (@3] we obtain

C1

pr— < .
pr(x) = pr(pn) < oz pn

From Bertrand’s postulate, it follows that 2p,, > pn41 for every n € N. Since n > m(2°2/(¢2=¢1)) we get
pr(x) < ca/logpni1 < ca/loga and the theorem is proved in general. O

6 On a conjecture of Mitra, Paul and Sarkar

In 2009, Mitra, Paul and Sarkar [9] made the following
Conjecture 6.1. If m,n € N with n > [1.1log2.5m], then
m(mn) —7w(n) >m — 1.
We prove this conjecture for every sufficiently large m by using the following proposition.

Proposition 6.2. Let e > 0. Then
m(mz) —mw(x) >m—1

for every sufficiently large m and every x > (1 + €)py/m.

Proof. We set A(z) =0, B(z) = b1/logz and choose Yy = 5393 by [3]. By Theorem B:22, we get
R < (14 €)pran/ (k1)1

for every n € IN with n > (k — 1) max{n(X27) + 1, X11}/k, where

5393 kXo kS(k,0,by,¢,0)
14+e’1+¢’ 1+¢

X27:X27(k,b1,5):max{ 1Tz

X
aT(OablaEaO)a i} .

Now let m € IN be sufficiently large, so that
m > w(Xaz(m,b1,€)) + 1.
Then we get the inequality Ri;"jl < (1+4+¢)pm. O
Corollary 6.3. The conjecture of Mitra, Paul and Sarkar holds for every sufficiently large m.
Proof. Let 0 < ¢ < 0.1. By [I5], we have p,, < m(logm + loglogm — 0.5) for every m > 20. So, we get
(14 e)pm/m < (14 ¢)(logm + loglogm — 0.5) < [1.1log2.5m]

for every sufficiently large m. It remains to apply Proposition O
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