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IDENTITIES FOR GENERALIZED EULER POLYNOMIALS

LIN JIU, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

ABSTRACT. For N € N, let Ty be the Chebyshev polynomial of the
first kind. Expressions for the sequence of numbers péN)7 defined as
the coefficients in the expansion of 1/Tn(1/z), are provided. These
coefficients give formulas for the classical Euler polynomials in terms of
the so-called generalized Euler polynomials. The proofs are based on a
probabilistic interpretation of the generalized Euler polynomials recently
given by Klebanov et al. Asymptotics of péN) are also provided.

1. INTRODUCTION

The Euler numbers F,,, defined by the generating function

1 > 2"
1.1 = E,—
(1.1) cosh z Z " n!

n=0

and the Euler polynomials F, (z) that generalize them

o n Tz
z 2e
n=0

e+ 1

([2, 9.630,9.651]) are examples of basic special functions. It follows directly
from the definition that F, = 0 for n odd. Morever, the relation F, =
2"E, (%) follows by setting x = % in (IL.2)), replacing z by 2z and comparing
with (LI)).

Moreover, the identity

2e%% 26(:2—1/2)2
(1.3) pES Rl ar——
produces
" /n\ E ek (7 n—k
wy Bw=3 (1) 2Ee-" =X (1)E@ -

k=0
that gives F,(x) in terms of the Euler numbers (see [2, 9.650]).

k=0
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The generalized Euler polynomials E,(Lp ) (z), defined by the generating func-
tion

e n p
(1.5) ZEr(lp)(x)Z— = < 2 > e**, forpeN
n=0

n! 14 e

are polynomials extending E,(x), the case p = 1. These appear in Section
24.16 of [5]. The definition leads directly to the expression

" /n
(1.6) EP (@)=Y <k> 2*EW (0),
k=0
where the generalized Euler numbers Eﬁlp ) (0) are defined recursively by
n n .
1.7) 20 =3 ()5 080
k=0
for p > 1 and initial condition E,gl)(O) = E,(0).
2. A PROBABILISTIC REPRESENTATION OF EULER POLYNOMIALS AND
THEIR GENERALIZATIONS

This section discusses probabilistic representations of the Euler polynomi-
als and their generalizations. The results involve the expectation operator
E defined by

(2.1) Eg(L) = / o) f1(x) dr,

with fr(z) the probability density of the random variable L and for any
function ¢ such that the integral exists.

Proposition 2.1. Let L be a random variable with hyperbolic secant density

(2.2) fr(z) = sech mx,  for xz € R.
Then the Euler polynomial is given by
(2.3) En(z) =E(z+:L—3)".

Proof. The right hand-side of ([23]) is

E(az—HL—%)" :/ (m—%—i—zt)"sechﬂtdt

—00
= <> (z—3)"" 23/ t’sech m dt
= \J oo

The identity

(o @]

E

(2.4) / thsech 7t dt = #

o 2
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holds for k£ odd, since both sides vanish and for k even, it appears as entry
3.523.4 in [2]. A proof of this entry may be found in [I]. Then, using
|Eop| = (—1)"Esy, (entry 9.633 in [2])

(2.5) E(z 4L —3)" = Z <n> (x — %)"_]& = E,(x).

O

There is a natural extension to the case of Ey(Lp ) (). The proof is similar

to the previous case, so it is omitted.

Theorem 2.2. Let p € N and Lj, 1 < j < p a collection of independent

identically distributed random wvariables with hyperbolic secant distribution.
Then

n

(2.6) EP(z)=E |2+ > (1L; - 3)
j=1

In a recent paper, L. B. Klebanov et al. [3] considered random sums of
independent random variables of the form

(2.7) %ZLJ

where the random number of summands py is independent of the Lj’s and
is described below.

Definition 2.3. Let N € N and Tn(z) be the Chebyshev polynomial of
the first kind. The random variable puy taking values in N, is defined by its
generating function

b
TN(l/Z)'

Information about the Chebyshev polynomials appears in [2] and [5].

(2.8) EzMN =

Example 2.4. Take N = 2. Then T(z) = 222 — 1 gives

20

2 o
(2.9) Bobr— 1 % pPE
T(1l/z) 2-22 & 2t

Therefore o takes the value 2¢, with ¢ € N, with probability
(2.10) Pr(uy = 20) = 27¢.

In [3], Klebanov et al. prove the following result.
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Theorem 2.5 (Klebanov et al.). Assume {L;} is a sequence of independent
identically distributed random wvariables with hyperbolic secant distribution.
Then, for all N > 2 and puy defined in (2.8]), the random variable

1 HUN
(2.11) L:= NZLJ-
j=1
has the same hyperbolic secant distribution.

3. THE EULER POLYNOMIALS IN TERMS OF THE GENERALIZED ONES

The identifies (LG) and (7)) can be used to express the generalized Eu-

ler polynomial E,(Lp ) (x) in terms of the standard Euler polynomials F,(x).
However, to the best of our knowledge, there is no formula that allows to

express Ep(z) in terms of Jol (). This section presents such a formula.

Definition 3.1. Let N € N. The sequence {péN) :£=0,1, -} is defined
as the coefficients in the expansion

L S (N) e
3.1 —_— = p, 'z .
(3 To(i/] ~ 2t
Definition 23] shows that
(3.2) pN) =Pr(uy =0), for L€N.

The numbers péN) will be referred as the probability numbers.

Example 3.2. For N = 2, Example 2.4] gives

2) 0 if £ is odd
3.3 =
(33) Pe {2_5/2 if £ is even, £ £ 0.

The coefficients péN) are now used to produce expansions of E,(x), one

for each N € N, in terms of the generalized Euler polynomials.

Theorem 3.3. The Euler polynomials satisfy, for all N € N,
1

(3.4) En(w) = 2B [BY) (huy + N(z = 3))]

Proof. From (2.3)) and (211
(3.5) B, (3) =E(GL)"= —E |2) _L;| ,

with Theorem [2.2] this yields

(3.6) BBy ()] =E ziN:Lj — N"E, (1).
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Using identity (I.4)), it follows that

B = Y () B ey

where z = %,u N+ N (a; — %) This completes the proof. O

The next result is established using the fact that the expectation operator
[ satisfies

(3.7) Eln(un)] = Y pi k),
k=0

for any function A such that the right-hand side exists.
Corollary 3.4. The Euler polynomials satisfy

1 [e.e]
(3.8) Bu(@) = 50 2 pi BY (3k+ N (@ - 3)).
k=N

Note 3.5. Corollary B.4] gives an infinite family of expressions for F,(z) in

terms of the generalized Euler polynomials ET(Lk) (z), one for each value of
N > 2.

Example 3.6. The expansion (B.8) with N = 2 gives

1 1
(3.9) En(w) = o7 > ?E,(fé) (0 + 22 —1).
=1
For instance, when n =1,
1= 1
(3.10) Bia) =3 ?Ef” (6 + 22 — 1)
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and the value Eiz) (z) =z — £ gives
— 1

2¢
/=1

(3.11) Ei(x) = ((+20—1-)=ax—1

N =

as expected.

4. THE PROBABILITY NUMBERS

For fixed N € N, the random variable i has been defined by its moment
generating function

1 (V) e
(4.1) EN = ——— =% p,; 2"
Ta(ijz) ~ 20

This section presents properties of the probability numbers péN) that appear
in Corollary 3.4l
(N)

For small N, the coefficients p,’ can be computed directly by expanding
the rational function 1/7x(1/2) in partial fractions. Example 2.4] gave the
case N = 2. The cases N = 3 and N = 4 are presented below.

Example 4.1. For N = 3, the Chebyshev polynomial is
(4.2) T3(2) = 42 — 32 = 42(2 — a)(z + a),
with a = v/3/2. This yields

(4.3) L G - f: 3 ok
' T3(1/2)  4(1 —az)(1+az) £ 2242 '
It follows that pf)) = 0 unless ¢ = 2k + 3 and
k

¢ __3
(4.4) Pak+3 = 5ar72°
Corollary 3.4l now gives

1o 3" ok

(4.5) E,(x) = o > o B (B + k),

k=0

a companion to (3.9).

Example 4.2. The probability numbers for N = 4 are computed from the
expression
1 24

(4.6) Ty(1/2) T A 8218

The factorization

(4.7) 2822 48=(22-B)(2*—7)
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with 8 = 2(2++/2) and v = 2(2—+/2) and the partial fraction decomposition

24 B 1 7 1
24 —82248 B-—y1-8/22 B—v1—r/22

show that pg4) =0 for £ odd or £ = 2 and

(49) A = 2 [ Ve - - vayl]

920+1

(4.8)

for ¢ > 2. Corollary 3.4l now gives

@10)  Ba(w) = va3 1CEYIT @V pangy, Ly

22(+1
(=2

Some elementary properties of the probability numbers are presented
next.

Proposition 4.3. The probability numbers pgN) vanish if £ < N.

Proof. The Chebyshev polynomial T (z) has the form 2V =12V + lower order
terms. Then the expansion of 1/Tx(1/z) has a zero of order N at z = 0.
This proves the statement. O

Proposition 4.4. The probability numbers pgN) vanish if £ Z N mod 2.

Proof. The polynomial T (z) has the same parity as N. The same holds
for the rational function 1/Tn(1/z). O

An expression for the probability numbers is given next.

Theorem 4.5. Let N € N be fized and define

) (2k—-1)m
Then
| X
(4.12) pgN) =~ 2:(—1)]ngl sin HIEN) cost ! H,EN).
k=1

Proof. The Chebyshev polynomial is defined by Tx(cos ) = cos(N8), so its
roots are z,(CN) = Co8 HI(QN), with HI(CN) as above. The leading coefficient of
Twn(z) is 2V~1, thus

1 91-N
Tn(z)  TLii(z—2)
In the remainder of the proof, the superscript N has been dropped from
z,gN) and H,EN), for clarity. Define

(4.13)

N
(4.14) Q) = [T - ).

k=1



8 LIN JIU, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

The roots z;, of ) are distinct, therefore

EZQ )z — 2z

The identity Th (z) = NUn_1(2) gives

(4.15)

(4.16) Q/(Zk) = N21_NUN_1(Zk)
where Uj(z) is the Chebyshev polynomial of the second kind defined by
sin(N +1)6
4.1 )= ——————.
(4.17) Un (cos ) e
Then
sin N6y,
(4.18) Un-1(zr) = Un—1(cosO) = sl

and the value sin N§; = (—1)**+! yields

(4.19) Q' (z1) = ﬂNzl—N
' T Tsin 0
Therefore (AI5) now gives
(4.20) 1 2N al (—1)k*1sin 6y,
' Q(z) N £~ z—costy
It follows that
I A i( e 2 sin Oy,
Tn(1/z)  Q(1/2z) N — 1 — zcosb
1 N [e'¢)
=~ Z( 1)*+1sin ), Z 21 cos’ 6y,
k=1 =0
o0 N
= Z Z k+1 sin 0, cos’ Oy,.
The proof is complete. U

The next result provides another explicit formula for the probability num-
bers. The coefficients A(n, k) appear in OEIS entry A008315, as entries of
the Catalan triangle.

Theorem 4.6. Let A(n, k) = (}) — (,",). Then, if N = {mod 2,

pgmz_ Z (—1)PA(L = 1,10 = 2t + 1)N)),
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indent when £ is not an odd multiple of N and

1| (—1)F
=5 Z (=1D)F A —1,sN)| + e with k= (/N —1)
s=1
otherwise.

The proof begins with a preliminary result.

Lemma 4.7. Let N € N and 0), = %(213\71)_ Then

N
(421) fir(z) = 3o(- 1)t
k=1
s given by
- 1— (_1)Ne7r7,z

(4.22) In(z) = if z# (2t + 1)N with t € Z

2cos (5%)
and
(4.23) fn(z) = (=1)!N2  if 2= (2t + 1)N for some t € Z.

In particular

(4.24) I (k) (_1)(%]\7;1)/2]\7@ if & is an odd integer
: N = 9§ 1-(=1)Ntk

2cos(%)

otherwise.

Proof. The function fy is the sum of a geometric progression. The formula

#23) comes from ([£22) by passing to the limit. O
The proof of Theorem is given now.

Proof. The expression for péN) given in Theorem yields

~ 1 > (—1)k+1 (eWk —e7Wk) (e 4 10k -t
oo =N 2i 2
k=1
N /-1
_ 1 _1\k+1 -1 1(0—=2r)0, _ 2(—2r—2)0)
- 2£NZ Z( 1) < r |:€ e :|
k=1 r=0
-1
1 /-1
- 9N, Z < r ) [fn(l—2r) — fn(l —2r —2)]
r=0
1 -1
= o ZlA(e — 1) (- 20) + Fa(0) — fN(_g)] -

Now fn(¢) = fn(—£€) = 0if £/N is not an odd integer. On the other hand,
if { = (2t +1)N, with t € Z, then

(4.25) fn(0) = (=1 N2 and fy(—€) = —(—1)'Nu.
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Thus
Fn(0) — fa(=0) {21\71(—1)“”‘1’/2 if ¢ is an odd multiple of N
N — IN{— =

0 otherwise.

The simplification of the previous expression for péN) is divided in two
cases, according to whether £ is an odd multiple of N or not.

Case 1. Assume { is not an odd multiple of N. Then

(4.26) pi" 2€N ZA N (0 —2r).
Morever,
_1\¢ ie =20
(4.27) Pl —2r) = (—1)"Na if =7 . 2t +1
0 otherwise.
Therefore
l/¢
v _ 1 -
(4.28) P = > (—D'A(-1,7).
()
0—2r=(2t+1)N

Observe that ¢ — (2t + 1)N is always an even integer, thus the index r may
be eliminated from the previous expression to obtain

B
(4.29) piN) = 5 > (DAL 2+ 1)N)).
SHES
Case 2. Assume / is an odd multiple of N, say { = (2k +1)N. Then

PN = 2ZN ZA ) fn (0= 2r) + 2Ni(—1)*

2€Nz ZA r) (€ —2r)

The term fy(¢—2r) vanishes unless £ —2r is an odd multiple of N. Given
that £ = (2k 4+ 1)V, the term is non-zero provided 2r is an even multiple of
N; say r = sN for s € N. The range of sis 1 < s < Z_Tl:%:—i—l—%. This
implies 1 < s < 2k =¢/N — 1, and it follows that

w1 RS (=1)*
P = > (-DFAU-1,sN) | + S with k= LN -1).
s=1

The proof is complete. U
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Note 4.8. The expression in Theorem shows that pgN) is a rational
number with a denominator a power of 2 of exponent at most /. Arithmetic
properties of these coefficients will be described in a future publication [4].
Moreover, the probability numbers pgN) appear in the description of a ran-
dom walk on N sites. Details will appear in [4].

5. AN ASYMPTOTIC EXPANSION

The final result deals with the asymptotic behavior of the probability
(N)

numbers p,

Theorem 5.1. Let pn(z) = E[z#N]. Then, for fized z in the unit disk
2] <1,

N
(5.1) on(z) ~ <1+\/%> , as N — o0.
Proof. The generating function satisfies
2N N -1
(5.2) en(z) =1/Tn(1/z) = SN H (1 — 2 COoS HIEN))
k=1

with HIEN) = (2k — 1)m/2N as before. Then

N
(5.3) log pn(2) = log2 + Nlogg — Zlog (1 — 2 Cos HI(CN)) .
k=1

The last sum is approximated by a Riemann integral

N
e ~eosg™) L L / " log(1— o [ L VEIZ
N kZ::llog (1 z cos 0, ) A log(1—zcosf)df = log ( 5 .

The last evaluation is elementary. It appears as entry 4.224.9 in [2]. It
follows that

14+V1_ 22
(5.4) log o () ~ log 2 + Nlog (%) — Nlog <fz>

indent and this is equivalent to the result. O

The function

(5.5) A(z) = 14-\/% = Zan"
n=0

is the generating function for the Catalan numbers

(5.6) Cu = = le ] <2§>
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The final result follows directly from the expansion of Binet’s formula for
Chebyshev polynomial

5.7 Tz - GV TV DT

Some standard notation is recalled. Given two sequences a = {a,}, b =
{bn}, their convolution ¢ = a * b is the sequence ¢ = {¢,}, with

(5.8) Cp — Zajbn_j.
7=0

(*NN)

The convolution power c is the convolution of ¢ with itself, N times.

Theorem 5.2. For N € N fized, the first N nonzero terms of the sequence
qéN) = 25_1p§N) agree with the first N terms of the N-th convolution power

C,(L*N) of the Catalan sequence:

= O, )= O, = O, = o
In terms of generating functions, this is equivalent to

(o] N o0
(5.9) Z C, 22+ _ Z qéN)ZZ ~ 9NV 3N

n=0 /=0
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