IDENTITIES FOR GENERALIZED EULER POLYNOMIALS

LIN JIU, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

Abstract

For $N \in \mathbb{N}$, let T_{N} be the Chebyshev polynomial of the first kind. Expressions for the sequence of numbers $p_{\ell}^{(N)}$, defined as the coefficients in the expansion of $1 / T_{N}(1 / z)$, are provided. These coefficients give formulas for the classical Euler polynomials in terms of the so-called generalized Euler polynomials. The proofs are based on a probabilistic interpretation of the generalized Euler polynomials recently given by Klebanov et al. Asymptotics of $p_{\ell}^{(N)}$ are also provided.

1. Introduction

The Euler numbers E_{n}, defined by the generating function

$$
\begin{equation*}
\frac{1}{\cosh z}=\sum_{n=0}^{\infty} E_{n} \frac{z^{n}}{n!} \tag{1.1}
\end{equation*}
$$

and the Euler polynomials $E_{n}(x)$ that generalize them

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}(x) \frac{z^{n}}{n!}=\frac{2 e^{x z}}{e^{z}+1} \tag{1.2}
\end{equation*}
$$

([2, 9.630,9.651]) are examples of basic special functions. It follows directly from the definition that $E_{n}=0$ for n odd. Morever, the relation $E_{n}=$ $2^{n} E_{n}\left(\frac{1}{2}\right)$ follows by setting $x=\frac{1}{2}$ in (1.2), replacing z by $2 z$ and comparing with (1.1).

Moreover, the identity

$$
\begin{equation*}
\frac{2 e^{x z}}{e^{z}+1}=\frac{2 e^{(x-1 / 2) z}}{e^{z / 2}+e^{-z / 2}} \tag{1.3}
\end{equation*}
$$

produces

$$
\begin{equation*}
E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \frac{E_{k}}{2^{k}}\left(x-\frac{1}{2}\right)^{n-k}=\sum_{k=0}^{n}\binom{n}{k} E_{k}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)^{n-k}, \tag{1.4}
\end{equation*}
$$

that gives $E_{n}(x)$ in terms of the Euler numbers (see [2, 9.650]).

[^0]The generalized Euler polynomials $E_{n}^{(p)}(z)$, defined by the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}^{(p)}(x) \frac{z^{n}}{n!}=\left(\frac{2}{1+e^{z}}\right)^{p} e^{x z}, \quad \text { for } p \in \mathbb{N} \tag{1.5}
\end{equation*}
$$

are polynomials extending $E_{n}(x)$, the case $p=1$. These appear in Section 24.16 of [5]. The definition leads directly to the expression

$$
\begin{equation*}
E_{n}^{(p)}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k} E_{n-k}^{(p)}(0) \tag{1.6}
\end{equation*}
$$

where the generalized Euler numbers $E_{n}^{(p)}(0)$ are defined recursively by

$$
\begin{equation*}
E_{n}^{(p)}(0)=\sum_{k=0}^{n}\binom{n}{k} E_{k}^{(p-1)}(0) E_{n-k}(0) \tag{1.7}
\end{equation*}
$$

for $p>1$ and initial condition $E_{n}^{(1)}(0)=E_{n}(0)$.

2. A probabilistic Representation of Euler polynomials and

 THEIR GENERALIZATIONSThis section discusses probabilistic representations of the Euler polynomials and their generalizations. The results involve the expectation operator \mathbb{E} defined by

$$
\begin{equation*}
\mathbb{E} g(L)=\int g(x) f_{L}(x) d x \tag{2.1}
\end{equation*}
$$

with $f_{L}(x)$ the probability density of the random variable L and for any function g such that the integral exists.

Proposition 2.1. Let L be a random variable with hyperbolic secant density

$$
\begin{equation*}
f_{L}(x)=\operatorname{sech} \pi x, \quad \text { for } x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

Then the Euler polynomial is given by

$$
\begin{equation*}
E_{n}(x)=\mathbb{E}\left(x+\imath L-\frac{1}{2}\right)^{n} \tag{2.3}
\end{equation*}
$$

Proof. The right hand-side of (2.3) is

$$
\begin{aligned}
\mathbb{E}\left(x+\imath L-\frac{1}{2}\right)^{n} & =\int_{-\infty}^{\infty}\left(x-\frac{1}{2}+\imath t\right)^{n} \operatorname{sech} \pi t d t \\
& =\sum_{j=0}^{n}\binom{n}{j}\left(x-\frac{1}{2}\right)^{n-j} \imath^{j} \int_{-\infty}^{\infty} t^{j} \operatorname{sech} \pi d t
\end{aligned}
$$

The identity

$$
\begin{equation*}
\int_{-\infty}^{\infty} t^{k} \operatorname{sech} \pi t d t=\frac{\left|E_{k}\right|}{2^{k}} \tag{2.4}
\end{equation*}
$$

holds for k odd, since both sides vanish and for k even, it appears as entry 3.523 .4 in [2]. A proof of this entry may be found in [1]. Then, using $\left|E_{2 n}\right|=(-1)^{n} E_{2 n}$ (entry 9.633 in [2])

$$
\begin{equation*}
\mathbb{E}\left(x+\imath L-\frac{1}{2}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j}\left(x-\frac{1}{2}\right)^{n-j} \frac{E_{j}}{2^{j}}=E_{n}(x) . \tag{2.5}
\end{equation*}
$$

There is a natural extension to the case of $E_{n}^{(p)}(x)$. The proof is similar to the previous case, so it is omitted.

Theorem 2.2. Let $p \in \mathbb{N}$ and $L_{j}, 1 \leq j \leq p$ a collection of independent identically distributed random variables with hyperbolic secant distribution. Then

$$
\begin{equation*}
E_{n}^{(p)}(x)=\mathbb{E}\left[x+\sum_{j=1}^{p}\left(\imath L_{j}-\frac{1}{2}\right)\right]^{n} . \tag{2.6}
\end{equation*}
$$

In a recent paper, L. B. Klebanov et al. [3] considered random sums of independent random variables of the form

$$
\begin{equation*}
\frac{1}{N} \sum_{j=1}^{\mu_{N}} L_{j} \tag{2.7}
\end{equation*}
$$

where the random number of summands μ_{N} is independent of the $L j^{\prime} s$ and is described below.

Definition 2.3. Let $N \in \mathbb{N}$ and $T_{N}(z)$ be the Chebyshev polynomial of the first kind. The random variable μ_{N} taking values in \mathbb{N}, is defined by its generating function

$$
\begin{equation*}
\mathbb{E} z^{\mu_{N}}=\frac{1}{T_{N}(1 / z)} . \tag{2.8}
\end{equation*}
$$

Information about the Chebyshev polynomials appears in [2] and 5].
Example 2.4. Take $N=2$. Then $T_{2}(z)=2 z^{2}-1$ gives

$$
\begin{equation*}
\mathbb{E} z^{\mu_{2}}=\frac{1}{T_{2}(1 / z)}=\frac{z^{2}}{2-z^{2}}=\sum_{\ell=1}^{\infty} \frac{z^{2 \ell}}{2^{\ell}} . \tag{2.9}
\end{equation*}
$$

Therefore μ_{2} takes the value 2ℓ, with $\ell \in \mathbb{N}$, with probability

$$
\begin{equation*}
\operatorname{Pr}\left(\mu_{2}=2 \ell\right)=2^{-\ell} . \tag{2.10}
\end{equation*}
$$

In [3], Klebanov et al. prove the following result.

Theorem 2.5 (Klebanov et al.). Assume $\left\{L_{j}\right\}$ is a sequence of independent identically distributed random variables with hyperbolic secant distribution. Then, for all $N \geq 2$ and μ_{N} defined in (2.8), the random variable

$$
\begin{equation*}
L:=\frac{1}{N} \sum_{j=1}^{\mu_{N}} L_{j} \tag{2.11}
\end{equation*}
$$

has the same hyperbolic secant distribution.

3. The Euler polynomials in terms of the generalized ones

The identifies (1.6) and (1.7) can be used to express the generalized Euler polynomial $E_{n}^{(p)}(x)$ in terms of the standard Euler polynomials $E_{n}(x)$. However, to the best of our knowledge, there is no formula that allows to express $E_{n}(x)$ in terms of $E_{n}^{(p)}(x)$. This section presents such a formula.

Definition 3.1. Let $N \in \mathbb{N}$. The sequence $\left\{p_{\ell}^{(N)}: \ell=0,1, \cdots\right\}$ is defined as the coefficients in the expansion

$$
\begin{equation*}
\frac{1}{T_{N}(1 / z)}=\sum_{\ell=0}^{\infty} p_{\ell}^{(N)} z^{\ell} \tag{3.1}
\end{equation*}
$$

Definition 2.3 shows that

$$
\begin{equation*}
p_{\ell}^{(N)}=\operatorname{Pr}\left(\mu_{N}=\ell\right), \quad \text { for } \ell \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

The numbers $p_{\ell}^{(N)}$ will be referred as the probability numbers.
Example 3.2. For $N=2$, Example 2.4 gives

$$
p_{\ell}^{(2)}= \begin{cases}0 & \text { if } \ell \text { is odd } \tag{3.3}\\ 2^{-\ell / 2} & \text { if } \ell \text { is even } \ell \neq 0\end{cases}
$$

The coefficients $p_{\ell}^{(N)}$ are now used to produce expansions of $E_{n}(x)$, one for each $N \in \mathbb{N}$, in terms of the generalized Euler polynomials.

Theorem 3.3. The Euler polynomials satisfy, for all $N \in \mathbb{N}$,

$$
\begin{equation*}
E_{n}(x)=\frac{1}{N^{n}} \mathbb{E}\left[E_{n}^{\left(\mu_{N}\right)}\left(\frac{1}{2} \mu_{N}+N\left(x-\frac{1}{2}\right)\right)\right] \tag{3.4}
\end{equation*}
$$

Proof. From (2.3) and (2.11)

$$
\begin{equation*}
E_{n}\left(\frac{1}{2}\right)=\mathbb{E}(\imath L)^{n}=\frac{1}{N^{n}} \mathbb{E}\left[\imath \sum_{j=1}^{\mu_{N}} L_{j}\right]^{n} \tag{3.5}
\end{equation*}
$$

with Theorem 2.2, this yields

$$
\begin{equation*}
\mathbb{E}\left[E_{n}^{\left(\mu_{N}\right)}\left(\frac{\mu_{N}}{2}\right)\right]=\mathbb{E}\left[\imath \sum_{j=1}^{\mu_{N}} L_{j}\right]^{n}=N^{n} E_{n}\left(\frac{1}{2}\right) \tag{3.6}
\end{equation*}
$$

Using identity (1.4), it follows that

$$
\begin{aligned}
E_{n}(x) & =\sum_{k=0}^{n}\binom{n}{k} E_{k}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)^{n-k} \\
& =\mathbb{E}\left[\sum_{k=0}^{n}\binom{n}{k} N^{-k} E_{k}^{\left(\mu_{N}\right)}\left(\frac{1}{2} \mu_{N}\right)\left(x-\frac{1}{2}\right)^{n-k}\right] \\
& =\mathbb{E}\left[\sum_{k=0}^{n}\binom{n}{k} N^{-k}\left(\imath L_{1}+\cdots+\imath L_{\mu_{N}}\right)^{k}\left(x-\frac{1}{2}\right)^{n-k}\right] \\
& =\mathbb{E}\left[\frac{1}{N^{n}} \sum_{k=0}^{n}\binom{n}{k}\left(\imath L_{1}+\cdots+\imath L_{\mu_{N}}\right)^{k}\left(N\left(x-\frac{1}{2}\right)\right)^{n-k}\right] \\
& =\mathbb{E}\left[\frac{1}{N^{n}}\left(\imath L_{1}+\cdots+\imath L_{\mu_{N}}+N\left(x-\frac{1}{2}\right)\right)^{n}\right] \\
& =\mathbb{E}\left[\frac{1}{N^{n}}\left(\imath L_{1}+\cdots+\imath L_{\mu_{N}}+z-\frac{1}{2} \mu_{N}\right)^{n}\right] \\
& =\frac{1}{N^{n}} \mathbb{E}\left[E_{n}^{\left(\mu_{N}\right)}(z)\right]
\end{aligned}
$$

where $z=\frac{1}{2} \mu_{N}+N\left(x-\frac{1}{2}\right)$. This completes the proof.
The next result is established using the fact that the expectation operator \mathbb{E} satisfies

$$
\begin{equation*}
\mathbb{E}\left[h\left(\mu_{N}\right)\right]=\sum_{k=0}^{\infty} p_{k}^{(N)} h(k) \tag{3.7}
\end{equation*}
$$

for any function h such that the right-hand side exists.
Corollary 3.4. The Euler polynomials satisfy

$$
\begin{equation*}
E_{n}(x)=\frac{1}{N^{n}} \sum_{k=N}^{\infty} p_{k}^{(N)} E_{n}^{(k)}\left(\frac{1}{2} k+N\left(x-\frac{1}{2}\right)\right) \tag{3.8}
\end{equation*}
$$

Note 3.5. Corollary 3.4 gives an infinite family of expressions for $E_{n}(x)$ in terms of the generalized Euler polynomials $E_{n}^{(k)}(x)$, one for each value of $N \geq 2$.

Example 3.6. The expansion (3.8) with $N=2$ gives

$$
\begin{equation*}
E_{n}(x)=\frac{1}{2^{n}} \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} E_{n}^{(2 \ell)}(\ell+2 x-1) \tag{3.9}
\end{equation*}
$$

For instance, when $n=1$,

$$
\begin{equation*}
E_{1}(x)=\frac{1}{2} \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} E_{1}^{(2 \ell)}(\ell+2 x-1) \tag{3.10}
\end{equation*}
$$

and the value $E_{1}^{(\ell)}(x)=x-\frac{\ell}{2}$ gives

$$
\begin{equation*}
E_{1}(x)=\frac{1}{2} \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}}(\ell+2 x-1-\ell)=x-\frac{1}{2} \tag{3.11}
\end{equation*}
$$

as expected.

4. The probability numbers

For fixed $N \in \mathbb{N}$, the random variable μ_{N} has been defined by its moment generating function

$$
\begin{equation*}
\mathbb{E} z^{\mu_{N}}=\frac{1}{T_{N}(1 / z)}=\sum_{\ell=0}^{\infty} p_{\ell}^{(N)} z^{\ell} \tag{4.1}
\end{equation*}
$$

This section presents properties of the probability numbers $p_{\ell}^{(N)}$ that appear in Corollary 3.4.

For small N, the coefficients $p_{\ell}^{(N)}$ can be computed directly by expanding the rational function $1 / T_{N}(1 / z)$ in partial fractions. Example 2.4 gave the case $N=2$. The cases $N=3$ and $N=4$ are presented below.

Example 4.1. For $N=3$, the Chebyshev polynomial is

$$
\begin{equation*}
T_{3}(z)=4 z^{3}-3 z=4 z(z-\alpha)(z+\alpha) \tag{4.2}
\end{equation*}
$$

with $\alpha=\sqrt{3} / 2$. This yields

$$
\begin{equation*}
\frac{1}{T_{3}(1 / z)}=\frac{z^{3}}{4(1-\alpha z)(1+\alpha z)}=\sum_{k=0}^{\infty} \frac{3^{k}}{2^{2 k+2}} z^{2 k+3} \tag{4.3}
\end{equation*}
$$

It follows that $p_{\ell}^{(3)}=0$ unless $\ell=2 k+3$ and

$$
\begin{equation*}
p_{2 k+3}^{(3)}=\frac{3^{k}}{2^{2 k+2}} \tag{4.4}
\end{equation*}
$$

Corollary 3.4 now gives

$$
\begin{equation*}
E_{n}(x)=\frac{1}{3^{n}} \sum_{k=0}^{\infty} \frac{3^{k}}{2^{2 k+2}} E_{n}^{(2 k+3)}(3 x+k) \tag{4.5}
\end{equation*}
$$

a companion to (3.9).
Example 4.2. The probability numbers for $N=4$ are computed from the expression

$$
\begin{equation*}
\frac{1}{T_{4}(1 / z)}=\frac{z^{4}}{z^{4}-8 z^{2}+8} \tag{4.6}
\end{equation*}
$$

The factorization

$$
\begin{equation*}
z^{4}-8 z^{2}+8=\left(z^{2}-\beta\right)\left(z^{2}-\gamma\right) \tag{4.7}
\end{equation*}
$$

with $\beta=2(2+\sqrt{2})$ and $\gamma=2(2-\sqrt{2})$ and the partial fraction decomposition

$$
\begin{equation*}
\frac{z^{4}}{z^{4}-8 z^{2}+8}=\frac{\beta}{\beta-\gamma} \frac{1}{1-\beta / z^{2}}-\frac{\gamma}{\beta-\gamma} \frac{1}{1-\gamma / z^{2}} \tag{4.8}
\end{equation*}
$$

show that $p_{\ell}^{(4)}=0$ for ℓ odd or $\ell=2$ and

$$
\begin{equation*}
p_{2 \ell}^{(4)}=\frac{\sqrt{2}}{2^{2 \ell+1}}\left[(2+\sqrt{2})^{\ell-1}-(2-\sqrt{2})^{\ell-1}\right] \tag{4.9}
\end{equation*}
$$

for $\ell \geq 2$. Corollary 3.4 now gives

$$
\begin{equation*}
E_{n}(x)=\sqrt{2} \sum_{\ell=2}^{\infty} \frac{\left[(2+\sqrt{2})^{\ell-1}-(2-\sqrt{2})^{\ell-1}\right]}{2^{2 \ell+1}} E_{n}^{(2 \ell)}(4 x+\ell-2) . \tag{4.10}
\end{equation*}
$$

Some elementary properties of the probability numbers are presented next.

Proposition 4.3. The probability numbers $p_{\ell}^{(N)}$ vanish if $\ell<N$.
Proof. The Chebyshev polynomial $T_{N}(z)$ has the form $2^{N-1} z^{N}+$ lower order terms. Then the expansion of $1 / T_{N}(1 / z)$ has a zero of order N at $z=0$. This proves the statement.
Proposition 4.4. The probability numbers $p_{\ell}^{(N)}$ vanish if $\ell \not \equiv N \bmod 2$.
Proof. The polynomial $T_{N}(z)$ has the same parity as N. The same holds for the rational function $1 / T_{N}(1 / z)$.

An expression for the probability numbers is given next.
Theorem 4.5. Let $N \in \mathbb{N}$ be fixed and define

$$
\begin{equation*}
\theta_{k}^{(N)}=\frac{(2 k-1) \pi}{2 N} \tag{4.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
p_{\ell}^{(N)}=\frac{1}{N} \sum_{k=1}^{N}(-1)^{k+1} \sin \theta_{k}^{(N)} \cos ^{\ell-1} \theta_{k}^{(N)} . \tag{4.12}
\end{equation*}
$$

Proof. The Chebyshev polynomial is defined by $T_{N}(\cos \theta)=\cos (N \theta)$, so its roots are $z_{k}^{(N)}=\cos \theta_{k}^{(N)}$, with $\theta_{k}^{(N)}$ as above. The leading coefficient of $T_{N}(z)$ is 2^{N-1}, thus

$$
\begin{equation*}
\frac{1}{T_{N}(z)}=\frac{2^{1-N}}{\prod_{k=1}^{N}\left(z-z_{k}\right)} \tag{4.13}
\end{equation*}
$$

In the remainder of the proof, the superscript N has been dropped from $z_{k}^{(N)}$ and $\theta_{k}^{(N)}$, for clarity. Define

$$
\begin{equation*}
Q(z)=\prod_{k=1}^{N}\left(z-z_{k}\right) \tag{4.14}
\end{equation*}
$$

The roots z_{k} of Q are distinct, therefore

$$
\begin{equation*}
\frac{1}{Q(z)}=\sum_{k=1}^{N} \frac{1}{Q^{\prime}\left(z_{k}\right)} \frac{1}{z-z_{k}} \tag{4.15}
\end{equation*}
$$

The identity $T_{N}^{\prime}(z)=N U_{N-1}(z)$ gives

$$
\begin{equation*}
Q^{\prime}\left(z_{k}\right)=N 2^{1-N} U_{N-1}\left(z_{k}\right) \tag{4.16}
\end{equation*}
$$

where $U_{j}(z)$ is the Chebyshev polynomial of the second kind defined by

$$
\begin{equation*}
U_{N}(\cos \theta)=\frac{\sin (N+1) \theta}{\sin \theta} \tag{4.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
U_{N-1}\left(z_{k}\right)=U_{N-1}\left(\cos \theta_{k}\right)=\frac{\sin N \theta_{k}}{\sin \theta_{k}} \tag{4.18}
\end{equation*}
$$

and the value $\sin N \theta_{k}=(-1)^{k+1}$ yields

$$
\begin{equation*}
Q^{\prime}\left(z_{k}\right)=\frac{(-1)^{k+1}}{\sin \theta_{k}} N 2^{1-N} \tag{4.19}
\end{equation*}
$$

Therefore (4.15) now gives

$$
\begin{equation*}
\frac{1}{Q(z)}=\frac{2^{N-1}}{N} \sum_{k=1}^{N} \frac{(-1)^{k+1} \sin \theta_{k}}{z-\cos \theta_{k}} \tag{4.20}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\frac{1}{T_{N}(1 / z)}=\frac{2^{1-N}}{Q(1 / z)} & =\frac{1}{N} \sum_{k=1}^{N}(-1)^{k+1} \frac{z \sin \theta_{k}}{1-z \cos \theta_{k}} \\
& =\frac{1}{N} \sum_{k=1}^{N}(-1)^{k+1} \sin \theta_{k} \sum_{\ell=0}^{\infty} z^{\ell+1} \cos ^{\ell} \theta_{k} \\
& =\frac{1}{N} \sum_{\ell=0}^{\infty} z^{\ell+1} \sum_{k=1}^{N}(-1)^{k+1} \sin \theta_{k} \cos ^{\ell} \theta_{k}
\end{aligned}
$$

The proof is complete.
The next result provides another explicit formula for the probability numbers. The coefficients $A(n, k)$ appear in OEIS entry A008315, as entries of the Catalan triangle.

Theorem 4.6. Let $A(n, k)=\binom{n}{k}-\binom{n}{k-1}$. Then, if $N \equiv \ell \bmod 2$,

$$
p_{\ell}^{(N)}=\frac{1}{2^{\ell}} \sum_{t=\left\lfloor\frac{1}{2}\left(\frac{2-\ell}{N}-1\right)\right\rfloor}^{\left\lfloor\frac{1}{2}\left(\frac{\ell}{N}-1\right)\right\rfloor}(-1)^{t} A\left(\ell-1, \frac{1}{2}(\ell-(2 t+1) N)\right)
$$

indent when ℓ is not an odd multiple of N and

$$
p_{\ell}^{(N)}=\frac{1}{2^{\ell}}\left[\sum_{s=1}^{\lfloor\ell / N-1\rfloor}(-1)^{k-s} A(\ell-1, s N)\right]+\frac{(-1)^{k}}{2^{\ell-1}}, \text { with } k=\frac{1}{2}(\ell / N-1)
$$

otherwise.
The proof begins with a preliminary result.
Lemma 4.7. Let $N \in \mathbb{N}$ and $\theta_{k}=\frac{\pi}{2} \frac{(2 k-1)}{N}$. Then

$$
\begin{equation*}
f_{N}(z)=\sum_{k=1}^{N}(-1)^{k+1} e^{\imath \theta_{k} z} \tag{4.21}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f_{N}(z)=\frac{1-(-1)^{N} e^{\pi \imath z}}{2 \cos \left(\frac{\pi z}{2 N}\right)} \quad \text { if } z \neq(2 t+1) N \text { with } t \in \mathbb{Z} \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{N}(z)=(-1)^{t} N \imath \quad \text { if } z=(2 t+1) N \text { for some } t \in \mathbb{Z} \tag{4.23}
\end{equation*}
$$

In particular

$$
f_{N}(k)= \begin{cases}(-1)^{(k / N-1) / 2} N \imath & \text { if } \frac{k}{N} \text { is an odd integer } \tag{4.24}\\ \frac{1-(-1)^{N+k}}{2 \cos \left(\frac{\pi k}{2 N}\right)} & \text { otherwise } .\end{cases}
$$

Proof. The function f_{N} is the sum of a geometric progression. The formula (4.23) comes from (4.22) by passing to the limit.

The proof of Theorem 4.6 is given now.
Proof. The expression for $p_{\ell}^{(N)}$ given in Theorem 4.5 yields

$$
\begin{aligned}
p_{\ell}^{(N)} & =\frac{1}{N} \sum_{k=1}^{N}(-1)^{k+1} \frac{\left(e^{\imath \theta_{k}}-e^{-\imath \theta_{k}}\right)}{2 i}\left(\frac{e^{\imath \theta_{k}}+e^{-\imath \theta_{k}}}{2}\right)^{\ell-1} \\
& =\frac{1}{2^{\ell} N i} \sum_{k=1}^{N}(-1)^{k+1} \sum_{r=0}^{\ell-1}\binom{\ell-1}{r}\left[e^{\imath(\ell-2 r) \theta_{k}}-e^{\imath(\ell-2 r-2) \theta_{k}}\right] \\
& =\frac{1}{2^{\ell} N \imath} \sum_{r=0}^{\ell-1}\binom{\ell-1}{r}\left[f_{N}(l-2 r)-f_{N}(l-2 r-2)\right] \\
& =\frac{1}{2^{\ell} N \imath}\left[\sum_{r=1}^{\ell-1} A(\ell-1, r) f_{N}(\ell-2 r)+f_{N}(\ell)-f_{N}(-\ell)\right]
\end{aligned}
$$

Now $f_{N}(\ell)=f_{N}(-\ell)=0$ if ℓ / N is not an odd integer. On the other hand, if $\ell=(2 t+1) N$, with $t \in \mathbb{Z}$, then

$$
\begin{equation*}
f_{N}(\ell)=(-1)^{t} N \imath \text { and } f_{N}(-\ell)=-(-1)^{t} N \imath \tag{4.25}
\end{equation*}
$$

Thus

$$
f_{N}(\ell)-f_{N}(-\ell)= \begin{cases}2 N \imath(-1)^{(\ell / N-1) / 2} & \text { if } \ell \text { is an odd multiple of } N \\ 0 & \text { otherwise }\end{cases}
$$

The simplification of the previous expression for $p_{\ell}^{(N)}$ is divided in two cases, according to whether ℓ is an odd multiple of N or not.
Case 1. Assume ℓ is not an odd multiple of N. Then

$$
\begin{equation*}
p_{\ell}^{(N)}=\frac{1}{2^{\ell} N \imath} \sum_{r=0}^{\ell-1} A(\ell-1, r) f_{N}(\ell-2 r) \tag{4.26}
\end{equation*}
$$

Morever,

$$
f_{N}(\ell-2 r)= \begin{cases}(-1)^{t} N \imath & \text { if } \frac{l-2 r}{N}=2 t+1 \tag{4.27}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\begin{equation*}
p_{\ell}^{(N)}=\frac{1}{2^{\ell}} \sum_{\substack{t=\frac{1}{2}\left(\frac{2-\ell}{N}-1\right) \\ \ell-2 r=(2 t+1) N}}^{\frac{1}{2}\left(\frac{\ell}{N}-1\right)}(-1)^{t} A(\ell-1, r) \tag{4.28}
\end{equation*}
$$

Observe that $\ell-(2 t+1) N$ is always an even integer, thus the index r may be eliminated from the previous expression to obtain

$$
\begin{equation*}
p_{\ell}^{(N)}=\frac{1}{2^{\ell}} \sum_{t=\left\lfloor\frac{1}{2}\left(\frac{2-\ell}{N}-1\right)\right\rfloor}^{\left\lfloor\frac{1}{2}\left(\frac{\ell}{N}-1\right)\right\rfloor}(-1)^{t} A\left(\ell-1, \frac{1}{2}(\ell-(2 t+1) N)\right) \tag{4.29}
\end{equation*}
$$

Case 2. Assume ℓ is an odd multiple of N, say $\ell=(2 k+1) N$. Then

$$
\begin{aligned}
p_{\ell}^{(N)} & =\frac{1}{2^{\ell} N i}\left[\sum_{r=0}^{\ell-1} A(\ell-1, r) f_{N}(\ell-2 r)+2 N i(-1)^{k}\right] \\
& =\frac{1}{2^{\ell} N i}\left[\sum_{r=0}^{\ell-1} A(\ell-1, r) f_{N}(\ell-2 r)\right]+\frac{(-1)^{k}}{2^{\ell-1}} .
\end{aligned}
$$

The term $f_{N}(\ell-2 r)$ vanishes unless $\ell-2 r$ is an odd multiple of N. Given that $\ell=(2 k+1) N$, the term is non-zero provided $2 r$ is an even multiple of N; say $r=s N$ for $s \in \mathbb{N}$. The range of s is $1 \leq s \leq \frac{\ell-1}{N}=2 k+1-\frac{1}{N}$. This implies $1 \leq s \leq 2 k=\ell / N-1$, and it follows that

$$
p_{\ell}^{(N)}=\frac{1}{2^{\ell}}\left[\sum_{s=1}^{\ell / N-1}(-1)^{k-s} A(\ell-1, s N)\right]+\frac{(-1)^{k}}{2^{\ell-1}}, \text { with } k=\frac{1}{2}(\ell / N-1)
$$

The proof is complete.

Note 4.8. The expression in Theorem 4.6 shows that $p_{\ell}^{(N)}$ is a rational number with a denominator a power of 2 of exponent at most ℓ. Arithmetic properties of these coefficients will be described in a future publication [4]. Moreover, the probability numbers $p_{\ell}^{(N)}$ appear in the description of a random walk on N sites. Details will appear in [4].

5. An asymptotic expansion

The final result deals with the asymptotic behavior of the probability numbers $p_{\ell}^{(N)}$.

Theorem 5.1. Let $\varphi_{N}(z)=\mathbb{E}\left[z^{\mu_{N}}\right]$. Then, for fixed z in the unit disk $|z|<1$,

$$
\begin{equation*}
\varphi_{N}(z) \sim\left(\frac{z}{1+\sqrt{1-z^{2}}}\right)^{N}, \text { as } N \rightarrow \infty \tag{5.1}
\end{equation*}
$$

Proof. The generating function satisfies

$$
\begin{equation*}
\varphi_{N}(z)=1 / T_{N}(1 / z)=\frac{z^{N}}{2^{N-1}} \prod_{k=1}^{N}\left(1-z \cos \theta_{k}^{(N)}\right)^{-1} \tag{5.2}
\end{equation*}
$$

with $\theta_{k}^{(N)}=(2 k-1) \pi / 2 N$ as before. Then

$$
\begin{equation*}
\log \varphi_{N}(z)=\log 2+N \log \frac{z}{2}-\sum_{k=1}^{N} \log \left(1-z \cos \theta_{k}^{(N)}\right) . \tag{5.3}
\end{equation*}
$$

The last sum is approximated by a Riemann integral

$$
\frac{1}{N} \sum_{k=1}^{N} \log \left(1-z \cos \theta_{k}^{(N)}\right) \sim \frac{1}{\pi} \int_{0}^{\pi} \log (1-z \cos \theta) d \theta=\log \left(\frac{1+\sqrt{1-z^{2}}}{2}\right) .
$$

The last evaluation is elementary. It appears as entry 4.224 .9 in [2]. It follows that

$$
\begin{equation*}
\log \varphi_{N}(z) \sim \log 2+N \log \left(\frac{z}{2}\right)-N \log \left(\frac{1+\sqrt{1-z^{2}}}{2}\right) \tag{5.4}
\end{equation*}
$$

indent and this is equivalent to the result.
The function

$$
\begin{equation*}
A(z)=\frac{2}{1+\sqrt{1-4 z}}=\sum_{n=0}^{\infty} C_{n} z^{n} \tag{5.5}
\end{equation*}
$$

is the generating function for the Catalan numbers

$$
\begin{equation*}
C_{n}=\frac{1}{n+1}\binom{2 n}{n} . \tag{5.6}
\end{equation*}
$$

The final result follows directly from the expansion of Binet's formula for Chebyshev polynomial

$$
\begin{equation*}
T_{N}(z)=\frac{\left(z-\sqrt{z^{2}-1}\right)^{N}+\left(z+\sqrt{z^{2}-1}\right)^{N}}{2} . \tag{5.7}
\end{equation*}
$$

Some standard notation is recalled. Given two sequences $\mathbf{a}=\left\{a_{n}\right\}, \mathbf{b}=$ $\left\{b_{n}\right\}$, their convolution $\mathbf{c}=\mathbf{a} * \mathbf{b}$ is the sequence $\mathbf{c}=\left\{c_{n}\right\}$, with

$$
\begin{equation*}
c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j} . \tag{5.8}
\end{equation*}
$$

The convolution power $\mathbf{c}^{(* N)}$ is the convolution of \mathbf{c} with itself, N times.
Theorem 5.2. For $N \in \mathbb{N}$ fixed, the first N nonzero terms of the sequence $q_{\ell}^{(N)}=2^{\ell-1} p_{\ell}^{(N)}$ agree with the first N terms of the N-th convolution power $C_{n}^{(* N)}$ of the Catalan sequence:

$$
q_{N}^{(N)}=C_{0}^{(* N)}, q_{N+2}^{(* N)}=C_{1}^{(* N)}, \cdots, q_{N+2 k}^{(N)}=C_{k}^{(* N)}, \cdots, q_{3 N-2}^{(N)}=C_{N-1}^{(* N)} .
$$

In terms of generating functions, this is equivalent to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} C_{n} z^{2 n+1}\right)^{N}-\sum_{\ell=0}^{\infty} q_{\ell}^{(N)} z^{\ell} \sim 2^{N} z^{3 N} . \tag{5.9}
\end{equation*}
$$

Acknowledgments. The second author acknowledges the partial support of nsf-dms 1112656. The first author is a graduate student, funded in part by the same grant.

References

[1] K. Boyadzhiev and V. Moll. The integrals in Gradshteyn and Ryzhik. Part 21: Hyperbolic functions. Scientia, 22:109-127, 2013.
[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
[3] L. B. Klebanov, A. V. Kakosyan, S. T. Rachev, and G. Temnov. On a class of distributions stable under random summation. J. Appl. Prob., 49:303-318, 2012.
[4] V. Moll and C. Vignat. Arithmetic properties of a probability sequence. In preparation, 2014.
[5] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.

Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: ljiu@tulane.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@tulane.edu
LSS-Supelec, Université Orsay Paris Sud 11, France
E-mail address: cvignat@tulane.edu
E-mail address: christophe.vignat@u-psud.fr

[^0]: Date: October 18, 2018.
 2010 Mathematics Subject Classification. Primary 11B68, Secondary 60E05.
 Key words and phrases. Generalized Euler polynomials, hyperbolic secant distributions, Chebyshev polynomials.

