
COMPETITIVE LEARNING OF MONOTONE BOOLEAN FUNCTIONS

SASCHA KURZ

ABSTRACT. We apply competitive analysis onto the problem of minimizing the number of queries to an
oracle to completely reconstruct a given monotone Boolean function. Besides lower and upper bounds on the
competitivity we determine optimal deterministic online algorithms for the smallest problem instances.

Keywords: monotone Boolean functions, exact learning algorithms, competitive analysis
MSC: 68W27, 06E30, 68Q32

1. INTRODUCTION

Complex systems with many components and resource restrictions can crash if certain combinations of
the components are simultaneously active. As a demonstrative example one can imagine a computer
system with different software packages. For n software packages there are 2n combinations where the
computer can either crash or work properly. The behavior of the computer system can be described by
a Boolean function g : {0, 1}n → {0, 1}. Suppose we have the possibility to evaluate the underlying
Boolean function at arbitrary points. In practice we might think of asking an expert or performing an
experiment like simply running the respective set of software packages. In our abstract setting we speak of
asking a question. For an arbitrary Boolean function in any case 2n questions are necessary (and sufficient
if all questions are pairwise different) to unveil the entire function. Fortunately in many applications we
can assume some restrictions. In our example it is quite reasonable to assume some kind of monotonicity.
If the computer crashes for a certain subset S ⊆ N := {1, . . . , n} of the programs we can assume that it
also crashes for every superset N ⊇ T ⊇ S of the programs. Similarly, if the computer works properly
for a set S ⊆ N then it should also work properly for every subset T ⊆ S. So we restrict the underlying
function to the class of monotone Boolean functions. For the ease of notation we write a Boolean function
as f : 2N → {0, 1} in the following, where 2N denotes the set of subsets of N .

Since asking questions or performing experiments can be quite expensive one naturally tries to mini-
mize the number of necessary questions. Different concepts like worst case or average case analysis have
been applied on this problem so far. As shown shown by Engel [3] up to

(
n
bn

2 c
)
+
(

n
bn

2 c+1

)
questions are

necessary to uniquely verify the worst case examples. There are algorithms, see e.g. [5], which achieve
this unavoidable worst case bound. Since there are monotone Boolean functions which can be uniquely
verified asking a single question, those, with respect to worst case analysis, optimal algorithms might not
be adequate in all practical applications. Thus there are studies in the literature minimizing the average
number of necessary questions while assuming an uniform distribution of the possible function, see e.g.
[8]. In this paper we want to study exact learning of monotone Boolean functions using competitive
analysis. This concept has the big advantage that no assumptions on the distribution of the occurring
functions are necessary.

2. PRELIMINARIES

We call a function f : 2N → {0, 1} a monotone Boolean function if f(S) = 1 implies f(T) = 1 for
all N ⊆ T ⊆ S and f(S) = 0 implies f(T) = 0 for all T ⊆ S ⊆ N . The set L of the maximal lower
sets consists of the sets S ⊆ N with f(S) = 0 where f(T) = 1 for all proper supersets of S. Similarly
the set U of the minimal upper sets consists of the sets S ⊆ N with f(S) = 1 where f(T) = 0 for all

1

ar
X

iv
:1

40
1.

81
35

v1
 [

cs
.D

S]
 3

1
Ja

n
20

14

2 SASCHA KURZ

proper subsets of S. We would like to remark that either L or U suffice to uniquely characterize f within
the class of Boolean functions, i.e. we have f(S) = 1 if and only if there exists an U ∈ U with U ⊆ S or
f(T) = 0 if and only if there exists an L ∈ L with T ⊆ L.

Via asking f(S) we do not get the information whether S is an inclusion-maximal lower or an
inclusion-minimal upper set but only f(S) = 1 or f(S) = 0. So in general asking the sets from L
or U is not sufficient.

Lemma 2.1. A monotone Boolean function f is uniquely characterized if and only if all values of L and
U are given.
Proof. Suppose there is a single U ∈ U whose value is not known. We construct a Boolean function f ′

by setting f ′(S) = f(S) for all subsets S 6= U and f ′(U) = 0. This function is also monotone since
for all proper subsets T (U we have f ′(T) = f(T) = 0. If there is a single L ∈ L whose value is
not known we can consider the monotone Boolean function f ′′ with f ′′(S) = f(S) for all S 6= L and
f ′′(L) = 1. � �

So let us denote bym(f) the cardinality |U ∪ L|, i.e. a lower bound for each deterministic algorithm to
reconstruct f via asking questions. As notation for those algorithms we use binary decision trees, where
we use the questions as nodes and where the answer “0” corresponds to the left successor:

{1}

{1, 2}

- {2}

∅

{2} -

In this example for n = 2 the first question is {1}. Once the answer is 0 the algorithm continues by asking
{1, 2}. If the answer is again 0 then there is only one possible monotone Boolean function (the all-zero
function f0: f0(S) = 0 for all S ⊆ N) left and we have reconstructed f . By A(f) we denote the number
of questions asked by algorithm A to reconstruct f . In our example we have A(f) = 2 while m(f) = 1

would be possible for the optimal algorithm. In competitive analysis the fraction A(f)
m(f) is studied.

We call a deterministic algorithmA reconstructing an n-variable monotone Boolean function c-competitive
for a real number c ≥ 1 if A(f)

m(f) ≤ c for all f ∈ Mn, whereMn denotes the set of monotone Boolean
functions on n variables. The best possible competitivity is denoted by c?n, i.e. the infimum of the possible
c for c-competitive algorithms on n-variables.

Let us at first comment on the competitivity of some classical learning algorithms. The Hansel’s
algorithm [5] behaves very badly using this measure, e.g. for the all-one function f1 (f1(S) = 1 for all
S ⊆ N) with m(f1) = 1 at least

(
n
bn

2 c
)

questions are asked (there is some freedom in the definition of

Hansel’s algorithm), see e.g. [8]. Thus Hansel’s algorithm is not c-competitive for c <
(

n
bn

2 c
)

while being
worst-case optimal.

Another algorithm for learning a monotone Boolean function is the so called FIND-BORDER algorithm
of Gainanov [4] (which is used as a subroutine in several other learning algorithms). In each iteration
an element of U is determined and verified using at most n + 1 questions. Thus the FIND-BORDER
is n + 1-competitive for all n ∈ N. We would like to remark that a refined analysis shows that at most
n · |U|+1+ |L| questions are asked and that it can be slightly adopted to yield an n-competitive algorithm
for n ≥ 2. (If the elements of L are iteratively determined then at most n · |L| + 1 + |U| questions are
asked.)

The enumeration of the setMn is a classical combinatorial problem known as Dedekind’s problem
[2]. So far the exact numbers could be determined only up to n = 8 and are given by 3, 6, 20, 168, 7 581,
7 828 354, 2 414 682 040 998, and 56 130 437 228 687 557 907 788, see e.g. [7]. To factor out symmetry
we call two monotone Boolean functions f and g equivalent if there is a bijection σ on N such that

COMPETITIVE LEARNING OF MONOTONE BOOLEAN FUNCTIONS 3

f(S) = g(σ(S)) for all S ⊆ N . The number of inequivalent monotone Boolean functions (or orbits) are
given by 3, 5, 10, 30, 210, 16353, see e.g. [6] , but grow nevertheless double exponentially.

3. LOWER BOUNDS ON THE OPTIMAL COMPETITIVITY

Based on the fact that the all-zero function f0 and the all-one function f1 need only one question to
be completely reconstructed, we can state c?n ≥ 2 for all n ∈ N. By bi(n) we denote the number of
monotone Boolean functions on n variables with m(f) = i. Since the answer to each question splits
the set of monotone Boolean functions which are compatible with the answers so far into two subsets of
remaining candidates, we have:

Lemma 3.1.

c?n ≥

⌈
log2

(
i∑

j=1

bj(n)

)⌉
i

∀i ≥ 1.

Lemma 3.2.
bi+1(n) ≥

(
n

i

)
∀1 ≤ i ≤ n.

Proof. Let S be an arbitrary i-element subset of n. For the monotone Boolean function with unique
maximal lower set N\S the minimal upper sets correspond to the elements of S. � �

Corollary 3.3. For each ε > 0 there is a n0(ε) such that c?n ≥ (1− ε) log2 n for all n ≥ n0(ε).

Lemma 3.4. If U ∈ U then |L| ≥ |U |.

Proof. Each L ∈ L can at most contain one set U\{i} with i ∈ U as a subset. � �

Using this one can easily determine b1(n) = 2, b2(n) = n, b3(n) = 2
(
n
2

)
, and b4(n) = 8

(
n
3

)
.

Lemma 3.5.
c?n+1 ≥ c?n.

Proof. Let A be a deterministic online algorithm for n+ 1 variables. We can obtain an online algorithm
A′ for n variables by adjusting each question S to S\{n+ 1} and slightly adapting the final output.

Let f be an arbitrary monotone Boolean function on n variables and g be a monotone Boolean function
on n + 1 variables defined via f(S) = g(S) = g(S ∪ {n + 1}) for all S ⊆ {1, . . . , n}. Due to
U(g) = {U | U ∈ U(f)} and L(g) = {L ∪ {n+ 1} | L ∈ L(f)} we have m(g) = m(f). � �

4. OPTIMAL ALGORITHMS FOR SMALL n

We call a deterministic online algorithm to reconstruct a monotone Boolean function or its corresponding
binary decision tree reasonable if only sets are asked whose function value cannot be deduced from
previous answers. For n = 1 variable there are only two reasonable binary decision trees, each having a
competitivity of c?1 = 2. For n = 2 variables an example with competitivity c?2 = 2 is given in Section 2.

Our next aim is to prove that every deterministic online algorithm for n = 3 variables has a competitiv-
ity of at least 5

2 . To conclude a lower bound on the competitivity it suffices to give a sequence of answers
to the questions of the algorithm that are compatible with a monotone Boolean function. By choosing a
suitable sequence of answers for a given deterministic algorithm we can conclude the tight lower bound.
Since we use only a path of the binary decision tree, consisting of the sequence on questions, the same
sequence of answers results in the same lower bound for a large set of binary decision trees. We can
further reduce the set of candidates of paths by utilizing symmetry. Therefore we call two such paths
P1 = (S1, . . . , Sl) and P2 = (T1, . . . , Tl), where S1, . . . , Sl, T1, . . . , Tl ⊆ N , equivalent if there is a
bijection σ of N fulfilling σ(Si) = Ti for all 1 ≤ i ≤ l. It suffices to consider inequivalent paths only,
e.g. we can assume that the first question is either ∅, {1}, {1, 2}, or {1, 2, 3}.

4 SASCHA KURZ

Suppose that the answer to this first question S1 is one if |S1| ≥ 2 and zero otherwise, then S2 ∈
{∅, N} since otherwise we could not exclude the all-one function f1 or the all-zero function f0 and would
end up with an algorithm having a competitivity of at least 3. We can abstain from further considering
the initial path segments (∅, N) and (N, ∅) since the initial path segments ({1}, N) and ({1, 2}, ∅) yield
more information about the unknown Boolean function. In Figure 1 we depict the remaining part of our
argument graphically. Each vertex is labeled with question and answer. At the leafs we further specify a
compatible monotone Boolean function with m(f) = 2 via U and L. Since each leaf has height 3 and the
corresponding elements of U and L have not been asked so far, 3+2

2 is a lower bound for the competitivity
in each case.

{1} → 0

{1, 2, 3} → 1

{2} → 0
U = 3
L = 12

{1, 2} → 1
U = 2
L = 13

{2, 3} → 1
U = 2
L = 13

{1, 2} → 1

∅ → 0

{1} → 0
U = 2
L = 13

{3} → 0
U = 2
L = 13

{1, 3} → 1
U = 1
L = 23

FIGURE 1. Lower bound for three variables.

For the other direction we describe a whole class of 5
2 -competitive online algorithms in Figure 2. As

for a binary decision tree the internal vertices are labeled with the questions of the algorithm. The leafs
are either labeled with [c] or [u, k, c]. In the first case there is only a unique monotone Boolean function
being compatible with the previous answers left, so that this path is c-competitive. In the later case there
are only u unclassified sets, i.e. sets whose value cannot be deduced from the previous answers and the
minimum m(f) of the remaining compatible monotone Boolean functions is k so that every reasonable
continuation of the online algorithm is c-competitive in the subtree starting at this leaf. Thus we have
c?3 = 5

2 .

Using the same ideas and larger trees one can show c?4 = 8
3 and c?5 ≥ 3.

5. CONCLUSION

We have considered the problem of minimizing the number of questions to an oracle to completely re-
construct an unknown monotone Boolean function from the perspective of competitive analysis. The
classical algorithm of Hansen turns out to perform pretty bad using this measure. For given general
monotone Boolean functions bounds on the best possible competitivity are far from being tight. As
shown in [7] a typical monotone Boolean function, i.e. almost all of Mn functions, fulfills m(f) ≥
|L| ≥ 1

2

(
n
dn

2 e
)
− n2n/2. Thus most reasonable algorithms have a constant competitivity on almost all

inputs. So the challenge is to deal with those monotone Boolean functions with atypically small m(f).
On the other hand the ratio between |L| and |U| can become exponential, see [1].

Here we have determined optimal algorithms for rather small problem instances only. On the other
hand the described methods and shortcuts may be used in order to implement a non-trivial search to
determine the next exact values of c?n. (This is indeed what we plan to do next.) A direct exhaustive
search on all reasonable binary decision trees seems impracticable even for rather small n.

COMPETITIVE LEARNING OF MONOTONE BOOLEAN FUNCTIONS 5

{1, 2}

{1, 2, 3}

[2]
[
3, 2, 52

] ∅

{1}

{1, 3}

{2}

[1, 3, 2]
[
5
2

]
[
3, 3, 73

] {2, 3}

[2] [2, 3, 2]

[2]

FIGURE 2. A class of 5
2 -competitive algorithms for three variables.

REFERENCES

[1] D. Angluin, Queries and concept learning, Machine Learning 2 (1988), 319–342.
[2] R. Dedekind, On the decomposition of numbers by means of their greatest common divisors. (über Zerlegungen von Zahlen

durch ihre größten gemeinsamen Teiler.), Festschrift Hoch. Braunschweig u. ges. Werke (1897), 103–148 (German).
[3] K. Engel, Sperner theory, Encyclopedia of Mathematics and Its Applications. 65. Cambridge: Cambridge University Press. ix,

417 p., 1997.
[4] D. N. Gainanov, On one criterion of the optimality of an algorithm for evaluating monotonic Boolean functions, U.S.S.R.

Computational Mathematics and Mathematical Physics 24 (1984), 176–181.
[5] G. Hansel, Sur le nombre des fonctions booléennes monotones de n variables, C.R. Acad. Sci. Paris 262 (1966), no. 20,

1088–1090 (French).
[6] OEIS Foundation Inc., The on-line encyclopedia of integer sequences, http://oeis.org/A003182, 2011.
[7] A. D. Korshunov, Monotone boolean functions, Russ. Math. Surv. 58 (2003), no. 5, 929–1001 (English. Russian original).
[8] V. I. Torvik and E. Triantaphyllou, Minimizing the average query complexity of learning monotone Boolean functions, IN-

FORMS Journal on Computing 14 (2003), no. 2, 144–174.

UNIVERSITY OF BAYREUTH, DEPARTMENT OF MATHEMATICS, D-95440 BAYREUTH, GERMANY, SASCHA.KURZ@UNI-
BAYREUTH.DE

http://oeis.org/A003182

	1. Introduction
	2. Preliminaries
	3. Lower bounds on the optimal competitivity
	4. Optimal algorithms for small n
	5. Conclusion
	References

