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Abstract

The enumeration of Hamiltonian cycles on 2n× 2n grids of nodes is a long-
standing problem in combinatorics. Previous work has concentrated on
counting all cycles. The current work enumerates nonisomorphic cycles –
that is, the number of isomorphism classes (up to all symmetry operations
of the square). It is shown that the matrix method used previously can
be modified to count cycles with all combinations of reflective and 180° ro-
tational symmetry. Cycles with 90° rotational symmetry were counted by
a direct search, using a modification of Knuth’s Dancing Links algorithm.
From these counts, the numbers of nonisomorphic cycles were calculated for
n ≤ 10.

Keywords: Hamiltonian cycle, Hamiltonian circuit, grid graph, compact
self-avoiding walk

1. Introduction

We are interested in enumeration of Hamiltonian cycles on P2n×P2n – that
is, on square grid graphs of 2n×2n nodes. The varied interest in this problem
can be illustrated by the many names attached to it: as well as Hamiltonian
cycles or circuits, there are rook’s tours and compact self-avoiding walks.
Since Thompson [11] stated the problem and provided elementary results,
several authors have tackled this problem. For example, Myers [9] converted
the problem into enumeration of the skeleton graphs inside the cycle; this
was considered to be a simpler problem. In 1994, Harris Kwong and Rogers
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Symbol Symmetries

u None
v One reflection
w 180° rotation
x Two reflections and 180° rotation
y 90° rotation
z All

Table 1: Symbols for numbers of isomorphism classes of Hamiltonian cycles with specified
symmetries. These symmetry descriptions are exact – for example, a cycle with two
reflective symmetries is not included in v. The axes of reflection are parallel to the sides
of the square. This list of symmetries is complete. For example, there is only one cycle
with symmetry under diagonal reflection, and this is the trivial cycle in a 2 × 2 square,
which has all the symmetries of a square.

[3] reported a recent “flurry of interest” in the problem. These and other
researchers [8, 6] use a matrix method, one version of which is discussed in
Section 3. This method was earlier applied to self-avoiding walks (SAWs)
on an infinite square lattice [2]. It is still used in that area [1]. Jensen [4]
reports that enumeration of SAWs is ‘one of the most important and classic
combinatorial problems in statistical mechanics’; also it has ‘traditionally
served as a benchmark for both computer performance and algorithm design’,
and in doing so has had many CPU years applied to it.

These previous efforts have typically counted all reflections and rotations
of the cycles, where they are distinct. For example, the On-Line Encyclopedia
of Integer Sequences [10, Sequence A003763] lists numbers of Hamiltonian
cycles on 2n× 2n square grids of nodes up to n = 10. The count for n = 11
is known [5] and has 71 decimal digits. By contrast, there are only 4 terms in
Sequence A209077, listing the counts of nonisomorphic cycles. The largest
count has 6 decimal digits. (Here and throughout this paper, a ‘count of
nonisomorphic cycles’ is intended to mean the number of equivalence classes
of cycles under all symmetry operations of the square. The title of A209077
calls it a count ‘reduced for symmetry’.) There are also variants of Sequence
A003763: A143246 counts directed cycles, and therefore contains values twice
as large; and A222065 considers m × m squares. Hamiltonian cycles are
impossible for oddm, so A222065 alternates zeros with the values of A143246.
The current work considers only undirected cycles and even m.

This paper reports enumeration of nonisomorphic cycles on 2n×2n square
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Symbol Symmetries

A None
B Reflection in a specified axis
C 180° rotation
D Two reflections and 180° rotation
E 90° rotation
F All

Table 2: Symbols for counts of Hamiltonian cycles with at least the specified symmetries.
The counts are not reduced by symmetry – for example, B includes two isomorphic copies
of each cycle with two reflections. The axis for B must be horizontal or vertical, not
diagonal.

grids of nodes up to n = 10. Essentially, the method is to enumerate the sym-
metric cycles, and to make the appropriate reductions to Sequence A003763.
For most symmetries, the efficient matrix methods can be adapted. For 90°
rotational symmetry, the enumeration can be done by a direct search on only
one quadrant of the square.

2. Symmetrical cycles

Table 1 defines symbols for the numbers of isomorphism classes of Hamil-
tonian cycles on 2n × 2n grids of nodes. These can be deduced from the
counts defined in Table 2; the matrix equation

A
B
C
D
E
F

 =


8 4 4 2 2 1

2 2 1
4 2 2 1

2 1
2 1

1




u
v
w
x
y
z

 (1)

can be inverted:
u
v
w
x
y
z

 =
1

8


1 −2 −1 2

4 −4
2 −2 −2 2

4 −4
4 −4

8




A
B
C
D
E
F

 . (2)
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Equation 1 simply expresses how many times each member of an iso-
morphism class is included in each count. The coefficients for calculating
B depend on the line of reflection having a specified orientation. So for ex-
ample, two members from each class in v are included, rotated 180° relative
to each other; two members from each class in w are included, rotated 90°
relative to each other.

Count A is OEIS Sequence A003763. Section 3 shows that counts B,
C and D can be generated by small modifications of the matrix method.
Count F is 1 for the 2×2 square, and 0 for all others. Count E is considered
separately, in Section 5. Results are presented in Section 6.

3. The matrix method

The matrix method described here is essentially the same as that of
Kloczkowski and Jernigan [6], with some differences in terminology and im-
plementation.

We define a connectivity state (or simply ‘state’) to be a specification of
the horizontal edges between two adjacent columns of nodes, together with
how these edges are connected in the paths to the left of these columns. The
key observation of the method is that the ways of continuing the paths to
the right are independent of how the connectivity state was reached from the
left.

We define a continuation t(s1; s2) to be a set of vertical edges in the
column of nodes to the right of state s1 that ensures that all the column’s
nodes are visited, and that results in s2 as the next state. An example is
shown in Figure 1. A matrix T is formed, with each entry tij equalling 1 or
0 according to whether t(si; sj) exists. If νi is a vector of the number of ways
of reaching states between columns i and i+ 1, then

νi+1 = Tνi. (3)

Some states can be generated by the leftmost column of a square; these
are called starting states. (Examples are shown in Tables 4 and 5.) An equal
number of ending states can be made into complete Hamiltonian cycles by
the rightmost column. It can be shown that the number of starting states for
a 2n× 2n square is the Fibonacci number F2n−1. One state is both starting
and ending: this is the state that links the top and bottom nodes.

The count A can therefore be calculated:

A = ωTT2n−2α, (4)
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Figure 1: The partial cycle in the grid on the left can be represented as the state in
the middle; all other ways of reaching the same state will have the same options for
continuation. An example of a continuation is shown on the right: all the nodes in the
middle column are visited, and a new state is formed. In general, it is also possible for a
continuation to join links, so long as no loop is formed prematurely.

where α and ω are vectors whose entries are the characteristic functions of
starting and ending states respectively. These vectors are simple to generate;
the only remaining problem is how to generate T. Kloczkowski and Jerni-
gan [6] considered bond distributions, which are sets of vertical edges at the
right edge of a state. A different method was used in the current work; see
Section 4.

An immediate modification of the method is to reject any states or con-
tinuations without reflective symmetry in the horizontal axis. Using overbars
to symbolise this modification, the result is count B (defined in Table 2):

B = ω̄T T̄2n−2ᾱ. (5)

Another modification is to apply the unrestricted method only n − 1
times, to arrive at νn−1, the numbers of ways to generate states in the central
position. If and only if a central state consists of only one pair of horizontal
edges, the paths that generate that state can be reflected to a create single
cycle with reflective symmetry in the vertical axis. There is only one way to
do this in each case, and so

B = λTTn−1α (6)

where λ is a vector containing the characteristic function of single-pair states.
This forms a cross-check for the calculation of B using Equation 5.
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Similarly, some central states will form a single cycle with 180° rotational
symmetry when the paths to the left are copied and rotated to fill the other
half of the square. If µ is a vector containing the characteristic function of
these states, then

C = µTTn−1α. (7)

It is easy to detect single-pair states, to form the vector λ . Various properties
can be deduced for the states in vector µ, but a pragmatic test is simply to
rotate and flip the state, and test whether a cycle following these loops does
indeed visit all loops and return to the start.

Finally, if the symmetric continuations of Equation 5 are applied to the
symmetric λ̄ (or µ̄, which is identical), then the result has both reflective
symmetries and 180° rotational symmetry:

D = λ̄T T̄n−1ᾱ. (8)

Thus, the efficient matrix method can be applied to enumeration of cycles
with reflective and 180° rotational symmetries. Results are given in Section 6.
Section 4 contains details of the implementation of the algorithm and some
observations. The only remaining task is to enumerate 90° rotational sym-
metries, and this is considered in Section 5.

4. Details and observations from the modified matrix method

In the current work, continuations were generated from each state by
an exhaustive backtracking search. Starting from each state, each node in
the column on the right was considered in turn: a vertical edge and/or a
horizontal edge were added to it such the node had degree exactly 2. It was
forbidden for edges to complete a cycle. When contradictions or complete
continuations were reached, the search backtracked – for example, vertical
edges were replaced with horizontal edges. Thus, the search generated every
state that could be reached by a continuation.

Kloczkowski and Jernigan [6] note that some states are impossible because
the connections cross, which is not possible in the planar paths. Also, some
states are impossible by parity arguments (similar to those mentioned in
Section 5). In the current implementation, each iteration considers only those
states that have been reached, beginning with the relatively small number of
starting states. Thus, the first iterations need to consider fewer states and
are quicker. Table 3 shows the final numbers of states and continuations that
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n Unrestricted Reflective symmetry

States Continuations States Continuations

1 1 1 1 1
2 6 14 4 6
3 32 162 14 20
4 182 1966 40 101
5 1117 25567 120 327
6 7280 351880 320 1560
7 49625 5056350 946 5333
8 349998 75100735 2496 24727
9 2535077 1144833705 7418 88422
10 18758264 17821104101 19616 403552

Table 3: Numbers of states and continuations in the matrix method for 2n × 2n grids:
in the original, unrestricted method, and when states and continuations are constrained
to be symmetric under reflection in the horizontal axis. The numbers of states in the
unrestricted method are in agreement with the values (for n ≤ 7) in Table II of Kloczkowski
and Jernigan [6].

were reached. It was impractical to store all the continuations, and therefore
the approach taken was to store a vector νi, to generate all continuations,
and to add each continuation’s contribution to νi+1 individually.

An efficient form of record-keeping was used to enforce the requirement
that continuations must not form loops prematurely. A record was kept of
the destination D(p) of each node on the right of the state. When node p
currently has degree 1, for example when nodes are linked by the state at
the start of the search, the destination is defined to be the node at the other
end of the path. When p currently has degree 0, then D(p) is defined to be p
itself. When p has degree 2, D(p) is allowed to contain historical information.
In a similar way to the Dancing Links algorithm discussed in Section 5, this
information is used when edges are removed and nodes are released from the
middle of a path. When an edge is added between nodes p and q, then the
destinations can be updated. In pseudo-code:

r ← D(p)
s ← D(q)

D(r) ← s
D(s) ← r

(9)
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In the simplest case, p is linked to another node, r, and q is linked to s.
When the edge between p and q is added, r and s are now linked and their
destinations are updated. When the edge is later removed, the information
in D(p) and D(q) is sufficient to find and restore the old destinations. The
cases where p, q, r and s are not all distinct need to be detected and treated
differently during backtracking.

The matrix method allows individual states to be considered separately,
by starting with special vectors in Equation 3. For example, this makes it
simple to find the minimum number of continuations to reach a state from
starting states, or the minimum number of continuations to reach an ending
state. For example, the grid on the left of Figure 1 can be completed to a
cycle in exactly one way. Other observations are made in Figure 2.

Tables 4 and 5 show the success rate of starting states in producing cycles.
The single-loop state is the most successful (for the two sizes shown and all
other sizes considered in the current work). The starting state with unit-
length loops (the penultimate state in Table 4) is less successful than the
single-loop (for n ≥ 2). The ratio of counts increase with n, as shown in
Figure 3.

Large numbers are reached during the enumerations. Some previous work
(for example [4]) used modular arithmetic: the large numbers were stored
modulo various integers and the final answers were deduced using the Chinese
remainder theorem. In the current work, the GMP multiple-precision library
was used to store and manipulate the values. This was considered to be
more convenient. From an information-theoretical perspective, there should
be no memory penalty in storing the values themselves, and the library allows
efficient arithmetic.

5. Cycles with 90° rotational symmetry

A direct search on a modified grid was used to find all cycles with 90°
rotational symmetry. The modified grid is shown in Figure 4: for cycles on
2n × 2n grids, a grid of size n × n is used, with additional edges between
the right edge and the bottom edge as shown. Hamiltonian cycles on the
modified grid can be copied to the larger grid, with the additional edges
converted to edges between the copies. An odd number of the additional
edges must be used in the cycle. It is found that this always occurs for odd
n, and there are no cycles for even n. An outline of a proof is given below.
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Figure 2: Two observations on possible and impossible states. Left: in the 6 × 6 grid,
there is exactly one way to form a state with the horizontal edges shown in bold (and no
others) in the central position. There is then no way to continue that state to a complete
cycle. Right: in the 12× 12 grid, there are many ways to form states with the horizontal
edges shown (and no others), but at least 5 continuations are required to form any such
state from a starting state. Therefore, this pattern of horizontal edges can occur only in
the central position.

Figure 3: Ratios between the counts produced from different starting states on 2n ×
2n grids. Closed symbols: ratio between the single-loop state (the most successul) and
the unit-length state. Open symbols: ratio between the unit-length state and the least
successful state.
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397 203 203 145 124

Table 4: Numbers of cycles that can be generated from specified starting states in the
6× 6 grid. The counts are not reduced by symmetry.

909009 510478 483465 337470 322007 268967 253695 149394 111755

Table 5: Numbers of cycles that can be generated from specified starting states in the
8× 8 grid. The counts are not reduced by symmetry. Counts shown in italics also apply
to the reflected copy of the state. When these counts are duplicated, the overall total is
4638576, equalling A4 in Table 2.

There is a well-known parity argument proving that Hamiltonian cycles
are not possible in n×n grid for odd n. (For example, see [6], where it is also
shown by parity arguments that some states are impossible in Hamiltonian
cycles.) If the nodes are coloured alternately as in Figure 4, then every edge
must join nodes of opposite colours. Therefore, equal numbers of nodes of
both colours are present in a cycle. However, for odd n, there is one more
node of the ‘corner’ colour, so no cycle can be Hamiltonian. In the modified
grid, by contrast, additional edges link nodes of equal colour. Therefore,
a Hamiltonian cycle is possible if it includes one of these additional edges,
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Figure 4: A modified 5× 5 grid, suitable for searching for 10× 10 solutions with 90° rota-
tional symmetry.

linking nodes of ‘corner’ colour. Further pairs of additional edges, of opposite
colours, are also possible. The odd additional edge permits cycles with odd n
but invalidates even n. Therefore, square grids of nodes can have Hamiltonian
cycles with 90° rotational symmetry if and only if they have length 4k + 2
for some k.

Knuth’s Dancing Links X (DLX) algorithm [7] was modified to perform
exhaustive backtracking searches for cycles on the modified grids. In the
terminology of the DLX algorithm, each node was represented by a column,
and each edge by a row containing references to its two nodes. DLX was
originally applied to exact cover problems, where rows are selected such that
every column is present in exactly one row. When a row was selected, all
columns in that row could be removed from consideration, along with all
other rows including those columns. The ‘dancing links’ make it easier to
reinstate these columns when the row is deselected during backtracking. The
modification was to insist that each column must be visited exactly twice.
When a row is selected and a column is visited for the first time, then only
the row is removed from consideration. When the column is visited twice,
then that column and all rows that include it are removed.

There is one important detail in this modification: when a column is
used as the basis for selecting rows in the search, then a pair of rows should
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be chosen only once. Therefore, the search will select a second row only if
it follows the first selected row. Also, when a column is used once as the
basis for selecting rows, then it is immediately used again if possible. These
precautions are required to avoid double counting.

This modified method is suitable for direct searches for Hamiltonian cy-
cles on other graphs. Since every cycle is reached individually, the very large
enumerations of Section 3 are not feasible. However, for the specific applica-
tion to 90° rotational symmetry, the reduced search size (on grids of size n
rather than 2n) makes the search manageable. Results are given in Section 6.

6. Results

The methods described in earlier sections were implemented on a four-core
Intel Core i7-3770 machine with the Windows 8 operating system. Programs
were written in the C language, using the GCC compiler, version 4.8.0, and
the Gnu Multiple Precision library, version 5.1.3. CPU times are quoted from
running one process at a time.

For the search using the matrix method, Table 3 shows that the number
of continuations increases by a factor of approximately 15 for each increase
in n. The complexity of finding each continuation also increases. Also, the
search for all continuations must be done 2n− 2 times, since (in the current
work) continuations could not be stored in memory. Therefore, there were
rapid increases in the computer resources required: for grids of 16 × 16,
18 × 18 and 20 × 20 nodes, the CPU times were 6 seconds, 2 minutes and
16 hours respectively. The largest of these used approximately 3 GB of RAM,
increasing over the course of the run because of the memory requirement for
two counts (in vectors νi and νi+1) for every state.

Table 3 shows that the number of continuations is much smaller when
reflective symmetry is enforced. For this variant, even a 22×22 grid required
only 5 minutes of CPU time and 1 GB of RAM.

For the direct search for cycles with 90° rotational symmetry, as described
in Section 5, the search for n = 7 took less than 1 second and the search
for n = 9 took 13.75 hours. The memory requirements were very small: less
than 0.3 MB for n = 9.

Results are shown in Tables 6, 7 and 8. The current work agrees with
previously published results. Also, the current work was subject to further
cross-checks. As mentioned earlier, Equations 5 and 6 represent alternative
routes to B, using substantially different calculations (albeit in the same
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overall method). Similarly, the matrix method generates counts of cycles on
2n × m grids of nodes as intermediate results, and these can be compared
with the m× 2n grids’ results. The matrix method could be stopped at only
n− 1 continuations, since there are sufficient values of A already known [5].
Instead, the method was run for 2n − 1 continuations to allow cross-checks
with those values and the extended Sequence A222200 [5].

The direct search had relatively few cross-checks. The previously pub-
lished results extend only to n = 4. However, the method is only a small
modification of a search for cycles in an n×n grid of nodes. For that problem,
the search gives the correct answer up to n = 8; this test takes 6 seconds of
CPU time. The test for n = 10 would be expected to take more than 100000
times longer.

The methods used in this work could be applied to similar problems –
most obviously, non-square rectangular grids of points and cubes in higher
dimensions.
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n A209077 A227257 A227005

1 1 0 0
2 2 1 1
3 149 24 4
4 580717 1760 20
5 58407763266 411861 346
6 134528361351329451 551247139 6891
7 7015812452562871283559623

2883245852086 634172
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7462399462450938863305238264

6998287399637

Table 8: Results for existing sequences in the OEIS for Hamiltonian cycles in 2n×2n grids.
A209077 is the number of all isomorphism classes. A227257 and A227005 are the numbers
of classes where the orbits under the symmetry group of the square have 4 elements and
2 elements respectively. Another sequence is A227301, the number of classes where the
orbits have 8 elements; this is u in Table 7.
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