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Tracer dynamics in single-file system with absorbing boundary
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The paper addresses the single-file diffusion in the presence of an absorbing boundary. The em-
phasis is on an interplay between the hard-core interparticle interaction and the absorption process.
The resulting dynamics exhibits several qualitatively new features. First, starting with the exact
probability density function for a given particle (a tracer), we study the long-time asymptotics of its
moments. Both the mean position and the mean square displacement are controlled by dynamical
exponents which depend on the initial order of the particle in the file. Secondly, conditioning on
non-absorption, we study the distribution of long-living particles. In the conditioned framework, the
dynamical exponents are the same for all particles, however, a given particle possesses an effective
diffusion coefficient which depends on its initial order. After performing the thermodynamic limit,
the conditioned dynamics of the tracer is subdiffusive, the generalized diffusion coefficient D1/2

being different from that reported for the system without absorbing boundary.

I. INTRODUCTION

Consider a single particle diffusing in the semi-infinite
one-dimensional channel. The particle escapes from the
channel only if it hits the channel boundary situated at
the origin. Assuming normal diffusion without any ex-
ternal drift, the mean particle position remains constant
in time, its mean escape time is infinite, nevertheless the
particle eventually escapes with the probability one. At
a given time t, starting with an ensemble of all possi-
ble particle trajectories, it is interesting to restrict the
attention on the subensemble of those paths which have
not hit the boundary up to the time t. The subensemble
is described by the conditional probability density func-
tions (PDFs), the condition being the non-absorption up
to the time t. The conditioned dynamics exhibits qual-
itatively different features comparing with the uncondi-
tioned one. For instance, the conditioned mean particle
position is no longer constant, it growths as t1/2. The
longer one waits the further from the origin is the typical
surviving trajectory. One can say that the conditioning
implies an effective force which drags the particle away
from the absorbing boundary.
In the present paper we shall investigate the sys-

tem of N hard-core interacting particles diffusing in the
semi-infinite one-dimensional channel with the absorbing
boundary at the origin. We have three main objectives.
First, the hard-core interaction implies an entropic in-
terparticle repulsion and we analyze its effect on the dy-
namics of the individual particle (a tracer). Second, we
are interested in the dynamics of the long-living parti-
cles, that is, in the tracer dynamics conditioned on non-
absorption. Third, we shall compare the dynamics of
the system of N particles with that of the corresponding
system in thermodynamic limit.
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Single particle stochastic dynamics conditioned on
non-absorption has been explored extensively in prob-
ability theory. A regularly updated bibliography is avail-
able in Ref. [1]. Usually, the conditioning suggests it-
self in the frame of a biological [2], demographic [3] or
epidemiological [4] context, where the absorbed diffu-
sion process models the populations undergoing extinc-
tion. By the conditioning on non-absorption the focus
is shifted on the behavior of the long-surviving paths
of the process. It may happen that thus conditioned
process converges towards a time-invariant distribution,
the so called quasi-stationary distribution. The study
of quasi-stationary distributions began with the semi-
nal work of Yaglom on sub-critical Galton-Watson pro-
cesses [5]. For various stochastic processes, the results
on existence, uniqueness and other properties of quasi-
stationary distributions are reviewed in [6]. Examples
of solvable quasi-stationary distributions are the Brow-
nian motion with constant drift absorbed at the origin
[7, 8], the absorbed logistic Feller diffusion [9], and the
Wright-Fisher diffusion [10]. In the demographic con-
text, one specific consequence of the conditioning on non-
extinction is the deceleration of the instantaneous mor-
tality rates (mortality rate plateaus) [3].

Many-particle diffusion in one-dimensional channels
where the particles are not able to pass each other (the
single-file diffusion, SFD) occurs in many systems such
as narrow biological pores [11], the channel systems of
zeolites [12, 13], or during the sliding of proteins along
the DNA [14–16]. In these systems, the diffusion of the
tracer is slowed down due to the interparticle interac-
tions. The mean-square displacement of the tracer in-
creases with time as t1/2 in contrast to its linear increase
for the free particle. This was first proved by Harris [17].
Since then, the single-file diffusion was analytically in-
vestigated in many different settings including systems
in thermodynamic limit [18–20], infinite line with a fi-
nite number of particles [21–23], finite interval [24–26],
particles under the action of external force field [27, 28].
The first-passage problem for a tracer in an infinite sys-
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tem was studied in [29]. The present paper addresses
a different setting: in Ref. [29] only the tracer feels the
absorbing boundary whereas, in the present paper, each
particle can be absorbed. Numerically, the first-passage
problem in a driven SFD system was studied in [30].
The present paper continues the study of the model

introduced in Ref. [31], where we have investigated the
single-file diffusion model including an absorbing bound-
ary. In that paper, we were interested in the time of
absorption of the individual particles. In the present pa-
per the central issue is the tracer dynamics. The two
prerequisites, i.e., the hard-core interaction and the ab-
sorption, are essential for a proper understanding of ki-
netics of diffusion-limited chemical reactions in crowded
environments [32–35].
The paper is organized as follows. Sec. II contains the

definition of the model. In Sec. III, in order to keep the
paper self-contained, we present the complete solution
of the underlying single-particle case. Secs. IV, V com-
prise our main results. We first study the unconditioned
dynamics of the tracer (Subsecs. IVA, VA) and then
we condition this dynamics on non-absorption (Subsecs.
IVB, VB).

II. DEFINITION OF THE MODEL

Consider the diffusion of hard-core interacting Brow-
nian particles in a semi-infinite one-dimensional inter-
val with the absorbing boundary at the origin. Initially,
N particles are distributed along the half-line (0,+∞).
During the time evolution, each particle diffuses with the
same diffusion constant, D. The particles cannot enter
the interval from the outside and they are allowed to
leave it only through the boundary at the origin. The
boundary is perfectly absorbing, i.e., if any particle hits
the origin it is absorbed with the probability one. At the
initial time t= 0, let us label the particles according to
ordering of their positions from the left to the right (cf.
Fig. 1). We have

0 < X1(0) < X2(0) < . . . < XN (0) < +∞ , (1)

where the random variable Xn(0) denotes the position
of the n-th particle at t = 0. The hard-core interac-
tion guarantees that the initial ordering of particles is
conserved over time. Notice that the particle No. 1 is
the first one that might be absorbed. It is only after this
event that the particle No. 2 can approach the origin and
be absorbed. Let us denote as Tn the (random) time of
the absorption of the n-th particle. Then we have

0 < T1 < T2 < . . . < TN < +∞ . (2)

The last inequality, TN < +∞, means that the rightmost
particle (and hence any particle) is eventually absorbed
with the probability one [31]. At the same time, the mean
value 〈TN 〉 is infinite [31].

FIG. 1. (Color online) Schematic illustration of the possible
initial positions of N = 4 particles and their labeling.

III. SINGLE DIFFUSING PARTICLE

A. Brownian motion absorbed at the origin

Let us take N = 1. Suppose that at the initial time
t = 0 the particle is located at the position y, y > 0.
The PDF of the particle’s position at the time t condi-
tioned on its initial position is determined by solving the
diffusion equation

∂

∂t
f(x; t | y; 0) = D

∂2

∂x2
f(x; t | y; 0) (3)

subject to the absorbing boundary condition at the ori-
gin,

f(0; t | y; 0) = 0 , (4)

and to the initial condition

f(x; 0 | y; 0) = δ(x− y) . (5)

This problem is readily solved by the method of images
[36]. The result reads

f(x; t | y; 0)= 1√
4πDt

[

e−(x−y)2/4Dt − e−(x+y)2/4Dt
]

.

(6)
Having this Green’s function, the time evolution of an
arbitrary initial PDF, say f(x; 0), is given by

f(x; t) = 〈f(x; t |X(0); 0)〉 =
∫ +∞

0

dy f(x; t | y; 0)f(y; 0) .
(7)

As for the initial PDF f(x; 0), we only assume that all
its moments exist. For the sake of illustrations, we take
the particular initial condition

f(x; 0) =
e−x/L

L
, L > 0 . (8)

The spatial integral of PDF (7) over the interval
(0,+∞) equals the survival probability, that is, the prob-
ability that the particle has not been absorbed by the
time t. If we denote by T the time of the absorption, we
can write

S(t) = Prob {T > t} =

∫ +∞

0

dx f(x; t) =

〈

erf

(

X(0)√
4Dt

)〉

,

(9)
where the last expression stands for the average of the er-
ror function [37] with respect to the initial PDF f(x; 0).
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At the time t=0, the survival probability equals to one.
The long-time behavior of S(t) may be derived by insert-
ing the power series representation of the the error func-
tion into Eq. (9). The expansion is given in Eq. (A.6)
and its first term yields the power-law decay

S(t) ∼ 〈X(0)〉√
πD

t−1/2 , t → ∞ . (10)

The prefactor depends on the diffusion constant and on
the average initial position of the particle. The sign “∼”
means “is asymptotically equal”.

B. Brownian motion conditioned on

non-absorption

According to Eq. (10) the particle will ultimately hit
the absorbing boundary at the origin with probability
one. Let us now focus on the dynamics of the particle
conditioned on non-absorption. By definition

f(x;Dt |T > t)=
f(x; t)

S(t)
, (11)

is the PDF for the particle’s position at the time t under
the condition that the particle has not been absorbed
by the time t. The power series representation of PDF
f(x;Dt |T > t) is given in Eq. (A.9). It follows that

f(x;Dt |T > t)=
x

2Dt
e−x2/4Dt

(

1 +O
(

t−1
))

, (12)

where “O
(

t−1
)

” stands for all terms of the series (A.9)

that tend to zero at least as t−1 when t → ∞. Therefore,
in the long-time limit, the PDF (11) can be represented
by

f (as)(x;Dt |T > t) =
x

2Dt
e−x2/4Dt . (13)

Notice that this asymptotic representation is non-
negative and it is normalized to one on x ∈ (0,+∞).
The distribution with PDF (13) is known as the Rayleigh
distribution [38]. Further, the asymptotic PDF (13) is
independent of the initial condition f(x; 0) and there re-
mains just one length scale associated with the dynamics,
the diffusion length

√
2Dt. All other length scales which

have been introduced by the initial condition are already
forgotten.
The first and the second moment of the asymptotic

PDF (13) read

〈X(t)〉(as)
T>t =

√
πDt , (14)

〈

X
2(t)
〉(as)

T>t
= 4Dt . (15)

The mean position of the surviving trajectories should be
compared with the corresponding result for the uncondi-
tioned dynamics, that is, with 〈X(t)〉 = 〈X(0)〉. Pro-
vided a trajectory has avoided absorption by the time t,

it is typically found far from the origin and its typical
position growths as t1/2. The first-order correction to
asymptotic result (14) vanishes as t−1/2 and it depends
on the initial condition. Using again Eq. (A.9), we get

〈X(t)〉
T>t=

√
πDt

(

1 +
1

12

〈

X
3(0)

〉

〈X(0)〉
1

Dt
+O

(

t−2
)

)

.

(16)

IV. N INTERACTING PARTICLES

A. Tracer dynamics with absorption

Considering a general number of particles, N , the
model setting must be completed by the specification of
an initial state. We assume the initial joint probability
density function for the positions of the particles van-
ishes outside the domain 0 < x1 < ... < xN < +∞, and,
inside this domain, it is given by

p(x1, x2, ... , xN ; 0) = N !
N
∏

n=1

f(xn; 0) . (17)

Throughout the paper, all PDFs that have originated
in the single-particle problem are denoted by the letter
“f”. On the other hand, the PDFs in the present N -
particle problem will be designated by “p”. It is a simple
consequence of the assumed hard-core interaction that
all N -particle quantities can be expressed solely through
the single-particle PDFs.
The exact PDF for the position of the n-th particle,

n = 1, . . . , N , reads [39]

pn(x; t) =
N !

(n− 1)!(N − n)!
f(x; t)× (18)

×
(

1− S(t) +

∫ x

0

dx′f(x′; t)

)n−1(∫ +∞

x

dx′f(x′; t)

)N−n

.

Apart from the particle labeling, space-time trajectories
of hard-core interacting particles are the same as trajec-
tories of noninteracting particles. Hence the probabilistic
interpretation behind Eq. (18) can be based on the non-
interacting picture. In this picture, the right-hand side
(multiplied by dx) gives the probability of finding a parti-
cle in the interval (x, x+dx) and, simultaneously, having
(N−n) particles to the right of x and (n−1) particles to
the left (including those already absorbed by the bound-
ary). The combinatorial factor accounts for all possible
labelings of noninteracting particles.
Notice that

N
∑

n=1

pn(x; t) = Nf(x; t) , (19)

which can be proved by the direct summation of the ex-
pressions (18). In consequence, this equation tells us that
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the density of particles for the system of N interacting
particles is the same as that for the system of N non-
interacting particles. This holds true for all collective
properties. However, the dynamics of the individual par-
ticles in the two problems is substantially different.
Let us now derive the long-time asymptotics of the

PDFs (18). The right-most particle is special. In the
long-time limit it behaves in a similar way as the single-
diffusing particle [31]. In particular, for n = N , the bi-
nomial theorem yields

pN (x; t) = Nf(x; t)× (20)

×
[

1 + (N−1)S(t)

(
∫ x

0

dx′ f(x
′; t)

S(t)
− 1

)

+O
(

t−1
)

]

,

where the remaining (N−2) terms of the binomial expan-
sion vanish at least as (S(t))2. The integral in (20) has
been estimated in Eq. (A.10). On the whole, we obtain

pN (x; t)= Nf(x; t)− (21)

−N(N−1)
〈X(0)〉2
2π(Dt)2

x e−x2/2Dt +O
(

t−5/2
)

.

The expression has been written in a way which shows
the main asymptotics,

pN (x; t)∼ Nf(x; t) , (22)

and the first correction, the second term in (21). The cor-
rection describes the relaxation towards the main asymp-
totics and it is negative.
We proceed to the long-time behavior of the n-th par-

ticle with n = 1, . . . , (N − 1). We start again with Eq.
(18) and rewrite it in the form

pn(x; t) = n

(

N

n

)

(S(t))N−nf(x; t)× (23)

×
(

1− S(t) +

∫ x

0

dx′f(x′; t)

)n−1(

1−
∫ x

0

dx′ f(x
′; t)

S(t)

)N−n

.

The first bracket is again expanded according to the bi-
nomial theorem, the second bracket is treated using Eq.
(A.10). Using further Eq. (12), the main asymptotics
assumes the form

pn(x; t) ∼
(

N

n

)

(S(t))N−n+1 nx

2Dt
e−(N−n+1)x2/(4Dt) .

(24)
If we introduce the renormalized diffusion coefficient,

Dn = D/(N − n+ 1) , (25)

an important conclusion emerges. On the right-hand side
of Eq. (24), one recognizes the asymptotic single-particle
PDF (13) conditioned on non-absorption:

pn(x; t)∼
(

N

n− 1

)

(S(t))N−n+1f (as)(x;Dnt |T > t) .

(26)
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FIG. 2. (Color online) Mean positions (the upper panel) and
square roots of the second moments (the lower panel) for the
individual particles in the system of N = 4 interacting parti-
cles. In the underlying single particle problem, we took D = 1
and the initial condition (8) with L = 2.

The only difference is that here we have Dn instead of
D in (13). The initial order of the particle, n, controls,
in a decisive way, the main asymptotics. The smaller
n, the faster is the decay of PDF (for a given x). As
a consequence, in the long-time limit, the sum (19) is
dominated by the PDF pN (x; t).

Our next goal is analysis of the mean positions of the
individual particles. For the rightmost particle, the cal-
culation is based on Eq. (21). We obtain

〈XN (t)〉 = N 〈X(t)〉−N(N−1) 〈X(0)〉2√
8πDt

+O
(

t−1
)

. (27)

The main asymptotics is covered by the first term on the
right hand side, that is, apart from the multiplication by
N , the main asymptotics coincides with that for the sin-
gle particle where we have 〈X(t)〉 = 〈X(0)〉. The second
term describes corrections. As for the remaining parti-
cles, the interaction changes the mean-position dynamics.
The evaluation of the first moments of the densities (26)
yields the main asymptotics

〈Xn(t)〉 ∼ Bn t
−(N−n)/2 , n = 1, . . . , N, (28)
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with the prefactor

Bn = (N − n+ 1)−1/2

(

N

n− 1

) 〈X(0)〉N−n+1

(πD)
(N−n)/2

. (29)

Thus the initial condition and the total number of par-
ticles enters the asymptotics only through the prefac-
tor. Notice that the asymptotics for the n-th particle
for n < N , differs from that for the rightmost particle
(and therefore also from that for the single particle), its
mean position asymptotically approaches zero.
In a similar way, we readily obtain the second mo-

ments. The results are
〈

X
2
N (t)

〉

∼ N
〈

X
2(t)

〉

− CN−1 , (30)
〈

X
2
n(t)

〉

∼ Cn t−(N−n−1)/2, n = 1, . . . , N − 1,(31)

with the prefactors

Cn =
4D

N − n+ 1

(

N

n− 1

)( 〈X(0)〉√
πD

)N−n+1

. (32)

For the rightmost particle, the main asymptotics is pro-
portional to

〈

X
2(t)
〉

∼ 4Dt. Interestingly, for n =
(N−1), the second moment approaches the nonzero value
CN−1 whereas, for n < (N − 1), the second moment de-
creases towards zero.
The first and the second moments for the individual

particles are illustrated in Fig. 2. After multiplying Eq.
(19) by xk and integrating, we get the relationship

〈

X
k(t)

〉

=
1

N

N
∑

n=1

〈

X
k
n(t)

〉

, k = 0, 1, 2, . . . (33)

valid for any time. In the asymptotic domain, the main
asymptotic of the left hand side is covered by the n = N
term on the right hand side. Differently speaking, the
main asymptotics of the remaining terms in the sum is
subdominant with respect to the main asymptotics of the
n = N term.

B. Tracer dynamics conditioned on non-absorption

If Tn denotes the time of absorption of the n-th par-
ticle, its survival probability at the time t is defined by

Sn(t) = Prob {Tn > t} =

∫ +∞

0

dx pn(x; t) . (34)

In [31] we have shown that the above integral can be
expressed solely through the survival probability S(t) of
the single-diffusing particle, i.e., through the expression
(9). The leading term in the long-time limit is

Sn(t) =

(

N

n− 1

)

(S(t))N−n+1 +O
(

t−(N−n+2)/2
)

.

(35)
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FIG. 3. (Color online) The double-logarithmic plot of the con-
ditioned mean positions 〈Xn(t)〉Tn>t of the individual parti-
cles in the system of N =4 interacting particles. The curves
are obtained by the numerical integration using PDFs (36)
with the parameters L = 2 and D = 1. The curves never
cross, i.e., the inequalities 〈X1(t)〉T1>t< . . . < 〈X4(t)〉T4>t

hold for all t ≥ 0. The long-time asymptotics does not de-
pend on the initial conditions and it is given by Eq. (38).

Being interested in the long-time dynamics of the indi-
vidual surviving particles, we introduce the conditional
PDFs

pn(x;Dt |Tn > t) =
pn(x; t)

Sn(t)
. (36)

On the right hand side, the numerator is given in Eq.
(18) and the denominator in Eq. (35). In the long-time
limit, the fraction greatly simplifies. Dividing the main
asymptotics (26) by the leading term in (35) yields

pn(x;Dt |Tn > t) ∼ f (as)(x;Dn t |T > t) . (37)

This result is remarkable for its simplicity. The asymp-
totic dynamics of the n-th tracer is the same as the dy-
namics of a single-diffusing particle with the diffusion co-
efficients Dn = D/(N − n+ 1). In other words, the only
implication of the hard-core interaction is the renormal-
ization of the diffusion coefficient. The left-most particle
diffuses with the smallest effective diffusion coefficients
D1 = D/N . On the other hand the right-most particle
has the same effective diffusion coefficient as a single-
diffusing particle, DN = D.
The above asymptotic relation means that also the mo-

ments of the conditioned dynamics are (except of the
value of the diffusion coefficient) simply the moments of
the single-diffusing particle. More precisely, using Eq.
(37), we get

〈Xn(t)〉Tn>t ∼
√

πDnt , (38)
〈

X
2
n(t)

〉

Tn>t
∼ 4Dnt . (39)

Thus the interparticle interaction does not imply new n-
dependent dynamical exponents which is the case in the
unconditioned dynamics, cf. Eqs. (28), (30), and (31).
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Finally, notice that in the present conditioned descrip-
tion there exists no simple relationship similar to Eq.
(33). The N -average of the conditioned k-th moments is
no more equal to the k-th conditioned moment for the
single-particle diffusion, i.e.,

〈

X
k(t)

〉

T>t
6= 1

N

N
∑

n=1

〈

X
k
n(t)

〉

Tn>t
. (40)

V. TRACER DYNAMICS IN

THERMODYNAMIC LIMIT

A. Tracer dynamics with absorption

We now wish to focus on the dynamics of the tracer
in a system of infinite number of particles. First, at the
initial time t = 0, the particles are distributed randomly
on the half-line with a constant density ρ. At the initial
instant we activate the absorbing boundary at the origin.
Next, the SFD system evolves in time and we are again
interested in the dynamics of the n-th tagged particle.
Similarly to the previous finite-N case, the analysis

is based on the exact PDF for the position of the n-th
particles. The analytical expression which, in the present
context, replaces the formula (18) reads

pn(x; t) =
∂µ(x, t)

∂x

[µ(x, t)]n−1

(n− 1)!
e−µ(x,t), (41)

where

µ(x, t) = ρ

[

√

4Dt

π
+

∫ x

0

dy erf

(

y√
4Dt

)

]

. (42)

Notice a straightforward probabilistic interpretation of
these formulas. The first term on the right-hand side
of Eq. (42), ρ

√

4Dt/π, is simply the mean number of
the particles absorbed in the time interval (0, t). The
second term on the right-hand side represents the mean
number of particles which are, at the time t, diffusing
in the space interval (0, x). Hence, at the time t, µ(x, t)
stands for the mean number of particles located to the left
of the coordinate x, including those which were absorbed.
In Eq. (41) one recognizes the probability (∂µ/∂x) dx of
finding a noninteracting particle in the interval (x, x +
dx) multiplied by the probability that there are (n − 1)
particles to the left of x (including those already absorbed
by the boundary).
The formal derivation of Eq. (41) from Eq. (18) pro-

ceeds as follows. At the initial time we assume that
N particles are homogenously distributed within a finite
spatial interval (0, L). For a large L, the probability of
finding a single particle to the right of x behaves as

∫ ∞

x

dx′
∫ L

0

dy

L
f(x′; t|y; 0) ∼ 1− 1

L

µ(x, t)

ρ
, L → ∞,

(43)

where ρ = N/L. We insert this estimation into Eq. (18).
The final result (41) follows after performing the thermo-
dynamic limit: L → ∞, N → ∞, ρ fixed. Interestingly
enough, the passage from Eq. (18) to Eq. (41) is similar
in spirit to the well known passage from binomial to the
Poisson distribution (the law of rare events).
We are again primarily interested in the long-time dy-

namics of the tracer. After employing an expansion of
the integral of the error function in (42), the main asymp-
totics of PDF (41) reads

pn(x; t) ∼

(

ρ
√

4Dt
π

)n−1

(n− 1)!
e−ρ

√
4Dt/π ×

× ρ x√
πDt

e−ρx2/
√
4πDt. (44)

As for the first two moments of the tracer position we get
the asymptotics formulas

〈Xn(t)〉 ∼

(

ρ
√

4Dt
π

)n−1

(n− 1)!

√√
π3Dt

2ρ
e−ρ

√
4Dt/π , (45)

〈

X
2
n(t)

〉

∼

(

ρ
√

4Dt
π

)n−1

(n− 1)!

√

4πDt

ρ2
e−ρ

√
4Dt/π. (46)

Contrary to the finite-N case (cf. Eqs. (27), (28), (30),
and (31)), the moments vanish for any n. The decrease
is controlled by a stretched exponential.

B. Tracer dynamics conditioned on non-absorption

In the thermodynamic limit, the survival probability
of the n-th tagged particle still depends on its order and,
asymptotically, it assumes the form

Sn(t) ∼

(

ρ
√

4Dt
π

)n−1

(n− 1)!
e−ρ

√
4Dt/π , (47)

which is derived by the spatial integration of PDF (41).
Let us now focus on the dynamics of the tracer which

has survived by the time t. In the large-time limit, the
trace PDF conditioned on non-absorption is given by the
ratio of asymptotic expressions (44) and (47):

pn(x; t|Tn > t) ∼ x

2D1/2

√
t
e−x2/(4D1/2

√
t), (48)

where we have introduced the generalized diffusion coef-
ficient

D1/2 =

√

πD

4ρ2
. (49)

The asymptotics (48) should be contrasted against the
single-particle PDF (13), and the tracer PDF (37) for
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the finite-N case. The first two moments of PDF (48)
are

〈Xn(t)〉Tn>t ∼
√

πD1/2

√
t, (50)

〈

X
2
n(t)

〉

Tn>t
∼ 4D1/2

√
t. (51)

Thus the average position of the tracer increases as t1/4

in contrast to t1/2-law as observed for a finite N (cf. Eq.
(38)). The second moment growths as t1/2 and hence the
tracer dynamics is subdiffusive.
Finally notice that the generalized diffusion coefficient

D1/2 is different as compared to the that obtained in a
system without the absorbing boundary [20, 40]. As it
was pointed out in Refs. [40, 41], the coefficient D1/2 is
sensitive to the way the system is prepared. In fact our
result (49) indicates that it also depends on boundary
conditions used.

VI. CONCLUDING REMARKS

Returning to the objectives which were outlined in the
Introduction, in the long-time limit the following overall
picture emerges. First, due to the hard-core repulsion,
the particle which possesses a right-hand neighbor feels
the (moving) reflecting barrier to the right. The barrier
restricts its motion, it reflects the right-moving paths and
hence increases the number of left-moving paths. This
left-pushing tendency is illustrated by the asymptotic for-
mulae (28), (30), and (31). The mean position and the
mean square displacement of the tracer exhibit new dy-
namical exponents which depend on its initial order. Of
course, the rightmost particle has no right-hand neighbor
and hence it behaves differently. In the transient regime,
its left-hand neighbors still exist and the first particle is
pushed to the right. In the asymptotic regime, all other
particles have already disappeared and the first one sim-
ply undergoes the free diffusion. Second, the condition-
ing on non-absorption removes a part of the left-moving
trajectories from the unconditioned ensemble. Hence it
imposes, effectively, the right-oriented drift. Surprisingly
enough, the conditioning significantly reduces the effect
of the hard-core interaction. The co-operative impact of
the both tendencies is behind the asymptotic formulas
(38), (39). The conditioned mean position of the tracer
growths as t1/2 regardless its order. The interparticle re-
pulsion manifests itself only through the order-dependent

tracer diffusion coefficient. The closer the relative parti-
cle position to the boundary the less mobile should that
particle be in order to survive for the long times.
The above reasoning holds for the system which ini-

tially contains a finite number of particles N . In the
thermodynamic limit (i.e., assuming initially an infinite

number of particles randomly distributed along a half-
line with a constant density ρ), the long-time dynamics
of a tracer is rather different. The new features are based
on a simple observation that, for any tracer, there are in-
finite number of particles to the right of it. This implies
the n-independent exponential damping of the uncondi-
tioned moments (45), (46); the initial order n appears
only in the pre-exponential factor. The conditioned dy-
namics of a tracer is subdiffusive and independent of n
(see Eqs. (48), (50), and (51)). This is in parallel to
what has been observed in the SFD without an absorb-
ing boundary. Namely, for a finite N , Aslangul [23] has
shown that, in the long-time limit, the tracer diffusion
is normal with the effective diffusion coefficient depen-
dent both on N and on n. On the other hand, for an
infinite N , one observes an anomalous diffusion and no
n-dependence [20]. The present paper detects the same
features in the SFD with an absorbing boundary.
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Appendix: Asymptotic expansion of the

single-particle PDF conditioned on non-absorption

The main aim of this Appendix is to justify the rela-
tions (12) and (16) from the main text.

First we insert the explicit expression (6) into the mean
value in Eq. (7). This yields

f(x; t)=
2 e−x2/4Dt

√
4πDt

〈

sinh

(

xX(0)

2Dt

)

e−X
2(0)/4Dt

〉

.

(A.1)
Using the power series representation for the functions
inside the averaging brackets, we obtain

〈

sinh

(

xX(0)

2Dt

)

e−X
2(0)/4Dt

〉

=
x

2Dt

∞
∑

k=0

∞
∑

l=0

(−1)l2−2l

l! (2k + 1)!

(

1

Dt

)k+l(
x2

4Dt

)k
〈

X
2(k+l)+1(0)

〉

. (A.2)

The above double sum is treated by the substitution p = k + l:

f(x; t)=
x e−x2/4Dt

2Dt

〈X(0)〉√
πDt

∞
∑

p=0

p
∑

k=0

c(k, p)

(

x2

4Dt

)k(
1

Dt

)p

,

(A.3)
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where the time-independent coefficients c(k, p) carry all
the information concerning the initial condition. Explic-
itly, they read

c(k, p) =
(−1)p−k 2−2p+2k

(p− k)! (2k + 1)!

〈

X
2p+1(0)

〉

〈X(0)〉 . (A.4)

We now prepare similar expansion for the survival
probability S(t) as defined in Eq. (9). Inserting the power
series [37]

erf(z) =
2√
π

∞
∑

k=0

(−1)kz2k+1

k! (2k + 1)
(A.5)

into the averaging in (9), we immediately obtain

S(t) =
〈X(0)〉√
πDt

∞
∑

p=0

(−1)
p

22pp !(2p+ 1)

〈

X
2p+1(0)

〉

〈X(0)〉

(

1

Dt

)p

.

(A.6)
Interestingly, the numerical factors 22pp !(2p + 1) in the
denominators of individual terms of (A.6) form a se-
quence 1, 12, 160, 2688, 55296, ... (for p = 0, 1, 2, 3, 4, . . .),

which is A167558 sequence in Sloane’s On-Line Encyclo-
pedia of Integer Sequences [42]. This sequence originally
emerged in a completely different situation without any
obvious connection to the expansion of the error function
(see also A167546).
One can arrive at an equivalent expansion of the func-

tion S(t) by staring with the first equality in Eq. (9)
from the main text. The series (A.3) is integrated term
by term and it assumes the form

S(t) =
〈X(0)〉√
πDt

∞
∑

p=0

p
∑

k=0

k!c(k, p)

(

1

Dt

)p

. (A.7)

By term by term comparison of the series (A.6) and (A.7)
one obtains a non-trivial identity

p
∑

k=0

(−1)k 22kk !

(p− k)! (2k + 1)!
=

1

p !(2p+ 1)
. (A.8)

Returning to the main goal of the Appendix, we di-
vide the series (A.3) by (A.6). Notice that the prefactor

〈X(0)〉 /
√
πDt appears in both (A.3) and (A.6), therefore

it cancels. Representing the fraction 1/S(t) by the geo-
metrical series, we finally obtain the sought asymptotic
expansion

f(x;Dt |T > t) =
x

2Dt
e−x2/4Dt

(

1 +

1
∑

k=0

c(k, 1)

(

x2

4Dt

)k
1

Dt
+O

(

t−2
)

)(

1 +
1

12

〈

X
3(0)

〉

〈X(0)〉
1

Dt
+O

(

t−2
)

)

. (A.9)

The asymptotic expansion of the corresponding distribu- tion function, i.e.,

∫ x

0

dx′ f(x
′; t)

S(t)
= 1− e−x2/4Dt

(

1 +O
(

t−1
))

, (A.10)

has been employed in steps leading from Eq. (20) to Eq.
(21), and from Eq. (23) to Eq. (24).
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