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Abstract

Given a set S endowed with a convexity structure, a hemispace is a convex subset
of S which has convex complement. We recall that Rn

max is a semimodule over
the max-plus semifield (Rmax := R ∪ {−∞},max,+). A convexity structure of
current interest is provided by R

n
max naturally endowed with the max-plus (or

tropical) convexity. In this paper we provide a geometric description of a max-
plus hemispace in R

n
max. We show that a max-plus hemispace has a conical

decomposition as a finite union of disjoint max-plus cones. These cones can
be interpreted as faces of several max-plus hyperplanes. Briec-Horvath proved
that the closure of a max-plus hemispace is bounded by a max-plus hyperplane.
Given a hyperplane, we give a simple condition for the assignment of the faces
between a pair of complementary max-plus hemispaces. Our result allows for
counting and enumeration of the associated max-plus hemispaces. We recall that
an n-dimensional max-plus hyperplane is called strictly affine and nondegenerate
if it has a linear equation that contains all variables x1, x2, . . . , xn and a free
term. We prove that the number of max-plus hemispaces in R

n
max, supported

by strictly affine nondegenerate hyperplanes centered in the origin, is twice the
n-th ordered Bell number. Our work can be viewed as a complement to the
recent results of Katz-Nitica-Sergeev, who described generating sets for max-
plus hemispaces, and the results of Briec-Horvath, who proved that closed/open
max-plus hemispaces are max-plus closed/open halfspaces.
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1. Introduction

The max-plus semifield is the set Rmax = R ∪ {−∞} endowed with the
operations ⊕ = max, ⊗ = +. The zero element for ⊕ is −∞ and the identity
for ⊗ is 0.

The max-plus semimodule is the set R
n
max endowed with the operations of

addition and scalar multiplication given by

x⊕ y = (x1 ⊕ y1, ..., xn ⊕ yn)

α⊗ x = αx = (αx1, ..., αxn),

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n
max and α ∈ Rmax. In order to

simplify the notation, we denote the element (−∞,−∞, . . . ,−∞) ∈ R
n
max by

−∞ as well.
For a positive integer n, we introduce the notation [n] = {1, 2, . . . , n}.
One may introduce on R

n
max the topology induced by the metric

d∞(x, y) = max
i∈[n]

|exi − eyi |, x, y ∈ R
n
max.

The max-plus semimodule has a natural convex structure, called max-plus
convexity or tropical convexity, which is of strong current interest as a mathe-
matical object in itself, but also due to a wide range of applications in algebraic
geometry, optimization, control theory, economics, computer sciences, biology,
finance and many other fields of contemporary scientific research. We refer
to [18, 4, 1, 5] and to the references mentioned there for the details about this
topic that are beyond the scope of the paper.

A natural and convenient way to introduce max-plus convexity is by the aim
of max-plus segments [18, 11].

Definition 1.1. The (max-plus) segment joining the points x, y ∈ R
n
max is the

set:
[x, y] = {αx⊕ βx|α, β ∈ Rmax, α⊕ β = 0}

= {max(α+ x, β + y)|α, β ∈ Rmax,max(α, β) = 0}.
(1)

Definition 1.2. A subset S ⊆ R
n
max is said to be (max-plus) convex if [x, y] ⊆ S

for all x, y ∈ S.

We recall several classes of convex sets that will be used in the sequel.

Definition 1.3. A subset S ⊆ R
n
max is a (max-plus) semispace at z ∈ R

n
max if

S is a maximal convex subset of Rn
max avoiding z.

Remark 1.4. Semispaces are introduced in [11, 12]. It is shown in [11] that
semispaces form an intersectional basis for the collection of convex sets.

Definition 1.5. A set C ⊆ R
n
max is called a (max-plus) cone if it is closed

under addition and multiplication by scalars different from −∞.
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Remark 1.6. Our notion of cone is a bit different then the usual one, as we
do not allow multiplication by the scalar −∞. We refer to Butkovic-Schneider-
Sergeev [3] for an introduction to the usual (max-plus) cones.

Definition 1.7. A (max-plus) closed halfspace is the set of solutions of a max-
plus linear inequality:







x ∈ R
n
max |

⊕

i∈I

βixi ⊕ δ ≤
⊕

j∈J

γjxj ⊕ α and xℓ = −∞ for ℓ ∈ L







, (2)

where I, J and L are pairwise disjoint subsets of [n], α, δ ∈ Rmax, βi, γi ∈ R,
and at most one of α, δ is different from −∞. We call the boundary of the
closed halfspace the subset of the halfspace for which one has equality in (2).

Remark 1.8. Note that the union I ∪ J ∪ L can be a proper subset of [n].

Remark 1.9. It is well known, see e.g. [2, 13], that up to a finite translation
and a permutation of the variables xi, the boundary of a closed halfspace that
contains −∞ has the equation:







x ∈ R
n
max |

⊕

i∈I

xi =
⊕

j∈J

xj ⊕ α and xℓ = −∞ for ℓ ∈ L







, (3)

where I, J, L are disjoint subsets of [n], I 6= ∅, J, L can be empty, and α = 0 or
missing, in which case J 6= ∅. Thus the boundary of a halfspace is described
by a max-plus linear equation, and hence it is a (max-plus) hyperplane. As any
hyperplane is a convex set, the boundary is a convex set.

We recall some terminology introduced in [13].

Definition 1.10. A hyperplane H given by (3) is called strictly affine if α = 0
and it is called nondegenerate if L = ∅. If H is strictly affine and nondegenerate,
we call the origin in R

n
max the center of H. Equivalently, H is said to be centered

in the origin.

Definition 1.11. A set H ⊆ R
n
max is a (max-plus) hemispace in R

n
max if both

H and its complement ∁H are convex. If H is a hemispace, we call (H, ∁H) a
pair of complementary hemispaces.

Hemispaces also appear in the literature under the name of halfspaces, con-
vex halfspaces, and generalized halfspaces. Usual hemispaces in the linear space
R

n are described by Lassak in [9]. Mart́ınez-Legaz and Singer [10] give several
geometric characterizations of usual hemispaces in R

n with the aid of linear
operators and lexicographic order in R

n. Hemispaces play an important role in
abstract convexity (see Singer [16], Van de Vel [17]), where they are used in the
Kakutani Theorem to separate two convex sets from each other. The proof of
the Kakutani Theorem makes use of Zorn’s Lemma (relying on the Pasch ax-
iom, which holds both in tropical [18] and usual convexity). As general convex
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sets in a convexity structure can be quite complicated, a clear description of the
hemispaces is highly desirable. Hemispaces can also be used in the investiga-
tion of more complex convex sets, such as (max-plus) polyhedra, and convex or
polyhedral decompositions in multiple pieces.

In this paper we determine the geometric structure of hemispaces in R
n
max.

Our work can be viewed as a complement to the results of Briec-Horvath [2], who
proved that closed/open hemispaces are closed/open halfspaces, and to those
of Katz-Nitica-Sergeev [8], who described generating sets for hemispaces. The
approach here is more elementary, with combinatorial and geometric flavor. In
particular, we obtain a conical decomposition of a hemispace, see Theorem 4.1,
as a finite union of disjoint cones. Our proofs are completely independent of [8],
but assume [2] as the starting point of the investigation.

Briec-Horvath [2] show that the closure of a hemispace H that contains −∞
is a closed halfspace given by (2). We will refer to H, the boundary of the
halfspace, as the bounding hyperplane, or the boundary of the halfspace, and we
will refer to (H, ∁H) as a complementary pair of hemispaces related to H. To
simplify the notation, we assume in the future that the hyperplane is described
by (3).

The hemispaces in a complementary pair have both nonempty interior if
and only if L = ∅. If so, then the interiors of a pair (H1, H2),−∞ ∈ H1, of
complementary hemispaces bounded by H are given by

int(H1) =







x ∈ R
n
max |

⊕

i∈I

xi <
⊕

j∈J

xj ⊕ α







, (4)

int(H2) =







x ∈ R
n
max |

⊕

i∈I

xi >
⊕

j∈J

xj ⊕ α







. (5)

If L 6= ∅, due to the continuity, we still have the inclusions:






x ∈ R
n
max |

⊕

i∈I

xi <
⊕

j∈J

xj ⊕ α and xℓ = −∞ for ℓ ∈ L







⊆ H1, (6)







x ∈ R
n
max |

⊕

i∈I

xi >
⊕

j∈J

xj ⊕ α and xℓ = −∞ for ℓ ∈ L







⊆ H2. (7)

By abuse of language, we continue to call the left hand sides in (6), (7) the
interiors of H1, H2.

The boundary of a hemispace H is characterized by the linear equation (3)
and it is a convex set. As the intersection of two convex sets is a convex set, both
H and ∁H intersect the boundary of the halfspace in a convex set. Therefore,
due to [2], in order to understand the geometric structure of a hemispace it is
necessary to understand how to partition the boundary of a halfspace in two
convex sets and then how to assign the pieces of the boundary to the interiors
in order to complete a pair of complementary hemispaces.
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Assume now that a hyperplane (3) bounds two complementary hemispaces.
A first observation, discussed in Section 2, is that the hyperplane has a conical
decomposition in faces (cones) of various dimensions. In Section 3 we prove two
fundamental facts about the faces:

• if a face has a common point with a hemispace, then the whole face is
included in the hemispace (Lemma 3.1);

• if two different faces are included in a hemispace, then any segment joining
those faces is included and intersects the union of the faces and their
common boundary (Lemma 3.4).

We observe that the notion of face that we use can be extended to include
the notion of (max-plus) sector, related to the complement of a semispace, that
appeared before in the max-plus literature [4, 7, 11, 12, 13, 8]. For a fixed
supporting hyperplane, the conical decomposition of the boundary extends to a
conical decomposition of the whole space R

n
max. The main result, Theorem 4.1

presented in Section 4, basically says that a pair of complementary hemispaces
is given by a partition of the faces associated to a hyperplane in two collections,
both satisfying a simple condition of closure. This is a new combinatorial result
that was not observed in the previous work [2, 8]. Our result allows for an
explicit counting and enumeration of hemispaces. In Section 5 we count the
number of hemispaces supported by hyperplanes centered in the origin which
are strictly affine and nondegenerate, that is, for which the linear equation
contains all variable and a free term. Theorem 5.1 shows that the number of
such hemispaces is twice the n-th ordered Bell number. Finally, in Section 6
we enumerate all hemispaces counted in Theorem 5.1 for n = 2 and n = 3 and
show one more example of hemispace, supported by a hyperplane that is neither
strictly affine nor degenerate.

2. The combinatorial structure of the boundary

Without loss of generality, we can assume that the sets I, J, L in (3) are
ordered and the indices written in increasing order, that is, there exists 1 ≤
m ≤ p ≤ q ≤ n such that I = (1, . . . ,m), J = (m+ 1, . . . , p), L = (p+ 1, . . . , q).
If α = 0 appears in (3), we denote xn+1 := 0 and denote J̄ = (m+1, . . . , p, n+1).
Otherwise denote J̄ = J .

It is clear that the equality may occur in (3) only when some terms on the
left side of the linear equation are equal to some terms on the right side, and the
rest of the terms in the linear equation are strictly smaller. Fixing the sets of
indices for the equal terms naturally leads to the notion of ”face”. Nevertheless,
it is convenient for our presentation to consider a more general notion of face,
in which the maximal terms are among those appearing on a single side of (3).

Definition 2.1. Assume that a hyperplane H ⊆ R
n
max is defined by (3). Let 0 ≤

k ≤ n. A k-codimensional face F associated to H is a subset F = F (IF , J̄F ) ⊆
R

n
max defined by two subsets IF ⊆ I, J̄F ⊆ J̄ , where at least one of IF , J̄F is
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nonempty, IF ∪ J̄F has k + 1 elements and such that a point x ∈ R
n
max belongs

to F if and only if:











xi1 = xi2 > −∞, i1, i2 ∈ IF ∪ J̄F ,

xk < xi, i ∈ IF ∪ J̄F , k ∈ (I ∪ J̄) \ (IF ∪ J̄F ),

xℓ = −∞, ℓ ∈ L.

(8)

A k-codimensional face of Rn
max will be referred to as a k-face. We denote

KF = IF ∪ J̄F and call it the set of indices of F . If IF 6= ∅, J̄F 6= ∅, then the
face F is also called pure face.

In addition, if α is missing from (3), we consider the extra face of type I
characterized by:

xi = −∞, i ∈ I ∪ J ∪ L, (9)

and if L 6= ∅ we consider the extra face of type II characterized by:

xi > −∞, for some i ∈ L. (10)

If α is missing from (3) and L 6= ∅ we consider both extra faces (9) and (10).

The following lemma shows several properties of the collection of faces asso-
ciated to a hyperplane and can be easily proved by inspection.

Lemma 2.2. Assume that a hyperplane H ⊆ R
n
max is defined by (3).

1. The collection of the sets of indices of the k-faces associated to H is closed
under union.

2. Any two distinct faces associated to H are disjoint.

3. The union of all faces associated to H is R
n
max.

Remark 2.3. a) We observe that given a hyperplane H defined by (3), the set
of indices KF of a k-face F uniquely determines F . If the linear equation of a
hyperplane in Rn

max contains all variables x1, . . . , xn, α = 0, and consequently
L = ∅, then the collection of faces related to H, which are all k-faces, is indexed
by P(n+ 1) \ {∅}, where P(n+ 1) is the collection of subsets of [n+ 1].

b) The k-faces of minimal codimension appeared before in the literature
under the name of sectors. They are related to the complements of semispaces [4,
7, 11, 12, 13, 8].

c) It is easy to check that the faces are closed under (max-plus) addition and
scalar multiplication by scalars different from −∞, and therefore are also max-
plus cones. It follows from Lemma 2.2 that the collection of faces associated
to a hyperplane gives a (max-plus) conical decomposition of Rn

max. We show
in our main result that this decomposition is basically preserved by a partition
of Rn

max into a pair of complementary hemispaces. The only face that may be
splitted further is the face of type I.

d) The pure faces are subsets of the hyperplane (3). The faces that are not
pure faces are included in the interiors of the halfspaces determined by (3).

We show now several examples of decompositions of Rn
max in faces.
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Example 2.4. The faces in R
2
max associated to the hyperplane x1⊕x2 = 0, which

give a conical decomposition of R2
max, are characterized by:

1. 0-codimensional faces, corresponding respectively to the sets of indices
{1}, {2}, {3}:

(a) x1 > x2, x1 > 0;
(b) x2 > x1, x2 > 0;
(c) 0 > x1, 0 > x2.

2. 1-codimensional faces, corresponding respectively to the sets of indices
{1, 2}, {2, 3}, {1, 3}:

(a) x1 = x2 > 0;
(b) x2 = 0 > x1; (pure)
(c) x1 = 0 > x2. (pure)

3. 2-codimensional face, corresponding to the set of indices {1, 2, 3}:

(a) x1 = x2 = 0. (pure)

Example 2.5. The faces in R
3
max associated to the hyperplane x1⊕x2 = 0, which

give a conical decomposition of R3
max, are exactly those listed in Example 2.4.

Note that the variable x3 does not appear in the description of the faces.

Example 2.6. The faces in R
2
max associated to the hyperplane x1 = x2, which

give a conical decomposition of R2
max, are characterized by:

1. 0-codimensional faces, corresponding respectively to the sets of indices
{1}, {2}:

(a) x1 > x2;
(b) x2 > x1.

2. 1-codimensional face, corresponding respectively to the set of indices {1, 2}:

(a) x1 = x2 > −∞.

3. an extra face of type I due to the free term missing from the linear equation
of the hyperplane:

(a) x1 = x2 = −∞.

Example 2.7. The faces in R
2
max associated to the hyperplane x1 = 0, x2 = −∞,

which give a conical decomposition of R2
max, are characterized by:

1. x1 = 0, x2 = −∞.

2. x1 > 0, x2 = −∞.

3. x1 < 0, x2 = −∞.

4. x2 > −∞.

Example 2.8. The faces in R
3
max associated to the hyperplane x1 = 0, x2 =

−∞, x3 = −∞, which give a conical decomposition of R3
max, are characterized

by:

1. x1 = 0, x2 = −∞, x3 = −∞.

2. x1 > 0, x2 = −∞, x3 = −∞.

3. x1 < 0, x2 = −∞, x3 = −∞.

4. x2 > −∞, or x3 > −∞.
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Definition 2.9. Assume that a hyperplane H ⊆ R
n
max is defined by (3). Let

F1 = F1(IF1
, J̄F1

), F2 = F2(IF2
, J̄F2

) be two k-faces of H. Define the boundary
subface of F1, F2 to be the face of H defined by the set of indices IF1

∪ IF2
∪

J̄F1
∪ J̄F2

.
We denote the boundary subface of F1, F2 by Bd(F1, F2).

3. Some auxiliary lemmas

Lemma 3.1. Let H be a hyperplane described by equation (3), let (H1, H2) be
a pair of complementary hemispaces related to H, and let F be a k-face or a
face of type II of H.

Then F ⊆ H1 or F ⊆ H2.

Proof. Assume first that F is a k-face given by (8).
Throughout the proof, assume that the interior of H1 satisfies (6) and that

the interior of H2 satisfies (7).
Let p = (pi)i, q = (qi)i ∈ F . We will show that p ∈ H1 if and only if

q ∈ H1 (which also gives us p ∈ H2 if and only if q ∈ H2 since H1 and H2

are complements). To do so, we will find r ∈ H1 and s ∈ H2 such that either
p ∈ [q, r] and p ∈ [q, s], or q ∈ [p, r] and q ∈ [p, s]. Since H1 and H2 are
complements of each other and both convex, either of these scenarios establishes
that p ∈ H1 implies q ∈ H1 and that p ∈ H2 implies q ∈ H2, which combine
to yield the desired equivalence described above. Observe that it suffices to
consider the cases when p and q differ by only one coordinate or by a group of
equal coordinates, since for any arbitrary p, q ∈ F we could then go from p to q
by a finite sequence of points p, p1, p2, . . . , pm−1, pm = q which changes only a
coordinate or a group of equal coordinates at a time and preserves the property
that p ∈ H1 if and only if pi ∈ H1 (i = 1, 2, . . . ,m). Thus, p and q must be
comparable and we can assume, without loss of generality, that p > q.

Throughout this process, the infinite coordinates xi, i ∈ L in (8) remain
unchanged and we will ignore them in what follows. We will also ignore the
coordinates that do not belong to I ∪ J̄ ∪ L, as they are not used in either of
the equations (6), (7), (8).

We first consider the case when α = 0 and distinguish two subcases, n+1 /∈
J̄F and n+ 1 ∈ J̄F .

Case 1, n + 1 /∈ J̄F . Then pi := p0 > 0, qi := q0 > 0 for i ∈ IF ∪ JF , and
pi < p0, qi < q0 for i ∈ (I ∪ J̄) \ (IF ∪ JF ).

If p0 > q0(> 0) and all other coordinates of p, q are equal, then p0 = q0+c, c >
0. Consider the point r ∈ R

n
max of coordinates ri = q0 for i ∈ JF , ri = q0− 1 for

i ∈ IF , and ri = qi(= pi) for i ∈ (I∪J)\(IF ∪JF ). Then r satisfies equation (6),
due to

⊕

i∈I

ri =
⊕

i∈I\IF

qi ⊕ q0 − 1 < q0 =
⊕

j∈J

qj ⊕ 0 =
⊕

j∈J

rj ⊕ 0,

thus r ∈ H1, and q = r ⊕ (−c)p, which is a max-plus convex combination of
p, r, so q ∈ [p, r]. Now, consider the point s ∈ R

n
max of coordinates si = q0 for

8



i ∈ IF , si = q0 − 1 for i ∈ JF , and si = qi(= pi) if i ∈ (I ∪ J) \ (IF ∪ JF ). Then
s satisfies equation (7), due to

⊕

i∈I

si =
⊕

i∈I

qi = q0 >
⊕

j∈(J\JF )

qj ⊕ q0 − 1⊕ 0 =
⊕

j∈J

sj ⊕ 0,

thus s ∈ H2, and q = s⊕ (−c)p, which is a max-plus convex combination of p, s,
so q ∈ [p, s]. Hence we have found r ∈ H1 and s ∈ H2 such that q ∈ [p, r]∩ [p, s],
so we have that p ∈ H1 if and only if q ∈ H1.

Now, assume that p0 = q0 and p, q differ on only one coordinate k0 ∈ (I ∪
J) \ (IF ∪ JF ), so pk0

> qk0
. Consider the point r ∈ R

n
max of coordinates

ri = p0(= q0) for i ∈ JF , ri = p0 − 1(= q0 − 1) for i ∈ IF , rk0
= pk0

, and
ri = pi(= qi) for i ∈ (I ∪ J \ {k0}) \ (IF ∪ JF ). Then r satisfies equation (6),
due to

⊕

i∈I

ri =
⊕

i∈I\IF

pi ⊕ p0 − 1 < p0 =
⊕

j∈J

pj ⊕ 0 =
⊕

j∈J

rj ⊕ 0,

thus r ∈ H1, and p = r ⊕ q, which is a max-plus convex combination of q, r,
so p ∈ [q, r]. Now, consider the point s ∈ R

n
max of coordinates si = p0(= q0)

for i ∈ IF , si = p0 − 1(= q0 − 1) for i ∈ JF , sk0
= pk0

, and si = pi(= qi) for
i ∈ (I ∪ J \ {k0}) \ (IF ∪ JF ). Then s satisfies equation (7), due to

⊕

i∈I

si =
⊕

i∈I

pi = p0 >
⊕

j∈J\JF

pj ⊕ p0 − 1⊕ 0 =
⊕

j∈J

sj ⊕ 0,

thus s ∈ H2, and p = s⊕ q, which is a max-plus convex combination of q, s, so
p ∈ [q, s]. Hence, p ∈ H1 if and only if q ∈ H1.

Case 2, n+ 1 ∈ J̄F . Then pi = qi = 0 for all i ∈ IF ∪ J̄F , and pi, qi < 0 for
all i ∈ (I ∪ J̄) \ (IF ∪ JF ).

Let the different coordinate of p, q be k0 ∈ (I ∪ J) \ (IF ∪ JF ), so pko
> qk0

.
Consider the point r ∈ R

n
max of coordinates ri = −1 for i ∈ IF , rk0

= pk0
, and

ri = pi(= qi) for i ∈ (I ∪ J) \ (IF ∪ {k0}). Then r satisfies equation (6), due to

⊕

i∈I

ri =
⊕

i∈I\IF

pi ⊕−1 < 0 =
⊕

j∈J

pj ⊕ 0 =
⊕

j∈J

rj ⊕ 0,

thus r ∈ H1, and p = r ⊕ q, which is a max-plus convex combination of q, r, so
p ∈ [q, r]. Now consider the point s ∈ R

n
max of coordinates si = 1 for i ∈ IF ,

sk0
= pk0

+ 1 and si = pi(= qi) if i ∈ (I ∪ J) \ (IF ∪ {k0}). Then s satisfies
equation (7), due to

⊕

i∈I

si = 1 >
⊕

j∈J

sj ⊕ 0,

thus s ∈ H2, and p = (−1)s⊕ q, which is a max-plus convex combination of q, s,
so p ∈ [q, s]. Hence, p ∈ H1 if and only if q ∈ H1.

For the case when α is missing from equation (3), we can simply apply the
proof for the case when α = 0 and n + 1 /∈ J̄F , omitting the restriction that
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p0, q0 > 0 and any inclusions of α(= 0) in the quotations to equations (6) and
(7).

Assume now that F is a face of type II given by (10).
Let p, q ∈ F . It follows from (10) that pi > −∞ for some i ∈ L and qj > −∞

for some j ∈ L. Then any z ∈ [p, q] has zℓ > −∞ for some ℓ ∈ L, so z ∈ F . If
p ∈ H1 and q ∈ H2, then there is a point in [p, q] ⊆ F which belongs to their
common boundary, H. But from (10) any point z ∈ H has zi = −∞, i ∈ L, so
H ∩ F = ∅.

We conclude that F ⊆ H1 or F ⊆ H2.

The following lemma shows that an extra face of type I can be partitioned
in two convex parts assigned to either hemispace in a pair of complementary
hemispaces while preserving convexity.

Lemma 3.2. Let H be a halfspace described by equation (3) and let F0 be a
face of type I. Let F0 = F1 ∪ F2 be a partition of F0 in two convex sets. Let
(H1, H2) be a pair of complementary hemispaces related to H such that F1 ⊆ H1

and F2 ⊆ H2. Then ((H1 \ F1) ∪ F2, (H2 \ F2) ∪ F1) is a pair of complementary
hemispaces related to H as well.

Proof. We observe that due to Lemma 3.1 the faces associated to H that are
different from F0 belong to only one of the hemispaces. Consequently, H1 \ F1

and H2\F2 are unions of faces. As each face is a cone, it follows that p ∈ H1\F1

or p ∈ H2 implies αp ∈ H1 \ F1, respectively αp ∈ H2 \ F2, for each α > −∞.
As each face associated to H is defined only by the coordinates in I ∪ J ∪ L, it
follows that if p ∈ Hi \ Fi, i = 1, 2, and (αp)i, i ∈ I ∪ J ∪ L, for some α > −∞,
then αp ∈ Hi \ Fi, i = 1, 2.

Due to the symmetry, it is enough to show that (H1 \ F1) ∪ F2 is convex.
Let p, q ∈ (H1 \ F1) ∪ F2. To prove that [p, q] ⊆ (H1 \ F1) ∪ F2, it is enough to
show the following:

1. p, q ∈ H1 \ F1 implies [p, q] ⊆ (H1 \ F1) ∪ F2;
2. p ∈ H1 \ F1, q ∈ F2 implies [p, q] ⊆ (H1 \ F1) ∪ F2;
3. p, q ∈ F2 implies [p, q] ⊆ (H1 \ F1) ∪ F2.

1. Clearly [p, q] ⊆ H1 as p, q ∈ H1 and H1 is a convex set. As H1, H2 are
disjoint and F2 ⊆ H2, one has [p, q] ∩ F2 = ∅.

If p, q 6∈ F1, then p, q 6∈ F0 and it follows from (9) that pi 6= −∞, qj 6= −∞,
for some i, j ∈ I ∪ J ∪ L, which implies that for any point z ∈ [p, q] one has
zi > −∞ for some i ∈ I ∪ J ∪ L, thus z 6∈ F0 and [p, q] ⊆ (H1 \ F1) ∪ F2.

2. Let z = αp ⊕ βq ∈ [p, q], α ⊕ β = 0. If β = 0 then z = αp ⊕ q. If
α = −∞, then z = q ∈ F2. If α 6= −∞, then zi = (αp)i, i ∈ I ∪ J ∪ L, and
from the observation at the beginning of the proof it follows that z ∈ H1 \ F1.
If α = 0, then z = p ⊕ βq. As the coordinates zi, i ∈ I ∪ J ∪ L, coincide with
the corresponding coordinates of p, it follows that z ∈ H1 \ F1.

3. This follows right away from the fact that F2 is a convex set.

The following lemma shows that an extra face of type II can be assigned to
either hemispace in a pair of complementary hemispaces preserving convexity.
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Lemma 3.3. Let H be a halfspace described by equation (3) and let F be a face
of type II. Let (H1, H2) be a pair of complementary hemispaces related to H such
that F ⊆ H1. Then (H1 \ F,H2 ∪ F ) is a pair of complementary hemispaces
related to H as well.

Proof. We show that H1 \ F is convex. Indeed if p, q ∈ H1 \ F , then clearly
[p, q] ∈ H1 as H1 is convex. Moreover, it follows from (10) that pi = −∞, qi =
−∞, i ∈ L, which implies that for any point z ∈ [p, q] one has zi = −∞, i ∈ L,
thus z 6∈ F and z ∈ H1 \ F .

It remains to show that H2 ∪ F is convex. Let p ∈ H2, q ∈ F be fixed. The
other cases follow immediately from the fact that H2 and F are convex. Let
z = αp⊕ βq ∈ [p, q]. If β = 0 then z = αp⊕ q. Then zi ≥ qi, i ∈ L, so from (10)
at least one of zi, i ∈ L, is greater then −∞, so z ∈ F ⊆ H2 ∪ F . If α = 0, then
z = p⊕ βq. If β = −∞, one has z = p, so z ∈ H2 ⊆ H2 ∪ F . If β 6= −∞, then
βq has at least a coordinate (βq)i, i ∈ L, that is greater then −∞, so it follows
that zi > −∞ and therefore z ∈ F ⊆ H2 ∪ F .

Lemma 3.4. Let H ⊆ R
n
max be a max-plus hyperplane given by (3). Let F1, F2

be k-faces of H and F3 = Bd(F1, F2). Let x ∈ F1, y ∈ F2. Then the segment
[x, y] is included in the union F1 ∪ F2 ∪ F3, and [x, y] ∩ Fi 6= ∅, 1 ≤ i ≤ 3.

Proof. Let F1 = F1(IF1
, J̄F1

), F2 = F2(IF2
, J̄F2

). Then

p := xi1 = xi2 , i1, i2 ∈ IF1
∪ J̄F1

,

xk < xi, i ∈ IF1
∪ J̄F1

, k ∈ (I ∪ J̄) \ (IF1
∪ J̄F1

),

xℓ = −∞, ℓ ∈ L

(11)

and
q := yi1 = yi2 , i1, i2 ∈ IF2

∪ J̄F2
,

yk < yi, i ∈ IF2
∪ J̄F2

, k ∈ (I ∪ J̄) \ (IF2
∪ J̄F2

),

yℓ = −∞, ℓ ∈ L.

(12)

Without loss, assume p ≤ q. Let z = αx ⊕ βy ∈ [x, y]. If β = 0 then z ∈ F2

except if p = q and α = 0, in which case z ∈ F3. If α = 0 then z ∈ F1 for
β < p− q, z ∈ F3 for β = p− q, and z ∈ F2 for p− q < β ≤ 0 (where this case
does not occur if p = q).

4. The main result

In this section we give a geometric description for a hemispace related to a
hyperplane.

It follows from Lemma 3.1 that if (H1, H2) is a pair of complementary hemis-
paces related to a hyperplane H, then any k-face of H is included either in H1

or in H2. The following theorem describes the partition of the k-faces among
H1 and H2.
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Theorem 4.1. Let (H1, H2) be a pair of complementary hemispaces related to
the hyperplane H given by (3). Let F be the set of k-faces of H, F1 ⊆ F be the
set of k-faces included in H1 and F2 ⊆ F be the set of k-faces included in H2.
Let K1 be the collection of sets of indices of F1 and K2 be the collection of sets
of indices of F2. Then K1 and K2 are each closed under union. Moreover, P(I)
is a subset of one and P(J̄) is a subset of the other.

Conversely, assume that the hyperplane H is given by (3). Then any parti-
tion of the set F of k-faces of H in two subsets F1,F2 with collections of sets
of indices K1,K2 closed under union determines a pair of disjoint convex sets
given by ∪F∈F1

F and ∪F∈F2
F . Moreover, if P(I) is a subset of K1 and P(J̄) is

a subset of K2, then there exists a pair (H1, H2) of complementary hemispaces
related to H, such that one convex sets above is a subset of H1 and the other is
a subset of H2.

Proof. Let KF ,KG ∈ K1 be the sets of indices for the k-faces F,G ⊆ H1. It
follows from Lemma 3.4 that any segment with endpoints in F and G intersects
Bd(F,G). As H1 is convex, Bd(F,G) has to intersect H1. It follows now from
Lemma 3.1 that the face Bd(F,G) is included in H1. As the set of indices of
Bd(F,G) is KF ∪KG, we have KF ∪KG ∈ K1. The partition of the singletons
and the closure under the union forces P(I) to be a subset of one of Ki and
P(J̄) to be a subset of the other.

Conversely, assume that the collections of sets of indices K1,K2 are closed un-
der union. We must show that the (obviously disjoint) unions ∪F∈F1

F,∪F∈F2
F

are both convex. Let x, y ∈ ∪F∈F1
F . If x, y belong to the same k-face F , then

[x, y] ⊆ F , as F is convex. If x ∈ F1, y ∈ F2, F1, F2 different k-faces in F1, then
it follows from Lemma 3.4 that the segment [x, y] is the concatenation of three
parts, one included in F1, one in F2, and one included in Bd(F1, F2). Due to the
closeness under union of K1, one has Bd(F1, F2) ∈ F1. So [x, y] ⊆ ∪F∈F1

F . It
follows that ∪F∈F1

F,∪F∈F2
F are both convex. The fact that there exists a pair

of complementary hemispaces separating these disjoint convex sets is immedi-
ate from Stone-Kakutani theorem. The extra condition P(J̄) ⊆ K1,P(I) ⊆ K2

forces the assignment of the singletons and implies that the pair of hemispaces
is related to H.

We are ready to describe the geometric structure of a general pair of com-
plementary hemispaces associated to a hyperplane.

Theorem 4.2. Let H be a hyperplane given by (3). Let F be the set of k-faces
associated to H, with the collection of the sets of indices K, FI be the face of
type I (if any), and FII be the face of type II (if any). A decomposition of Rn

max

in a pair of complementary hemispaces (H1, H2) related to H is obtained in the
following way:

• take a partition of K into two families closed under union, with corre-
sponding sets of faces F1,F2;

• take a partition of FI into two convex sets F 1
I , F

2
I ;

12



and then define
H1 = (∪F∈F1

F ) ∪ F 1
I ∪ FII ;

H2 = (∪F∈F2
F ) ∪ F 2

I .
(13)

Proof. The result is a consequence of Theorem 4.1, Lemma 3.2 and Lemma 3.3.

Corollary 4.3. Let H ⊆ R
n
max be a proper hemispace. Then H is a disjoint

union of a finite set of cones.

Proof. Let H ⊆ R
n
max be a hyperplane supporting H . If there is no face of type

I associated to H, then it follows from Theorem 4.2 that H is a disjoint union
of faces. As each face is a cone, the corollary follows. If there is a face of type
I, then observe first that a face of type I is a semimodule and, moreover, it
is isomorphic to a semimodule Rd

max, d < n. Then use again Theorem 4.2 and
mathematical induction.

5. Counting the hemispaces with a fixed finite center

Our main result allows for an explicit counting and enumeration of hemis-
paces of certain type.

Theorem 5.1. In R
n
max there are exactly 2f(n) hemispaces (including the whole

space and the empty set) related to a strictly affine nondegenerate hyperplane H
centered in the origin, where f(0) = 1 and f(n), n ≥ 1, satisfies the recurrence
formula:

f(n) =

(

n+ 1

1

)

f(n− 1) +

(

n+ 1

2

)

f(n− 2) + · · ·+

(

n+ 1

n

)

f(0) + 1. (14)

Proof. As H is a strictly affine nondegenerate hyperplane in R
n
max, we need to

work with the variables x1, x2, . . . , xn+1. All faces that appear are k-faces. The-
orem 4.1 reduces the counting of proper hemispaces to a combinatorial problem.
Let P(n+1) be the collection of subsets of a set with n+1 elements. We need to
determine the number of partitions of P(n+ 1) in two nonempty collections of
subsets that are closed under union. We prove by induction on n that f(n) gives
the number of hemispaces that contain the origin. To count their complements
as well, we multiply by 2.

We check the induction hypothesis for n = 1. The hemispaces in Rmax

supported by a nondegenerate strictly affine line centered in the origin that, in
addition, contain the origin are the closed positive and negative half-lines, and
the whole line, so clearly f(1) =

(

1+1
1

)

f(0) + 1 = 3, as predicted by (14).
Let (H, ∁H) be a pair of complementary hemispaces in R

n
max related to

H. Assume that H contains the origin. It follows that at most one (n − 1)-
codimensional face in H, which has a set of indices of cardinality n, can be in
∁H . Indeed, having two (n − 1)-codimensional faces in ∁H would also require
∁H to contain the origin due to Theorem 4.1. There are

(

n+1
1

)

possible (n− 1)-
codimensional faces in P(n+1). Once an (n−1)-codimensional face F is chosen
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to be in ∁H , every face F̃ that does not contain in the set of indices KF̃ the
variable not maximal in F , say xi0 , must be in H . Indeed, having such a face
included in ∁H forces 0 ∈ ∁H due to Theorem 4.1, in contradiction with the
assumption above.

It remains to partition the sets of indices which do not contain xi0 . This is
an equivalent partition problem in R

n−1
max . There are

(

n+1
1

)

ways to reduce the
problem to a (n − 1)-dimensional problem. As the number of hemispaces in
R

n−1
max is f(n− 1), this accounts for the

(

n+1
1

)

f(n− 1) term in formula (14).
Alternatively, H could contain all (n− 1)-codimensional faces. In this case,

there is no more than one (n − 2)-codimensional face in ∁H since, by The-
orem 4.1, having two distinct (n − 2)-codimensional faces in ∁H would also
require that either the origin or an (n− 1)-codimensional face to be in ∁H due
to Theorem 4.1. Thus, there are

(

n+1
2

)

(n− 2)-codimensional faces that can be
chosen to be in ∁H , and doing so reduces the problem to R

n−2
max . This accounts

for the
(

n+1
2

)

f(n−2) term in formula (14). Again, we could also choose for every
(n− 2)-codimensional face to be in H . Following this pattern for 1 ≤ d ≤ n− 1,
it is clear that there are

(

n+1
d

)

ways to reduce the problem to the case of Rn−d
max ,

which accounts for all the terms in formula (14), except the last term +1 which
represents the whole space R

n
max.

Remark 5.2. The first six terms in the sequence f(n) are: 1, 3, 13, 75, 541, 4283.
The sequence is listed in the On-line Encyclopedia of Integer Sequences [15]
as A000670 and has many well known combinatorial interpretations. Among
others, f(n) counts the number of ways n competitors can rank in a competition,
allowing for the possibility of ties, or, equivalently, the number of weak orders
on a set with n elements. The terms of the sequence f(n) are usually called
ordered Bell numbers or Fubini numbers. The sequence of ordered Bell numbers
have a growth rate much higher than n!. Ordered Bell numbers also count
permutohedron faces, Cayley trees, Cayley permutations, ordered multiplicative
partitions of square free numbers, and equivalent formulae in Fubini’s theorem.
Our result shows a bijective correspondence between these combinatorial objects
and max-plus hemispaces. A reference mentioning the formula appearing in
Theorem 5.1 is the paper of Gross [6].

A corollary of Theorem 5.1 is the following combinatorial result, which we
did not find in the literature.

Corollary 5.3. The number of ways to split P(n), the collection of subsets
of a set with n elements, into two subcollections closed under the union, not
considering their order, is given by the ordered Bell number f(n).

Proof. The statement follows from the proof of Theorem 5.1. We only describe
the bijective correspondence between the family of weak orders on [n] and the
splittings of P(n). To a given weak order on [n] we will associate the subcol-
lection C of P(n) that contains [n]. One can think at a weak order on [n] as a
pyramid containing all elements of [n] arranged in k layers. All elements in a
layer are assumed to be equal and elements in a higher layer are strictly larger
then the elements in a lower layer. At the first step, we include in C all subsets
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containing one element of the first layer and all possible unions of such sets.
At the second step, we include in C all subsets containing one element from
the first and one element from the second layer, and all possible unions of such
sets. At the third step, we include in C all subsets containing one element of the
first, one element of the second layer and one element of the third layer, and
all possible unions of such sets. We continue like this until we reach the k-th
layer and finally have [n] included in C. We observe that the construction of C
guarantees that the subcollection P(n)\C is closed under the union as well.

Remark 5.4. In a related direction, ordered Bell numbers also appear when
counting the types of semispaces in max-min (or fuzzy) algebra [14].

6. Examples of hemispaces

Example 6.1. We list the hemispaces in R
2
max related to a strictly affine hyper-

plane centered in the origin. We use the method provided by Theorem 4.1. We
work with 3 coordinates, 1, 2, 3 which are partitioned in two nonempty sets
I, J̄ . There are 3 ways to partition into sets of cardinality 1 and 2. Assume
that the partition is {{1, 2}, {3}}. The other two cases are similar. The equa-
tion of the hyperplane H is x1 ⊕ x2 = 0. Assume I = {1, 2}, J̄ = {3}. Let
H1, H2 be a pair of complementary hemispaces related to H. We already have
the faces {1}, {2}, {1, 2} in H2 and the face {3} in H1. It remains to partition
the faces {1, 3}, {2, 3}, {1, 2, 3} such that the closure under the union required
in Theorem 4.1 holds. This can be done in 4 ways:

1. {1, 3}, {2, 3}, {1, 2, 3} are in H2, thus overall

• {3} is in H1;

• {1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} are in H2;

2. {2, 3}, {1, 2, 3} are in H2 and {1, 3} is in H1, thus overall

• {3}, {1, 3} are in H1;

• {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3} are in H2;

3. {1, 3}, {1, 2, 3} are in H2 and {2, 3} is in H1, thus overall

• {3}, {2, 3} are in H1;

• {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3} are in H2;

4. {1, 3}, {2, 3}, {1, 2, 3} are in H1, thus overall

• {3}, {1, 3}, {2, 3}, {1, 2, 3} are in H1;

• {1}, {2}, {1, 2} are in H2.

The list above gives 4 pairs of complementary hemispaces, hence 8 distinct
proper hemispaces. Considering the other two cases for the partition I, J̄ , overall
there are 8 × 3 = 24 distinct proper hemispaces. If we add to these the empty
set and R

2
max, which correspond to the partition ∅ in H1 and P(3) \ {∅} in H2,

we have 26 hemispaces, as predicted by Theorem 5.1.
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Example 6.2. We briefly list the hemispaces in R
3
max related to a strictly affine

hyperplane centered in the origin. We use the method provided by the proof of
Theorem 4.1. We work with 4 coordinates, 1, 2, 3, 4. The elements of P(4) are
partitioned between a pair of complementary hemispaces H1, H2. We assume
that the origin, which has the set of indices {1, 2, 3, 4}, belongs to H1. We look
now at the partition of the 2-codimensional faces, which correspond to the sets
of indices {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. As the origin belongs to H1, at
most one 2-codimensional face can belong to H2. We distinguish two cases:

1. all 2-codimensional faces belong to H1;

2. one 2-codimensional face, say {1, 2, 3}, belongs to H2, and the others
belong to H1.

Case 1. We partition now the 1-codimensional faces, which are in number of
6: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. At most one of these can belong to
H2, because otherwiseH2 would include a 2-codimensional face, in contradiction
to our assumption. We distinguish two subcases:

1. all 1-codimensional faces belong to H1;

2. one 1-codimensional face, say {1, 2}, belongs to H2, and the others belong
to H1.

Subcase 1. We partition now the 0-codimensional faces, which are in number
of 4: {1}, {2}, {3}, {4}.At most one of these can belong toH2, because otherwise
H2 would include a 1-codimensional face, in contradiction to our assumption.
We distinguish two subsubcases:

1. all 0-codimensional faces belong to H1;

2. one 0-codimensional face, say {1}, belongs to H2, and the others belong
to H1.

There are 2×5 = 10 distinct hemispaces in Subcase 1. Note that we multiply
by 2 in order to include in the counting the complements of the hemispaces
containing the origin.

Subcase 2. As above, we assume that {1, 2}, belongs to H2, and the other
1-codimensional faces belong to H1. It remains to partition the 0-codimensional
faces, which are in number of 4: {1}, {2}, {3}, {4}. The faces {3}, {4} should be
assigned to H1, because otherwise H2 contains a 2-codimensional face, in con-
tradiction to our assumption. Also, {1}, {2} cannot be both in H1, because this
would imply that {1, 2}, belongs to H1, again in contradiction to our assump-
tions. We are left with two subsubcases:

1. {1}, {2} belong to H2;

2. only one of {1}, {2} belongs to H2, and the other belongs to H1.

There are 6× 2× 3 = 36 distinct hemispaces in Subcase 2.
Overall, there are 10 + 36 = 46 distinct hemispaces in Case 1.
Case 2. We partition now the 1-codimensional faces, which are in number

of 6: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. All faces containing the variable
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4 are in H1, because otherwise H2 contains the origin, in contradiction with
our assumption. We cannot have two of the remaining 1-codimensional faces
in H1 because this implies that {1, 2, 3} is in H1, again in contradiction to our
assumption. We are left with two subcases:

1. {1, 2}, {1, 3}, {2, 3} belong to H2;

2. one of {1, 2}, {1, 3}, {2, 3} belongs to H1.

Subcase 1. It remains to partition the 0-codimensional faces. We observe
first that {4} belongs to H1, because otherwise the origin would be in H2, in
contradiction with our assumption. Also, it is not possible for two of the remain-
ing variables to be in H1, because this implies that one of the 1-codimensional
faces {1, 2}, {1, 3}, {2, 3} belongs to H1, in contradiction with our assumption.
We are left with two subsubcases:

1. exactly one of {1}, {2}, {3} belongs to H1;

2. {1}, {2}, {3} belong to H2.

There are 4× 4× 2 = 32 distinct hemispaces in Subcase 1.
Subcase 2. In order to fix the notation, assume that {1, 2} belongs to H1.

Observe first that the faces {3}, {4} belong to H2, as otherwise one of the faces
{1, 2, 3} or {1, 2, 4} belongs to H1, in contradiction to our assumption. Also, we
cannot have both {1}, {2} in H2, as this implies that {1, 2} belongs to H2, in
contradiction with our assumption. We are left with two subcases:

1. exactly one of {1}, {2} belongs to H2;

2. {1}, {2} belong to H1.

There are 4× 3× 3× 2 = 72 distinct hemispaces in Subcase 2.
Overall there are 32 + 72 = 104 distinct hemispaces in Case 2.
Adding the number of cases that appear in Case 1 and Case 2 we have 150

distinct hemispaces, as predicted by Theorem 5.1.

Example 6.3. We show a pair of complementary hemispaces related to a de-
generate hyperplane. Consider the degenerate hyperplane in R

4
max with equa-

tion x1 = x2, x3 = −∞. The k-faces are indexed by {1}, {2}, {1, 2}, and de-
noted by F{1}, F{2}, F{1,2}. We have an extra face of type I given by FI =
{x ∈ R

4
max|x1 = x2 = x3 = −∞} and an extra face of type II given by

FII = {x ∈ R
4
max|x3 > −∞}. We may split the face of type I in two con-

vex parts, say

F 1
I = {x ∈ R

4
max|x1 = x2 = x3 = −∞, x4 ≥ 0},

F 2
I = {x ∈ R

4
max|x1 = x2 = x3 = −∞, x4 < 0}.

It follows from Theorem 4.2 that the following assignment of the faces gives
a pair (H1, H2) of complementary hemispaces related to the hyperplane H:

H1 ={F{1}, F
1
I , FII},

H2 ={F{2}, F{1,2}, F
1
I }.
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