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Abstract. Parts I and II showed that the number of ways to place q nonattacking queens
or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in
which the coefficients are essentially polynomials in q. We explore this function for partial
queens, which are pieces like the rook and bishop whose moves are a subset of those of
the queen. We compute the five highest-order coefficients of the counting quasipolynomial,
which are constant (independent of n), and find the periodicity of the next two coefficients,
which depend on the move set. For two and three pieces we derive the complete counting
functions and the number of combinatorially distinct nonattacking configurations. The
method, as in Parts I and II, is geometrical, using the lattice of subspaces of an inside-out
polytope.
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2 Chaiken, Hanusa, and Zaslavsky

1. Introduction

The well known n-Queens Problem asks for the number of ways to place n nonattacking
queens on an n×n chessboard. A more general question separates the number of pieces from
the size of the board; that is the q-Queens Problem, which asks for the number of ways to
place q nonattacking queens on an n×n board. This paper is Part III of a series [1] in which
we develop a general method for solving such questions and apply it not only to queens but to
other pieces of the type called “riders”, whose moves have unlimited distance. We convert the
chess problem into a geometry problem: moves become hyperplanes in R2q; the n× n board
becomes the set of 1/(n+ 1)-fractional lattice points in the unit square; and the number of
nonattacking configurations becomes a linear combination of the numbers of q-tuples of these
lattice points that lie in subspaces determined by the move hyperplanes. The ultimate goal
is to produce a usable general formula for any such problem, but that is probably impossibly
difficult because it requires complete knowledge of configuration theorems in the real plane.
Still, we provide important information about the nature of such a formula.

We proved in Part I that in each such problem the number of solutions is a quasipolynomial
function of n—that means it is given by a cyclically repeating sequence of polynomials as n
varies—and that the coefficient of each power of n is (up to a factor) a polynomial function
of q. In Part II we narrowed our focus to the square board and found, for instance, that the
coefficients of the very highest powers of n do not vary periodically with n, or at most have
period 2. We briefly review the essentials from Parts I and II in Section 2.

This part is the capstone of the series. In it we repeatedly apply the theory from Parts I
and II to gain detailed information on the counting functions for a well-behaved family of
pieces that we name “partial queens”—those rider pieces whose moves are a subset of those
of the queen. First, we explicitly calculate the coefficients of the four highest powers of n for
partial queens. Surprisingly, we are also able to prove formulas for the periodic parts of the
coefficients of the next two highest powers of n (but not for the nonperiodic parts). We further
establish the highest and lowest powers of q and their coefficients within the coefficient of
each power of n. These results combine to form our main theorem, Theorem 3.1. The proof
of this theorem, which comprises the remainder of Section 3, requires us to determine the
counting quasipolynomials for all low-codimensional subspaces in the lattice of intersections
of move hyperplanes. In Section 4, we further apply our theory to calculate the number of
nonattacking placements of two and three partial queens on a square board of any size and
the number of combinatorially distinct nonattacking configurations of three partial queens,
which turns out to be determined by the number, not the kind, of moves.

A deeper reason we study this set of pieces is that our ultimate object is to find out
what factors control properties of the counting formula, such as the period (the length of
a repeating cycle in the cyclically repeating polynomials), the periods of the individual
coefficients of powers of n, formulas for the coefficients in terms of the set of moves of the
piece, or anything that will let us predict aspects of the counting functions by knowing the
moves of the piece under consideration. For this partial queens can be a valuable test set
of pieces, not as hard as general riders but varied enough to suggest patterns for counting
functions. Indeed, it was the formulas and their proofs for partial queens that led us to
several of the general properties proved in Parts I and II.

In Part IV, next in the series, counting function properties that we establish here (supple-
mented by a theorem in Part V) will let us prove some of the specific formulas for bishops
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and queens derived empirically through extensive computation, or brilliantly intuited, by
Kotěšovec in [2, 3].

We conclude Part III with questions related to our results and methods, and we append
a dictionary of notation.
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2. Essentials

2.1. Review.
We assume acquaintance with the notation and methods of Parts I and II as they apply

to the square board. For easy reference we review the most important here.
The square board [n]2, where [n] := {1, 2, . . . , n}, consists of the integral points in the

interior of the integral multiple (n+ 1)[0, 1]2 of the unit square. We write [n] := {1, . . . , n},
so the set of points of the board is

[n]2 = (n+ 1)(0, 1)2 ∩ Z2.

We write δij for the Kronecker delta.
A move of a piece P is the difference between two positions on the board; it may be any

integral multiple of a nonempty set M of basic moves. The latter are non-zero, non-parallel
integral vectors mr = (cr, dr) in lowest terms, i.e., cr and dr are relatively prime. (The slope
dr/cr contains all necessary information and can be specified instead of mr itself.) One piece
attacks another if the former can reach the latter by a move. The constraint is that no two
pieces may attack one another, or to say it mathematically, if there are pieces at positions
zi and zj, then zj − zi is not a multiple of any mr. For a move m = (c, d), we define

ĉ := min(|c|, |d|), d̂ := max(|c|, |d|)
We assume that q > 0. We treat configurations of q pieces as 1/(n + 1)-fractional lattice

points in the interior of the 2q-dimensional inside-out polytope ([0, 1]2q,AP), where AP is the
move arrangement whose members are the move hyperplanes or attack hyperplanes

H
d/c
ij := {z ∈ R2q : (zj − zi) · (d,−c) = 0}.

(Inside-out polytopes are explained in Section I.2.) A coordinate vector in R2q is z =
(z1, z2, . . . , zq) where zi = (xi, yi) ∈ R2. The intersection lattice L (AP) is the lattice of all
intersections of subsets of the move arrangement, ordered by reverse inclusion; its Möbius
function is µ. Of the 1/(n + 1)-fractional points in [0, 1]2q, those in the move hyperplanes
represent attacking configurations; the others represent nonattacking configurations. The
number of nonattacking configurations of q unlabelled pieces on an n× n board is uP(q;n),
whose full expression is

uP(q;n) = γ0(n)n2q + γ1(n)n2q−1 + γ2(n)n2q−2 + · · ·+ γ2q(n)n0.

What we actually compute is the number of nonattacking labelled configurations, oP(q;n),
which equals q!uP(q;n). The Ehrhart theory of inside-out polytopes implies that these count-
ing functions are quasipolynomials in n.

In Part II we defined α(U;n) as the number of integral points in the intersection of the
essential part of an intersection subspace U ∈ L (AP) with the hypercube [n]2κ, where κ is
the number of pieces involved in the equations of U. (The essential part is the restriction of
U to the coordinates of pieces that appear in those equations.) The formula

(2.1) q!uQhk(q;n) =
∑

U∈L (AP)

µ(0̂,U)α(U;n)n2q−2κ,

from Equation (I.2.1) with t = n + 1 and EU∩P◦(t) = EU∩(0,1)2q(t) = α(U;n)n2q−2κ, is the
foundation stone of this paper. We also defined the abbreviations

αd/c(n) := α(H
d/c
12 ;n),
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the number of ordered pairs of positions that attack each other along slope d/c (they may
occupy the same position; that is considered attacking). Similarly,

βd/c(n) := α(W
d/c
123 ;n),

the number of ordered triples that are collinear along slope d/c; W
d/c
123 := H

d/c
12 ∩ H

d/c
23 .

Proposition II.3.2 gives general formulas for α and β. We need only a few examples in
Part III:

(2.2)
α0/1(n) = α1/0(n) = n3, α±1/1(n) =

2n3 + n

3
,

β0/1(n) = β1/0(n) = n4, β±1/1(n) =
n4 + n2

2
.

2.2. Partial queens.
A partial queen is a piece Qhk, whose moves are h horizontal and vertical moves and k

diagonal moves of slopes ±1, where h, k ∈ {0, 1, 2} and (to avoid the trivial case M = ∅)
we assume h + k ≥ 1. This includes the cases of the bishop (h = 0 and k = 2) and the
queen (h = k = 2), and allows for pieces such as a one-armed queen (h = 2 and k = 1) and a
semiqueen (h = k = 1). By restricting to partial queens it is possible to explicitly calculate
the contributions to q!uQhk(q;n) of intersection subspaces up to codimension 3. From this,
we can calculate the coefficients γ1, γ2, and γ3 and the counting quasipolynomials uQhk(2;n)
and uQhk(3;n).
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3. Coefficients

Kotěšovec proposed formulas for the coefficients γ1 and γ2 of the counting quasipolynomials
for queens and bishops and other riders [3, third ed., pp. 13, 210, 223, 249, 652, 663; also in
later eds.]. Our main theorem proves the generalization of his conjectures to partial queens
and to γ3.

Theorem 3.1. (I) For a partial queen Qhk, the coefficient q!γi of n2q−i in oQhk(q;n) is a
polynomial in q, periodic in n, with leading term(

− 3h+ 2k

6

)i
q2i

i!
.

(II) The coefficients γi for i ≤ 4 of the five highest powers of n in the quasipolynomial
uQhk(q;n) are independent of n.

The coefficients γi for i = 1, 2, 3 are given by

(3.1) γ1 = − 1

(q − 2)!

3h+ 2k

6
,

(3.2)

γ2 =
1

2!(q − 2)!

{
(q − 2)2

(3h+ 2k

6

)2
+ (q − 2)

4h+ 2k + 8hk + 12δh2 + 5δk2
6

+ (h+ k − 1)

}
and

(3.3)

γ3 = − 1

3!(q − 2)!

{
(q − 2)4

(3h+ 2k

6

)3
+ (q − 2)3

(3h+ 2k)(4h+ 8hk + 2k + 12δh2 + 5δk2)

12

+ (q − 2)2
30h2 + 20k2 − 8k + 257hk + 160(2k + 3)δh2 + 68(3h+ 2)δk2

20

+ (q − 2)
[
6h(h− 1) + 10kh+ 4k(k − 1) + 8kδh2 + 5hδk2

]
+ k

}
.

(For the individual quasipolynomials, see Table 3.)
(III) The next coefficient, γ5, has period 2 if k = 2 and h 6= 0 (and q ≥ 3), with periodic

part −(−1)nhδk2/8(q − 3)!, but otherwise is independent of n.
(IV) The following coefficient, γ6, is constant except that it has period 2 if k = 2 (and

q ≥ 4), with periodic part −(−1)nδk2/8(q − 3)!.

We write the falling factorials in terms of q − 2 instead of q because every nontrivial
coefficient γi (γ0 = 1/q! being “trivial”) has a numerator factor (q)k with k ≥ 2 and a
denominator factor q! (since uP = oP/q!). Therefore uP(q;n) as a whole looks like

n2q

q!
+

(q)2(nontrivial quasipolynomial in n and q)

q!
.

It seems natural to cancel the repetitious factor (q)2 in every coefficient other than γ0.

Proof. Theorem II.4.2 says that (q)2i gives the highest power of q and its coefficient is

(−a10/2)i/i!, where a10 =
∑

(c,d)∈M(3d̂ − ĉ)/3d̂2 = h3
3

+ k 2
3

since there are h moves with

(ĉ, d̂) = (0, 1) and k with (ĉ, d̂) = (1, 1).
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k = 0 k = 1 k = 2

h = 0 — 4q2−8q
72(q−2)!

16q2−26q+24
72(q−2)!

h = 1 9q2−21q+6
72(q−2)!

25q2−41q+18
72(q−2)!

49q2−71q+18
72(q−2)!

h = 2 36q2−60q+12
72(q−2)!

64q2−92q
72(q−2)!

100q2−134q−24
72(q−2)!

k = 0 k = 1 k = 2

h = 0 — −5q4−25q3+31q2−5q+141
810(q−2)! −40q4−155q3+329q2−220q−6

810(q−2)!

h = 1 − (q2−q)(q−2)(q−3)
48(q−2)! −625q4−2450q3+3821q2−2380q+156

6480(q−2)! −1715q4−5740q3+6799q2−3470q+384
6480(q−2)!

h = 2 − (q3−2q2+q)(q−2)
6(q−2)! −640q4−2120q3+1781q2−505q+876

1620(q−2)! −1250q4−3775q3+1999q2+190q+2364
1620(q−2)!

Table 3.1. The high-order coefficients of uQhk(q;n) for the individual partial queens.

The coefficient γ1 is from Theorem II.4.2. For the other coefficients we prove two lemmas
that state the total contributions to uQhk(q;n) from subspaces of all codimensions k ≤ 3.

We use notation of the form Uν
κ or Uν

κa to represent a subspace of codimension ν in the
intersection semilattice L (A ) that involves κ pieces, with a letter index to differentiate
between distinct types of subspace with these same numbers. In addition, we wish to dif-
ferentiate between those subspaces that are indecomposable and those that decompose into
subspaces of smaller codimension; for the latter we write an asterisk after the number of
pieces and we specify the exact constituent subspaces. For example, we will have a subspace
U3

5∗a:U
1
2U

2
3a.

We total up the contributions to q!uQhk(q;n) = oQhk(q;n) in Equation 2.1 from all sub-
spaces of codimension ν. To do that we break down those subspaces into types. For each
type we determine the Möbius function µ(0̂,U) and count the number of lattice points in the
intersection U∩ (0, 1)2q. To perform this count in type Uν

κa, we count the number of ways to
place κ attacking pieces in the designated way, and then multiply by n2(q−κ) for the number
of ways to place the remaining pieces whose positions are not constrained.

The subspaces U that contribute to γ2 are those of codimension two, because neither the
whole space nor any hyperplane has an n2q−2 term. To get exact formulas we need both
the Ehrhart quasipolynomial of U ∩ (0, 1)2q for each codimension-2 subspace in L

(
AQhk

)
and the Möbius function µ(0̂,U). That means we have to analyze the different kinds of
codimension-2 subspaces U, whose defining equations may involve two, three, or four pieces.
We summarize the results in a lemma (including codimension zero for completeness).

Lemma 3.2. The contributions to uQhk(q;n) from subspaces of codimension ν ≤ 2 are as
follows.

(I) From codimU = 0:

(3.4)
1

q!
n2q.
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(II) From codimU = 1:

(3.5) − 1

q!

{
(q)2

3h+ 2k

6
n2q−1 + (q)2

k

6
n2q−3

}
.

(III) From codimU = 2:

(3.6)

1

q!

{[
(q)4

1

2

(3h+ 2k

6

)2
+ (q)3

4h+ 2k + 8hk + 12δh2 + 5δk2
12

+ (q)2
h+ k − 1

2

]
n2q−2

+

[
(q)4

k(3h+ 2k)

36
+ (q)3

k(2h+ 1) + 2δk2
6

]
n2q−4

+

[
(q)4

k2

72
+ (q)3

[
1− (−1)n

]δk2
8

]
n2q−6

}
.

Proof. The case ν = 0 is from α((0, 1)2q;n) = n2q. The case ν = 1 is that of hyperplanes:

Type U1
2 : The hyperplanes contribute

−
(
q

2

) ∑
(c,d)∈M

αd/c(n) · n2q−4 = −
(
q

2

)[3h+ 2k

3
n2q−1 +

k

3
n2q−3

]
to oQhk(q;n) since we choose an unordered pair of pieces and a single slope, and the
Möbius function is −1.

It remains to solve ν = 2. We break the subspaces down into four types.

Type U2
2 : The subspace U is defined by two hyperplane equations involving the same

two pieces, U = H
d/c
ij ∩ H

d′/c′

ij where d/c 6= d′/c′ and i < j. Thus, U = W=
ij ,

the subspace corresponding to the equation zi = zj, i.e., to two pieces in the same
location.

There is one such subspace for each of the
(
q
2

)
unordered pairs of pieces. There are

n2 ways to place the two attacking pieces in U. The Möbius function is µ(0̂,U) =
h+ k − 1, by Lemma I.3.1.

The total contribution to oQhk(q;n) is(
q

2

)
(h+ k − 1)n2q−2.

Type U2
3a : The subspace U is defined by two hyperplane equations of the same slope

involving three pieces, say U = H
d/c
12 ∩H

d/c
23 . This subspace is W

d/c
123 = H

d/c
12 ∩H

d/c
13 ∩

H
d/c
23 . There is one such subspace for each of the

(
q
3

)
unordered triples of pieces. The

number of ways to place the three pieces is βd/c(n) in Equation (2.2). Summing over
(c, d) ∈M gives

[
h+ 1

2
k
]
n4 + 1

2
kn2.

The Möbius function is µ(0̂,U) = 2 by Lemma I.3.1. The total contribution of this
type is (

q

3

){
(2h+ k)n2q−2 + kn2q−4}.

Type U2
3b : The subspace U is defined by two hyperplane equations of different slopes

involving three pieces, say U = H
d/c
12 ∩H

d′/c′

23 .
First, we count the number of ways in which we can place three pieces (P1, P2, and

P3) so that P1 and P2 are on a line of slope d/c and P2 and P3 are on a line of slope
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d′/c′. Depending on d/c and d′/c′, we have the following numbers of choices for the
placements of the chosen pieces in the given attacking configuration:

Case VH. If {d/c, d′/c′} = {0/1, 1/0}, we have n2 choices for P2; then we place
P1 in one of n positions in the same column as P2 and place P3 in one of n positions
in the same row as P2. This gives a total of n4 placements of the three pieces. This
case contributes only when h = 2.

Case DV. If one slope is diagonal and the other vertical or horizontal, we first
choose the positions of P1 and P2, which we specify are attacking each other diago-
nally. This can be done in α1/1(n) ways. Then we place P3 in line with P2 in n ways.
This gives a total of 2

3
n4 + 1

3
n2 placements of the three pieces, contributing hk times.

Case DD. If {d/c, d′/c′} = {1/1,−1/1}, then the number of possibilities for plac-
ing P1 on the diagonal of slope +1 and P3 on the diagonal of slope −1 depends on the
position (x, y) where we place P2. Consider the positions (x, y) satisfying x ≥ y and
x + y ≤ n; if we rotate this triangle of positions about the center of the square, we
see that there are four points with the same number of possibilities for each position
in the triangle, except when n is odd, in which case we must consider the position
(n+1

2
, n+1

2
) independently. (See Figure 3.1.)

Figure 3.1. The triangle of positions that we consider in Case DD, along
with its rotations. The left figure shows that all positions are covered when n
is even; the right figure shows that position (n+1

2
, n+1

2
) is considered indepen-

dently.

For a position (x, y) of P2 in this triangle, the number of choices for P1 is n−x+ y
and the number of choices for P3 is x + y − 1. This gives the following number of
placements in Case DD:

4

n/2∑
y=1

n−y∑
x=y

(n− x+ y)(x+ y − 1) if n is even,

n2 + 4

(n−1)/2∑
y=1

n−y∑
x=y

(n− x+ y)(x+ y − 1) if n is odd,

=

{
5
12
n4 + 1

3
n2 if n is even,

5
12
n4 + 1

3
n2 + 1

4
if n is odd,

=
[ 5

12
n4 +

1

3
n2 +

1

8

]
− (−1)n

1

8
.

This quantity contributes only when k = 2.
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In Type U2
3b, µ(0̂,U) = 1. There are (q)3 ways to choose the three pieces. The

total contribution to oQhk(q;n) depends on h and k; it is

(q)3

{[
δh2 +

2

3
hk +

5

12
δk2

]
n2q−2 +

[1

3
hk +

1

3
δk2

]
n2q−4 +

1

8
δk2n

2q−6 − (−1)n
1

8
δk2n

2q−6
}
.

Type U2
4∗ :U

1
2U

1
2 : The subspace U is defined by two hyperplane equations involving four

distinct pieces. Hence, U = H
d/c
12 ∩H

d′/c′

34 , which decomposes into the two hyperplanes

H
d/c
12 and H

d′/c′

34 , where d′/c′ may equal d/c. The Möbius function is µ(0̂,U) = 1.
There are 2!

(
q

2,2,q−4

)
= (q)4/4 ways to choose an ordered pair of unordered pairs

of pieces. Assign any slope d/c to the first pair and d′/c′ to the second. Each pair
of slopes, distinct or equal, appears twice, once for each ordering of the unordered
pairs, so we divide by 2. The number of attacking configurations in each case is
αd/c(n) ·αd′/c′(n). The total contribution of all cases (before multiplication by n2q−8)
is

(q)4
8

∑
(c,d),(c′,d′)∈M

αd/c(n) · αd′/c′(n) =
(q)4

8

[ ∑
(c,d)∈M

αd/c(n)

]2
=

(q)4
8

[
3h+ 2k

3
n3 +

k

3
n

]2
.

Thus, the contribution of Type U2
4∗ to oQhk(q;n), after multiplication by the n2q−8

ways to place the remaining pieces, is

1

8
(q)4

{[
h2 +

4

3
hk +

4

9
k2
]
n2q−2 +

[2

3
hk +

4

9
k2
]
n2q−4 +

1

9
k2n2q−6

}
.

Adding up the various types gives the total contribution to oQhk(q;n); dividing by q!
concludes the proof of Lemma 3.2. �

Our next task is to find the contributions to γ3 of subspaces of codimension three. We
solve that by combining the Ehrhart quasipolynomials of all those subspaces.

Lemma 3.3. The total contribution to uQhk(q;n) = 1
q!
oP(q;n) from subspaces of codimension

3 is

− 1

q!

{[
n2q−3

(
(q)3

12h(h− 1) + 20kh+ 8k(k − 1) + 8kδh2 + 5hδk2
12

+ (q)4
30h2 + 20k2 − 8k + 257hk + 160(2k + 3)δh2 + 68(3h+ 2)δk2

120

+ (q)5
(3h+ 2k)(4h+ 8hk + 2k + 12δh2 + 5δk2)

72
+ (q)6

(3h+ 2k)3

1296

)
+ n2q−5

(
(q)3

8k(h+ k − 1) + 8kδh2 + 11hδk2
24

+ (q)4
k(31h+ k + 1) + 32kδh2 + (34h+ 24)δk2

24

+ (q)5
2k (6h2 + 8hk + 5h+ 3k) + 12kδh2 + (12h+ 13k)δk2

72

+ (q)6
k(3h+ 2k)2

432

)
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Figure 3.2. Given two attacking queens on the hypotenuse of a right triangle,
there may be one or two options for a third mutually attacking queen, as
explained in Type U3

3a.

+ n2q−7
(

(q)4
2k(4h− 1) + (61h+ 76)δk2

120

+ (q)5
4(2h+ 1)k2 + (14k + 9h)δk2

144
+ (q)6

k2(3h+ 2k)

432

)
+ n2q−9

(
(q)5

kδk2
48

+ (q)6
k3

1296

)]
− (−1)n

[
n2q−5(q)3

hδk2
8

+ n2q−7
(

(q)4
(h+ 2)δk2

4
+ (q)5

(3h+ 2k)δk2
48

)
+ n2q−9(q)5

kδk2
48

]}
.

Proof. The subspaces U defined by three hyperplane equations may involve three, four, five,
or six pieces. We treat each number of pieces in turn.

Type U3
3a : The subspace U is defined by three hyperplane equations of distinct slopes

involving the same three pieces, say U = H
d/c
12 ∩H

d′/c′

13 ∩Hd′′/c′′

23 where d/c, d′/c′, and
d′′/c′′ are distinct.

There is one subspace U for every valid choice of three slopes and each of the (q)3/2
ways to choose pieces and assign pairs to the slopes.

As exhibited in Figure 3.2, there are two kinds of subspace U, with the hypotenuse
of the right triangle either on a diagonal (Case 41) or on a vertical or horizontal line
(Case 42).
Case 41. Once we have chosen the positions of the two pieces on a diagonal, there

are always two ways to place a third piece to complete the triangular configuration.
We conclude that the number of such configurations is 2kα1/1(n) = k 4n3+2n

3
, but only

when h = 2.
Case 42. There are h horizontal and vertical moves, so h orientations for the

hypotenuse. We take the case of a horizontal hypotenuse.
First we choose the vertical coordinate y of the hypotenuse. Form the two triangles

with vertices (1, y), (n, y), and either (n+1
2
, y+ n

2
) (the upper triangle) or (n+1

2
, y− n

2
)

(the lower triangle). P3 may have any (integral) location in these triangles that is in
the board [1, n]2, and once it is positioned the locations of P1 and P2 are determined.
Thus, we need only count the valid locations for P3 for each height y. We do so
by counting the integral points in both triangles and subtracting those outside the
board.

The number of integral points in one triangle with hypotenuse n (the number of
points) is T (n) := (n2 + 2n+ ε)/4 where ε := 1

2
[1− (−1)n] ≡ n mod 2. The number
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in both triangles together is T (n) +T (n− 2) = 1
2
(n2 + ε) (note that ε is the same for

both triangles).
The number of triangle points outside the board depends on y. For y = n+1

2
(the

midline, which exists when n is odd), there are no such points. Thus, we total the
count for all y ≤ n/2 and double it. The excluded part of the triangle has upper edge
extending from (y+ 1, 0) to (n− y, 0), with n− 2y points, so the number of excluded
points is T (n − 2y) = 1

4
[(n − 2y + 1)2 − 1 + ε]. Summing over y and doubling to

include y > (n+ 1)/2,

2

(n−ε)/2∑
y=1

T (n− 2y) =
n3 − 4n+ 3nε

12
.

This is subtracted from the total of triangle areas and the result multiplied by h,
giving

h

{
n
n2 + ε

2
− n3 − 4n+ 3nε

12

}
=

{
5h

6
n3 +

11h

12
n

}
− (−1)n

h

4
n

as the number of configurations. This case applies only when k = 2.
We have µ(0̂,U) = −1 because the number of hyperplanes that contain U is 3 =

codimU. The total contribution of this type to oQhk(q;n) is

− (q)3

{[
δh2

2k

3
+ δk2

5h

12

]
n2q−3 +

[
δh2

k

3
+ δk2

11h

24

]
n2q−5 − (−1)nδk2

h

8
n2q−5

}
.

Type U3
3b : The subspace U is defined by three hyperplane equations involving three

pieces and two or three slopes, of the form U = H
d/c
12 ∩H

d′/c′

12 ∩H
d′′/c′′

23 where d′′/c′′

is any chosen slope, and d/c, d′/c′ are arbitrary distinct slopes. This subspace equals

W=
12 ∩W

d′′/c′′

123 ; thus, it does not depend on the choice of d/c and d′/c′, and H
d′′/c′′

23

can be replaced by H
d′′/c′′

13 in the definition of U. Moreover, the number of ways to
place the three pieces equals the number of ways to place an ordered pair of pieces in
a line of slope d′′/c′′, i.e., αd

′′/c′′(n) from Equation (2.2). This should be multiplied
by n2q−6 for the remaining q − 3 pieces.

By Lemma I.3.1 the Möbius function is µ(0̂,U) = −2(h + k − 1). We can specify
the pieces involved in (q)3/2 ways. The contribution to oQhk(q;n) is therefore

−(q)3(h+ k − 1)

{[
h+

2k

3

]
n2q−3 +

k

3
n2q−5

}
.

Type U3
4a : The subspace U is defined by three hyperplane equations of the same slope

involving four pieces, say U = W
d/c
1234 = (for instance) H

d/c
12 ∩H

d/c
23 ∩H

d/c
34 . There are(

q
4

)
ways to choose the four pieces.

The number of ways to place four attacking pieces in U is
∑

l∈Ld/c(n) l
4 (see Sec-

tion II.2), which depends on d/c. When d/c ∈ {0/1, 1/0}, the number is
∑

l∈Ld/c(n) l
4 =

n5. When d/c ∈ {1/1,−1/1}, the number is
∑n

l=1 l
4 +
∑n−1

l=1 l
4 = 1

15
(6n5 + 10n3−n).

We have µ(0̂,U) = −6 because U is contained in six hyperplanes H
d/c
ij , four

codimension-2 subspaces of type U2
3a, and three codimension-2 subspaces of type
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U2
4∗ . The total contribution to oQhk(q;n) is

−
(
q

4

){[
6h+

12k

5

]
n2q−3 + 4kn2q−5 − 2k

5
n2q−7

}
.

Type U3
4b : The subspace U is defined by three hyperplane equations, two having the

same slope and involving the same piece, say U = W
d/c
123 ∩ H

d′/c′

34 = (for example)

H
d/c
12 ∩H

d/c
23 ∩H

d′/c′

34 , where d′/c′ 6= d/c.
There is a subspace for each of (q)4/2! choices of pieces (since P1 and P2 are

unordered) and for each ordered pair of slopes d/c and d′/c′.
Just as with subspaces of type U2

3b, we have three cases.

Case VH. Choosing P3’s position in n2 ways, place P1 and P2 in the same column
in n2 ways, and place P4 in P3’s row in n ways. Multiply by two for interchanging
slopes, for a total of 2n5 placements when h = 2.

Case DV. As in Type U2
3a, the number of ways to place P1, P2, and P3 in the

same diagonal is given by Equation (2.2); multiply by the n ways to place P4 in the
same column as P3. Considering the choice of diagonal and that of column or row,
we get hk

2
(n5 + n3).

Or, place P3 and P4 in the same diagonal in α1/1(n) ways and multiply by n2

placements of P1 and P2 in P3’s column; we get hk
3

(2n5 + n3).

The total is hk(7
6
n5 + 5

6
n3).

Case DD. Here k = 2 and {d/c, d′/c′} = {1/1,−1/1}. We reduce the computation
by symmetry, as in Type U2

3b, but here the symmetry in Figure 3.1 is broken by having
two pieces in one of the diagonals. Thus, we count the placements where P3 is on
one of the two main diagonals separately from the other placements. See Figure 3.3
for a visual representation.

For P3 at a point (x, y) in the bottom triangle y + 1 ≤ x ≤ n − y, the number
of placements with P1 and P2 on the diagonal of slope +1 and P4 on the diagonal
of slope −1 through (x, y) equals the number with P1 and P2 on the diagonal of
slope −1 and P4 on the diagonal of slope +1 through (n+ 1− x, y), which is also in
the bottom triangle. Therefore, if we double the number of the former kind we get
the total number with P3 in the bottom triangle. (Note that we are combining the
counts of two different [but isomorphic] subspaces U. In particular, the configuration
with all pieces in the same place is counted twice, but only once for each subspace.)
Multiplying this by 4 for the four triangles, we have the number of configurations
where P3 is off the two main diagonals. To get the actual number note that when
(x, y) is in the bottom triangle, its positive diagonal has n − x − y points and its
negative diagonal has x+ y − 1 points.

Similarly, if we count the configurations with P3 in the lower left or lower right
half-diagonal and P1,P2 on the diagonal with positive slope, double the result. We
double this again to account for the upper half-diagonals.

When n is odd, the center point contributes n3 for each choice of the diagonal of
P1,P2.
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Thus we have the number of placements in Case DD (which exists only when
k = 2): 

8

n/2∑
y=1

n−y∑
x=y+1

(n− x+ y)2(x+ y − 1)

+ 4

n/2∑
y=1

[n(2y − 1)2 + n2(2y − 1)]

if n is even,

8

(n−1)/2∑
y=1

n−y∑
x=y+1

(n− x+ y)2(x+ y − 1)

+ 4

(n−1)/2∑
y=1

[n(2y − 1)2 + n2(2y − 1)] + 2n3

if n is odd,

=

{
3
5
n5 + 2

3
n3 − 4

15
n if n is even,

3
5
n5 + 2

3
n3 + 11

15
n if n is odd,

=

[
3

5
n5 +

2

3
n3 +

7

30
n

]
− (−1)n

1

2
n.

Figure 3.3. The triangle of positions that we consider in Case DD of Type
U3

4b, for even n (left) and odd n (right).

In all cases of Type U3
3b, µ(0̂,U) = −2 because U is contained in four hyperplanes,

H
d/c
ij with i, j ∈ {1, 2, 3} and H

d′/c′

34 , and the four subspaces W
d/c
123 and H

d/c
ij ∩H

d′/c′

34

of codimension 2.
Therefore, the total contribution to oQhk(q;n) from Type U3

4b is

−(q)4

{[
2δh2 +

3

5
δk2 +

7

6
hk
]
n2q−3 +

[2

3
δk2 +

5

6
hk
]
n2q−5 +

7

30
δk2n

2q−7

− (−1)n
1

2
δk2n

2q−7
}
.

Type U3
4c : The subspace U is defined by three hyperplane equations, two having the

same slope but not involving the same piece, say U = H
d/c
12 ∩H

d′/c′

23 ∩H
d/c
34 . There

are (q)4/2 choices for P1 through P4 because of the symmetry.
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Figure 3.4. The possible attacking configurations in Type U3
4c. From left to

right are cases VHV, DHD, HDH, and DDD.

We have the following cases (see Figure 3.4):

Case VHV. If {d/c, d′/c′} = {0/1, 1/0}, we can choose the pieces and positions
for P2 and P3 in a row in n3 ways, and then place P1 in P2’s column and P4 in P3’s
column in n2 ways. With two possible orientations (VHV or HVH), the number of
attacking configurations is 2n5 when h = 2.

Case DHD. We consider the case where the outer attacking move is diagonal and
the inner attacking move is horizontal or vertical. Without loss of generality, suppose
d/c = +1/1 and d′/c′ = 0/1. We investigate the possibilities for P1 and P4 based on
choosing the row for P2 and P3.

Suppose that P2 and P3 are in row y, where 1 ≤ y ≤ n. The positions that do not
diagonally attack a position in row y are those in two right triangles, one in the upper
left and the other in the lower right, with legs having, respectively, n− y and y − 1
points. Placing P1 and P4 in any attacking positions determines where P2 and P3 are.

Thus, the number of configurations is
∑n

y=1

[
n2−

(
n−y+1

2

)
−
(
y
2

)]2
= 9

20
n5+ 5

12
n3+ 2

15
n,

which contributes hk times.

Case HDH. When the inner attacking move is diagonal and the outer attacking
move is horizontal or vertical, we first choose the positions of P2 and P3, in one of
α1/1(n) ways. There are n2 ways to place P1 in relation to P2 and P4 in relation to
P3, giving a total contribution of 2

3
hkn5 + 1

3
hkn3.

Case DDD. Here {d/c, d′/c′} = {1/1,−1/1}; say d/c = 1/1. We first determine
the number of positions diagonally attacking a piece placed in a diagonal Dy of slope
−1 passing through (1, y) for a fixed y ∈ [2n − 1]. As y varies, the multiset of the
number of positions attacking the positions on it along each opposite diagonal has
the following pattern:

D1, D2n−1: {n},
D2, D2n−2: {n− 1, n− 1},
D3, D2n−3: {n− 2, n, n− 2},
D4, D2n−4: {n− 3, n− 1, n− 1, n− 3},

. . . . . . ,

Dn−1, Dn+1:

{
{3, . . . , n− 1, n− 1, . . . , 3} if n is even,

{3, . . . , n− 2, n, n− 2, . . . , 3} if n is odd,
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Dn:

{
{1, 3, . . . , n− 1, n− 1, . . . , 3, 1} if n is even,

{1, 3, . . . , n− 2, n, n− 2, . . . , 3, 1} if n is odd.

Then P1 and P4 can each be placed arbitrarily and independently in any of the
opposite diagonals that attack Dy. The choice of the opposite diagonal determines
the locations of P2 and P3, respectively. Given y, the number of placements of P1

and P4 is the square of the sum of all lengths in Dy; thus, the total number of ways
to place the four pieces is

2
∑(n/2)−1

j=0

[
n+ 2

∑j
i=1(n− 2i)

]2
+ 2

∑(n/2)−2
j=0

[
2
∑j

i=0(n− 2i− 1)
]2

+
[
2
∑(n/2)−1

i=0 (n− 2i− 1)
]2 if n is even,

2
∑(n−3)/2

j=0

[
n+ 2

∑j
i=1(n− 2i)

]2
+ 2

∑(n−3)/2
j=0

[
2
∑j

i=0(n− 2i− 1)
]2

+
[
n+ 2

∑(n−1)/2
i=1 (n− 2i)

]2 if n is odd,

which simplifies for both parities to 4
15
n5 + 1

3
n3 + 2

5
n.

We double this quantity for the second subspace resulting from choosing slope
d/c = −1. The result is 8

15
n5 + 2

3
n3 + 4

5
n, valid when k = 2.

In this type, once again, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[
δh2 +

67

120
hk +

4

15
δk2

]
n2q−3 +

[3

8
hk +

1

3
δk2

]
n2q−5 +

[ 1

15
hk +

2

5
δk2

]
n2q−7

}
.

Type U3
4d : The subspace U is defined by three hyperplane equations having distinct

slopes, say U = H
d/c
12 ∩H

d′/c′

23 ∩H
d′′/c′′

34 . The arguments here are similar to those for
Type U3

4d; however, because of the lack of symmetry, there are now (q)4 choices for
the pieces P1 through P4, provided we fix d/c and d′′/c′′.

We place pieces P2 and P3 first, and then pieces P1 and P4.
Figure 3.5 shows the four cases we consider.

Figure 3.5. The possible attacking configurations in Type U3
4d. From left to

right are cases HDV, DHD, VHD, and DDV.

Case HDV. We assume d/c = 0/1 and d′′/c′′ = 1/0. The argument is the same
as in case HDH of Type U3

4c. The contribution is 2
3
kn5 + 1

3
kn3 when h = 2.

Case DHD. We assume d/c = 1/1 and d′′/c′′ = −1/1. This case has the same
contribution as case DHD of Type U3

4c, namely, 9
20
hn5 + 5

12
hn3 + 2

15
hn when k = 2.

Case VHD. We choose d/c = 0/1 and assume d′′/c′′ = 1/1. We first place P3

and P4 on the diagonal in α1/1(n) ways, then place P2 and P1 from P3 in n2 ways.
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We double for the two orderings of the slopes 0/1 and 1/0 and multiply by h for
the possible diagonal slopes d′′/c′′. The contribution here is 4

3
kn5 + 2

3
kn3, applicable

when h = 2.

Case DDV. We choose d/c = 1/1 and assume d′′/c′′ = 1/0. Case DD in Type
U2

3b counts configurations of P1, P2, and P3 in two attacking moves along diagonals
of slopes +1 and −1. Then we place P4 in relation to P3 in n ways. Accounting for
the two different orderings of the slopes 1/1 and −1/1, the contribution when k = 2
is
[
5
6
hn5 + 2

3
hn3 + 1

4
hn
]
− (−1)n 1

4
hn.

In all cases, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[
2kδh2 +

77h

60
δk2

]
n2q−3 +

[
kδh2 +

13h

12
δk2

]
n2q−5 +

23h

60
δk2n

2q−7 − (−1)n
h

4
δk2n

2q−7
}
.

Type U3
4e : The subspace U is defined by three hyperplane equations of different slope,

all involving the same piece, say U = H
d/c
12 ∩H

d′/c′

13 ∩Hd′′/c′′

14 . Given the set of slopes,
there are (q)4 ways to choose the pieces.

The number of ways to place four attacking pieces in U depends on the slopes.
When {1/1,−1/1} ⊂ {d/c, d′/c′, d′′/c′′}, then first place P1 and the two pieces de-
fined along diagonals as in Case DD from Type U2

3b and subsequently the last piece
horizontally or vertically in n ways, giving hn

{[
5
12
n4 + 1

3
n2 + 1

8

]
− (−1)n 1

8

}
ways for

the four pieces (contributing only when k = 2).
When {0/1, 1/0} ⊂ {d/c, d′/c′, d′′/c′′}, then place P1 and the piece aligned diago-

nally in kα1/1 ways and place the other two pieces in n2 ways, giving kn2
{

2
3
n3 + 1

3
n
}

placements (that contribute only when h = 2).
Once more, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[5h

12
δk2 +

2k

3
δh2

]
n2q−3 +

[h
3
δk2 +

k

3
δh2

]
n2q−5 +

h

8
δk2n

2q−7 − (−1)n
h

8
δk2n

2q−7
}
.

Type U3
4∗ :U

1
2U

2
2 : The subspace U decomposes into a hyperplane H

d/c
12 and a codimension-

2 subspace W=
34 of type U2

2. We write W=
34 = H

d′/c′

34 ∩H
d′′/c′′

34 , where d′/c′ 6= d′′/c′′.
There is no restriction on d/c.

There are (q)4/4 ways to choose the ordered pair of pairs of pieces, {P1,P2} and
{P3,P4}.

Since P4 is essentially merged with P3, the number of attacking configurations is∑
(c,d)∈M αd/c(n) =

(
h+ 2

3
k
)
n3 + 1

3
kn.

The Möbius function is a product, µ(0̂,U) = µ(0̂,H
d/c
12 )µ(0̂,W=

34) = 1 − |M| (see
Section I.3.2). The total contribution to oQhk(q;n) is

−(q)4(h+ k − 1)

{[h
4

+
k

6

]
n2q−3 +

k

12
n2q−5

}
.

Type U3
5∗a:U

1
2U

2
3a : The subspace U decomposes into a hyperplane and a codimension-2

subspace of type U2
3a, say U = H

d/c
12 ∩W

d′/c′

345 , where d/c may equal d′/c′. We can
choose the pieces in (q)5/2!3! ways.

The number of attacking configurations is
∑

(c,d)∈M αd/c(n) =
(
h + 2

3
k
)
n3 + 1

3
kn

times the count from Type U2
3a,
(
h+ 1

2
k
)
n4 + 1

2
kn2.
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As for the Möbius function, µ(0̂,U) = µ(0̂,H
d/c
12 )µ(0̂,U2

3a) = −2. The contribution
to oQhk(q;n) is therefore

−(q)5

{[h2
6

+
7hk

36
+
k2

18

]
n2q−3 +

[5hk

36
+
k2

12

]
n2q−5 +

k2

36
n2q−7

}
.

Type U3
5∗b:U1

2U
2
3b : The subspace U decomposes into a hyperplane and a codimension-2

subspace of type U2
3b. We write U = H

d/c
12 ∩H

d′/c′

34 ∩H
d′′/c′′

45 , with d′/c′ 6= d′′/c′′ and
arbitrary d/c. We can choose the five pieces in (q)5/2! ways.

The number of attacking configurations is
∑

(c,d)∈M αd/c(n) times the count from

Type U2
3b, thus

[
δh2 + 2

3
hk + 5

12
δk2
]
n4 +

[
1
3
hk + 1

3
δk2
]
n2 + 1

8
δk2 − (−1)n 1

8
δk2.

Here again µ(0̂,U) = −1. Consequently, the total contribution to oQhk(q;n) is

−1

2
(q)5

{[3h+ 2k

3
δh2 +

2

3
h2k +

4

9
hk2 +

5(3h+ 2k)

36
δk2

]
n2q−3

+
[1

3
kδh2 +

1

3
h2k +

4

9
hk2 +

(1

3
h+

13

36
k
)
δk2

]
n2q−5

+
[1

9
hk2 +

(1

8
h+

7

36
k
)
δk2

]
n2q−7 +

1

24
kδk2n

2q−9

− (−1)n
(

3h+ 2k

24
δk2n

2q−7 +
1

24
kδk2n

2q−9
)}

.

Type U3
6∗ :U

1
2U

1
2U

1
2 : The subspace U is defined by three hyperplane equations involving

six distinct pieces. Thus, U = H
d/c
12 ∩H

d′/c′

34 ∩H
d′′/c′′

56 is decomposable into the three
indicated hyperplanes, whose slopes are not necessarily distinct. The Möbius function
is µ(0̂,U) = −1.

There are
(

q
2,2,2,q−6

)
= (q)6/48 ways to choose an unordered triple of unordered

pairs of pieces. Then we fix an arbitrary ordering of the three pairs and assign any
slope d/c to the first pair, d′/c′ to the second, and d′′/c′′ to the third. The number
of attacking configurations in each case is αd/c(n) · αd′/c′(n) · αd′′/c′′(n). The total
contribution of all cases (before multiplication by n2q−12) is

− (q)6
48

∑
(c,d),(c′,d′),(c′′,d′′)∈M

αd/c(n) · αd′/c′(n) · αd′′/c′′(n)

= −(q)6
48

[ ∑
(c,d)∈M

αd/c(n)

]3
= −(q)6

48

[
3h+ 2k

3
n3 +

k

3
n

]3
.

Thus, the contribution of Type U3
6∗ to oQhk(q;n), after multiplication by the n2q−12

ways to place the remaining pieces, is

− (q)6

{
(3h+ 2k)3

1296
n2q−3 +

3k(3h+ 2k)2

1296
n2q−5 +

3k2(3h+ 2k)

1296
n2q−7 +

k3

1296
n2q−9

}
.

Summing the contributions of each type completes the proof of Lemma 3.3. (We verified
the sum via Mathematica.) �

We resume the proof of Theorem 3.1.
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No contributions to γ2 come from subspaces of codimension 0 or 1. To find γ2 we extract
the coefficient of n2q−2 from (3.6).

Summarizing the analysis for γ3: When calculating γ3, there are contributions from the
subspaces of codimensions 3, 2, and 1. Combining their contributions implies that the
coefficients γ3 are as in (3.3).

The contribution to γ4 from any subspace of codimension four or greater is necessarily
constant, and by our calculations the contribution is constant for every subspace of lesser
codimension. This implies that γ4 is constant for all partial queens.

A periodic contribution to γ5 can arise only from subspaces of codimension 1 through 4,
and by Lemma 3.2 only from codimensions 3 and 4. The coefficient of n2q−5 in α(U;n) for
codimU = 4 is zero, by Theorem II.3.4. The periodic parts of all codimension-3 subspaces
are collected in Lemma 3.3, in which the periodic coefficient of n2q−5 is −(−1)n(q)3hδk2/8,
so that is the periodic part of q!γ5.

A periodic contribution to γ6 can arise only from subspaces of codimension 1 through
5, and by Lemmas 3.2 and 3.3 only from codimensions 2, 4, and 5. Theorem II.3.4 shows
that codimension 5 contributes nothing, while codimension 4 contributes with a period of
lcm{1} = 1; that is, a constant. It follows that γ6 has periodic part −(q)3(−1)n δk2

8
/q! from

codimension 2. �

If we hold q fixed, the counting quasipolynomials for the queen and the partial queen Q12

are the only ones of partial queens that have non-constant coefficient γ5 with period 2. As
for γ6, it will have period 2 when the piece has two diagonal moves, as is true of both bishops
and queens, but otherwise it is constant.
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4. Two and Three Partial Queens

These observations are on display when we use our theory to calculate the counting
quasipolynomial uQhk(3;n). The results agree with formulas proposed by Kotěšovec, who
supplemented his formulas for bishops and queens by independently calculating (but, as is
his practice, not proving) the other cases in his fifth edition [3] after we suggested studying
partial queens.

Complete formulas for two or three partial queens are in Theorems 4.1 and 4.2.

Theorem 4.1. The counting quasipolynomial for two partial queens Qhk is

uQhk(2;n) =
1

2
n4 − 3h+ 2k

6
n3 +

h+ k − 1

2
n2 − k

6
n.

Proof. In Theorem II.2.3 there are h moves with (ĉ, d̂) = (0, 1) and k with (ĉ, d̂) = (1, 1).

So, all d̂r = 1 and n mod d̂r = 0. �

Theorem 4.2. The counting quasipolynomial for three partial queens Qhk is a polynomial
when k < 2 and has period 2 when k = 2. The formula is

uQhk(3;n) =
1

6
n6 − 3h+ 2k

6
n5

+

[
3h+ 2k

6
+
h(k + 1) + (h+ 1)k

3
− 1

2
+ δh2 +

5δk2
12

]
n4

−
[

(h+ k − 1)(3h+ 2k)

3
+
k

6
+

2kδh2
3

+
5hδk2

12

]
n3

+

[
(h+ k − 1)2(h+ k + 2)

6
+
hk

3
+
k

6
+
δk2
3

]
n2

−
[

(h+ k − 1)k

3
+
kδh2

3
+

11hδk2
24

]
n+

δk2
8

+ (−1)n
δk2
8

(
hn− 1

)
.

Table 4.1 lists the quasipolynomials for the various partial queens.

Note that uQ00(3;n) =
(
n2

3

)
, uQ10(3;n) = n3

(
n3

3

)
, and uQ20(3;n) = [(n)3]

2, as one would
expect from elementary counting.

In all instances, these equations agree with Kotěšovec’s conjectures and data. The formulas
for γ3 for the queen, Q22, and the partial queens Q11, Q21, and Q12 are new. (After we
suggested partial queens, Kotěšovec computed many values of the counting functions and
inferred formulas which we employed to correct and verify our theoretical calculations.)

Proof. The only subspaces that contribute to oQhk(3;n) = 3!uQhk(3;n) are those that involve
three pieces or fewer. The subspace R2q of codimension 0 contributes n2q. The contribution
from codimension 1 is given in Equation (3.5). In the proof of Theorem 3.1, we already have
calculated the contributions from subspaces of types U2

2, U
2
3a, U

2
3b, U3

3a, and U3
3b. There is

one final type of subspace, involving three pieces.

Type U4
3 : The subspace U is defined by four hyperplane equations on three pieces that

specify that the pieces all occupy one position on the board; that is, U = W=
ijl.
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(h, k) uQhk(3;n)

(0, 0) n6

6
− n4

2
+ n2

3

(1, 0) n6

6
− n5

2
+ n4

3

(2, 0) n6

6
− n5 + 13n4

6
− 2n3 + 2n2

3

(0, 1) n6

6
− n5

3
+ n4

6
− n3

6
+ n2

6

(1, 1) n6

6
− 5n5

6
+ 5n4

3
− 11n3

6
+ 7n2

6
− n

3

(2, 1) n6

6
− 4n5

3
+ 25n4

6
− 37n3

6
+ 25n2

6
− n

(0, 2) n6

6
− 2n5

3
+ 5n4

4
− 5n3

3
+ 4n2

3
− 2n

3
+ 1

8
− (−1)n 1

8

(1, 2) n6

6
− 7n5

6
+ 41n4

12
− 65n3

12
+ 14n2

3
− 43n

24
+ 1

8
+ (−1)n

{
n
8
− 1

8

}
(2, 2) n6

6
− 5n5

3
+ 79n4

12
− 25n3

2
+ 11n2 − 43n

12
+ 1

8
+ (−1)n

{
n
4
− 1

8

}
Table 4.1. The quasipolynomials that count nonattacking configurations of
three partial queens.

There is one subspace for each of the
(
q
3

)
unordered triples of pieces. The number

of points in a subspace is n2, the size of the board.
According to Lemma I.3.1, µ(0̂,U) = (h+ k − 1)2(h+ k + 2), which happily gives

0 when h+ k = 1.
Consequently, the contribution to oQhk(q;n) is(

q

3

)
(h+ k − 1)2(h+ k + 2)n2q−4.

Combining all contributions and dividing by q! = 6 gives the formula of the theorem. �

We can now calculate the number of combinatorial types for two and three partial queens.

Corollary 4.3. The number of combinatorial types of nonattacking configuration of q partial
queens Qhk is h+ k when q = 2 and when q = 3 is given by Table 4.2.

h \ k 0 1 2

0 – 1 6

1 1 6 17

2 6 17 36

Table 4.2. The number of combinatorial types of nonattacking configuration
for three partial queens.
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Proof. Set n = −1 in uQhk(q;n) and apply Theorem I.5.3. �

For q = 2 we get the number of basic moves, in accord with Proposition I.5.6. For q = 3
the number of types depends only on the number of moves, just as when we compared three
queens to three nightriders in the end of Section I.5. The numbers match [4, Sequence
A084990], whose formula is s(s2 + 3s− 1)/3 with s := |M|.

Conjecture 4.4. The number of combinatorial configuration types of three pieces is

|M|
(
|M|2 + 3|M| − 1

)
/3.



A q-Queens Problem. III. Partial Queens February 21, 2014 23

5. Volumes and Evaluations

Here are an observation and a related problem suggested by our calculation of partial
queen coefficients and similar computations for the nightrider in Part IV.

5.1. A quasipolynomial observation.
It is striking that with Theorems 3.1 and IV.3.3 we can know the period and periodic part

of a quasipolynomial coefficient without knowing anything about the rest of the coefficient.

5.2. A problem of volumes. It should be possible to find the volume of U∩[0, 1]2q without
the trouble of finding its complete Ehrhart quasipolynomial. Doing so would provide the
leading term of α(U;n) and thereby the exact contribution of U to γcodimU. This would be
helpful for all pieces, not only partial queens.

The advantage would be that, if α(U;n) were known for all subspaces of lesser codimension
than i and if vol(U ∩ [0, 1]2q) were known for all subspaces of codimension i, then γi would
be completely known. Thus we could complete the evaluations of γ5 and γ6 in Theorem 3.1
and of γ3 for nightriders in Part IV.
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Dictionary of Notation

(c, d), (cr, dr) – coords of move vector (pp. 4)

(ĉ, d̂) – (min,max) of c, d (p. 4)
d/c – slope of line or move (p. 4)
h – # horiz, vert moves of partial queen (p. 5)
k – # diagonal moves of partial queen (p. 5)
m = (c, d), mr = (cr, dr) – basic move (p. 4)
n – size of square board (p. 2)
n+ 1 – dilation factor for board (p. 4)
[n] = {1, . . . , n} (p. 4)
[n]2 – square board (p. 4)
oP(q;n) – # nonattacking lab configs (p. 4)
q – # pieces on a board (p. 2)
r – move index (p. 4)
uP(q;n) – # nonattacking unlab configs (p. 4)
z = (x, y), zi = (xi, yi) – piece position (p. 4)

z = (z1, . . . , zq) – vector in R2q

z = (z1, . . . , zq) – configuration (p. 4)

α(U;n) – # attacking configs in U (p. 4)
αd/c(n) – # 2-piece collinear attacks (p. 4)
βd/c(n) – # 3-piece collinear attacks (p. 4)
γi – coefficient of uP (p. 4)
δij – Kronecker delta (p. 4)
ε = 1

2
[1− (−1)n] ≡ n mod 2 (p. 11)

ν – codimU (p. 7)
µ – Möbius function of L (p. 4)
κ – # of pieces in eqns of U (p. 4)

M – set of basic moves (p. 4)

AP – move arr of piece P (p. 4)

H
d/c
ij – hyperplane for move (c, d) (p. 4)

L – intersection semilattice (p. 4)
[0, 1]2q – polytope (p. 4)
([0, 1]2q,AP) – inside-out polytope (p. 4)
U – subspace in intersection semilatt (p. 4)
Uν
κa – subsp of codim ν with κ moves (p. 7)

W
d/c
i... – subspace of collinearity (p. 5)

W=
i... – subspace of equal position (p. 8)

R – real numbers
Z – integers

P – piece (p. 4)
Pi – i-th labelled copy of P (p. 4)
Qhk – partial queen (p. 5)



A q-Queens Problem. III. Partial Queens February 21, 2014 25

References

[1] Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem. I. General theory.
II. The square board. Submitted. IV. Queens, bishops, nightriders (and rooks). V. The bishops’ period.
In preparation.
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