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Abstract

To understand biological diversification, it is important to account for large-scale
processes that affect the evolutionary history of groups of co-distributed populations
of organisms. Such events predict temporally clustered divergences times, a pattern
that can be estimated using genetic data from co-distributed species. I introduce a
new approximate-Bayesian method for comparative phylogeographical model-choice
that estimates the temporal distribution of divergences across taxa from multi-locus
DNA sequence data. The model is an extension of that implemented in msBayes.
By reparameterizing the model, introducing more flexible priors on demographic and
divergence-time parameters, and implementing a non-parametric Dirichlet-process prior
over divergence models, I improved the robustness, accuracy, and power of the method
for estimating shared evolutionary history across taxa. The results demonstrate the
improved performance of the new method is due to (1) more appropriate priors on
divergence-time and demographic parameters that avoid prohibitively small marginal
likelihoods for models with more divergence events, and (2) the Dirichlet-process pro-
viding a flexible prior on divergence histories that does not strongly disfavor models
with intermediate numbers of divergence events. The new method yields more robust
estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly
estimate models of shared evolutionary history with strong support.
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1 Background
Understanding the processes that generate biodiversity and regulate community assembly

is a major goal of evolutionary biology. Large-scale changes to the environment, including
geological and climatic events, can affect the evolutionary history of entire communities of
co-distributed species and their associated microbiota. For example, by partitioning com-
munities, such an event can isolate groups of populations and cause a temporal cluster of
speciation events across co-distributed taxa. Given the dynamic nature of our planet, such
biogeographical processes likely play a significant role in determining diversification rates and
patterns. At recent timescales, temporal clusters of diversification caused by biogeographical
events can leave a signature in the genetic variation within and among the affected lineages.
Thus, methods for accurately estimating models of shared evolutionary events across co-
distributed taxa from genetic data are important for better understanding how regional and
global biogeographical processes affect biodiversity.

This inference problem is challenging due to the stochastic nature by which mutations
occur in populations and how they are inherited over generations [1, 2]. Thus, a method
for estimating historical patterns of divergences across taxa should explicitly model the
stochastic mutational and ancestral processes that generate and filter the genetic variation
we observe in present-day genetic data. An appealing approach would be a comparative,
Bayesian model-choice method for inferring the probability of competing divergence histo-
ries while integrating over uncertainty in mutational and ancestral processes via models of
nucleotide substitution and lineage coalescence. The sample space of such a model-choice
procedure would include all models ranging from a single divergence-time parameter (i.e.,
simultaneous divergence of all co-distributed taxa) to the fully generalized model in which
each taxon diverged at a unique time.

The software package msBayes implements such an approach in an approximate-Bayesian
model-choice framework [3, 4]. The method models temporally clustered divergences across
taxa caused by a biogeographical event (or a “divergence event”) as a single, instantaneous
occurrence. In other words, a divergence event causes a set of taxa to share the same
moment of divergence along a continuous time scale (i.e., simultaneous divergence). Given
aligned sequence data for Y pairs of populations, msBayes estimates the number of divergence
events shared among the pairs, the timing of the events, and the assignment of pairs to the
events, while integrating out uncertainty in demographic parameters and the genealogical
histories of the sequences. Thus, the method samples over all possible divergence models of
differing dimensionality (i.e., all the possible partitions of Y pairs to 1, 2, . . . , Y divergence-
time parameters), and, in so doing, estimates the posterior probability of each model.

msBayes has been used to address biogeographical questions in a variety of empirical
systems. Some examples include (1) whether the rise of the Isthmus of Panama caused co-
divergence among species of echinoids co-distributed across the Pacific and Atlantic sides of
the isthmus [3], (2) if an historical seaway across the Baja Peninsula caused co-divergence
across species of squamates and mammals co-distributed both north and south of the putative
seaway [5], (3) if species of gall-wasps and their associated parasitoids share divergences
across putative glacial refugia [6], and (4) whether repeated fragmentation of the oceanic
Islands of the Philippines during Pleistocene sea-level fluctuations caused diversification of
vertebrate taxa distributed across the islands [7]. Such applications of the method often result
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in strong posterior support for co-divergence among all or subsets of the taxa investigated
(e.g., [3, 5–12]).

For priors on divergence-time and demographic parameters, msBayes uses continuous
uniform probability distributions. This causes divergence models with more divergence-
time parameters to integrate over a much greater parameter space with low likelihood yet
high prior density, which can result in small marginal likelihoods relative to models with
fewer divergence-time parameters [13, 14]. Given that the marginal likelihood of a model
weighted by its prior is what determines its posterior probability, this can cause support for
models with fewer divergence events [7, 15]. This is not a critique of Bayesian model choice
in general; comparing models by their marginal likelihoods provides a “natural” penalty
for over-parameterization and can be a great strength of the Bayesian approach. However,
given the sensitivity of marginal likelihoods to the prior, care is needed when selecting prior
distributions [14]. Selecting distributions that will often place high prior density in large
regions of parameter space with low likelihood can lead to small marginal likelihoods of
parameter-rich models even if they are correct.

Furthermore, msBayes uses a discrete uniform prior over the number of divergence events
1, 2, . . . , Y. Because there are many more possible assignments of population pairs to in-
termediate numbers of divergence events, this imposes a prior on divergence models that
puts most of the prior mass on models with either very few or very many divergence-time
parameters (see Figure 5 of [7]; for brevity I will refer to this prior as “U-shaped”). Given
that models with many divergence events can have small marginal likelihoods due to the
uniform priors on divergence-time parameters, the U-shaped prior will effectively create a
strong prior preference for models with very few divergence events.

Recently, Oaks et al. [7, 15] found via simulation that msBayes will often strongly support
models with a small number of divergence events shared among taxa, even when divergences
were random over broad timescales. They suggested this behavior was due to the combination
of uniform priors on parameters causing small marginal likelihoods of richer models and the
U-shaped prior on divergence models. Hickerson et al. [16] suggested the problem was caused
by sampling error, and proposed as a solution an approximate-Bayesian model averaging
approach that samples over empirically informed uniform priors. However, Oaks et al. [15]
evaluated the approach proposed by Hickerson et al. [16] using simulations and found that it
did not mitigate the method’s propensity to incorrectly infer clustered divergences, and often
preferred priors that excluded the true values of the model’s parameters. Here, I describe a
new approach that successfully mitigates spurious inference of co-divergence while avoiding
negative side effects of empirically informed uniform priors.

In this study, I introduce a new method, implemented in the software dpp-msbayes, that
extends the model of msBayes. I use this method to test whether alternative parameteriza-
tions and priors improve the behavior of the approximate-Bayesian model-choice approach
to estimating shared divergence events. The new approach uses a Dirichlet-process prior
(DPP) over all possible models of divergence, and gamma and beta probability distributions
in place of uniform priors on many of the model’s parameters. Using simulations, I show
that the new implementation has improved robustness, accuracy, and power compared to the
original model. The results confirm that the improved performance of the new model is due
to a combination of (1) more flexible priors on divergence-time and demographic parameters
that avoid placing high prior density in improbable regions of parameter space, and (2) a
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diffuse Dirichlet-process prior that does not strongly disfavor divergence models with inter-
mediate numbers of divergence events. After reanalyzing sequence data from 22 pairs of taxa
from the Philippines [7] under the new model, I find a large amount of posterior uncertainty
in the number of divergence events shared among the taxa; a result in contrast with the
original msBayes model and congruent with intuition given the richness of the model and
the relatively small amount of information in the data.

2 Methods

2.1 The model

In this section, I describe the model, which is a modification of the model implemented
in msBayes [4, 7]. The code implementing the new model is freely available in the open-
source software package dpp-msbayes (https://github.com/joaks1/dpp-msbayes). To
perform the analyses described below, I used the freely avaliable, open-source software
package PyMsBayes (https://github.com/joaks1/PyMsBayes), which provides a multi-
processing interface to msBayes and dpp-msbayes. I performed the work described be-
low following the principles of Open Notebook Science. Using version-control software,
I make progress in all aspects of the work freely and publicly available in real-time at
https://github.com/joaks1/msbayes-experiments. All information necessary to repro-
duce my results is provided there. I follow much of the notation of Oaks et al. [7], but modify
it to aid in the description of the new model. A summary of my notation can be found in
Table 1.

I assume an investigator is interested in inferring the distribution of divergence times
among Y pairs of populations. For each pair i, ni genome copies have been sampled, with n1,i

copies sampled from population 1, and n2,i sampled from population 2. From these genomes,
let ki be the number of DNA sequence loci collected for population pair i, and K be the total
number of unique loci sampled across the Y pairs of populations. I use Xi,j to represent the
multiple sequence alignment of locus j for population pair i. X = (X1,1, . . . , XY,kY ) is the full
dataset, i.e., a vector of sequence alignments for all pairs and loci. Let Gi,j represent the gene
tree upon which Xi,j evolved according to fixed HKY85 substitution model parameters φi,j.
The investigator must specify the parameters of all φ = (φ1,1, . . . , φY,kY ) substitution models
by which the alignments evolved along the G = (G1,1, . . . , GY,kY ) gene trees. Furthermore,
the investigator must specify a vector of fixed constants ρ = (ρ1,1, . . . , ρY,kY ) that scale the
population-size parameters for known differences in ploidy among loci and/or differences in
generation times among population pairs. Lastly, the investigator must also specify a vector
of fixed constants ν = (ν1,1, . . . , νY,kY ) that scale the population-size parameters for known
differences in mutation rates among loci and/or among taxa.

With X, φ, ρ, and ν in hand, the joint posterior distribution of the model is given by
Bayes’ rule as

p(G,T,Θ,υ, α |X,φ,ρ,ν) =
p(X |G,T,Θ,υ, α,φ,ρ,ν)p(G,T,Θ,υ, α |φ,ρ,ν)

p(X |φ,ρ,ν)
, (1)

which can be expanded using the chain rule of probability into components that are assumed
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to be independent to get

p(G,T,Θ,υ, α |X,φ,ρ,ν) =
p(X |G,φ)p(G |T,Θ,υ,ρ,ν)p(υ |α)p(α)p(T)p(Θ)

p(X |φ,ρ,ν)
, (2)

where T = (T1, . . . , TY) is a vector of population divergence times for each of the Y pairs
of populations, Θ = (Θ1, . . . ,ΘY) is a vector of the demographic parameters for each of the
Y population pairs, υ = (υ1, . . . υK) is a vector of locus-specific mutation-rate multipliers
for each of the K loci, α is the shape parameter of a gamma-distributed prior on υ, and
p(X |φ,ρ,ν) is the probability of the data (or the marginal likelihood of the model) given
the fixed constants provided by the investigator.

To avoid calculating the likelihood terms of Equation 2, I distill each sequence alignment
X into a vector of insufficient summary statistics S, thus replacing the full dataset X =
(X1,1, . . . , XY,kY ) with vectors of summary statistics for each alignment S∗ = (S∗1,1, . . . , S

∗
Y,kY

).
Optionally, for each population pair, the means of the summary statistics can be calculated
across the k loci, and the vector can be further reduced to S∗ = (S∗1 , . . . , S

∗
Y). With S∗ in

hand, we can estimate the approximate joint posterior distribution

p(G,T,Θ,υ, α |Bε(S∗),φ,ρ,ν) =
p(Bε(S

∗) |G,φ)p(G |T,Θ,υ,ρ,ν)p(υ |α)p(α)p(T)p(Θ)

p(Bε(S
∗) |φ,ρ,ν)

, (3)

where Bε(S
∗) is the multidimensional Euclidean space around the vector of summary statis-

tics, the radius of which is the tolerance ε. The sources of approximation are the insufficiency
of the statistics and the ε being greater than zero. I describe the full model in detail before
delving into the numerical method of estimating the approximate model.

2.1.1 Likelihood and gene-tree prior terms of Equation 2

The likelihood and gene-tree prior terms of Equation 2 can be expanded out as a product
over population pairs and loci

p(X |G,φ)p(G |T,Θ,υ,ρ,ν) =
Y∏
i=1

ki∏
j=1

p(Xi,j |Gi,j, φi,j)p(Gi,j |Ti,Θi, υj, ρi,j, νi,j). (4)

The first term, p(Xi,j |Gi,j, φi,j), is the probability of the sequence alignment of locus j for
population pair i given the gene tree and HKY85 [17] substitution model parameters [18,
i.e., the “Felsenstein likelihood”]. The model allows for an intra-locus recombination rate r,
which, for simplicity, is assumed to be zero in Equation 2. If r is non-zero, this term requires
an additional product over the columns (sites) of each sequence alignment to allow sites to
have different genealogies. The second term, p(Gi,j | Ti, Θi, υj, ρi,j, νi,j), is the probability of
the gene tree under a multi-population coalescent model (i.e., species tree) where the ances-
tral population of pair i diverges and gives rise to the two sampled descendant populations.
Each Θ contains the following demographic parameters: The mutation-rate-scaled effective
sizes (θ = 4Nµ) of the ancestral, θA, and descendant populations, θD1 and θD2; the propor-
tion of the first, ζD1, and second population, ζD2, that persist during bottlenecks that begin
immediately after divergence in forward-time; the proportion of time between present and
divergence when the bottlenecks end for both populations, τB; and the symmetric migration
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rate between the descendant populations, m. Thus, the probability of the ni− 1 coalescence
times (node heights) of gene tree Gi,j is given by a multi-population Kingman-coalescent
model [19] where the ancestral population of size θA,iρi,jνi,jυj diverges at time Ti into two
descendant populations of constant size θD1,iρi,jνi,jυjζD1,i and θD2,iρi,jνi,jυjζD2,i, which, after
time TiτB,i, grow exponentially to their present size θD1,iρi,jνi,jυj and θD2,iρi,jνi,jυj, respec-
tively. Following divergence, the descendant populations of pair i exchange migrants at a
symmetric rate of mi.

2.1.2 Additional prior terms of Equation 2

The term p(α) is the prior density function for the shape parameter of the gamma-
distributed prior on rate heterogeneity among loci. This prior is α ∼ U(1, 20). The prior
probability of the vector of locus-specific mutation-rate multipliers given α then expands out
as a product over the loci

p(υ |α) =
K∏
j=1

p(υj |α), (5)

where each υ is independently and identically distributed (iid) as υ ∼ Gamma(α, 1/α). If
the recombination rate r is allowed to be non-zero, the prior term p(r) would be added to
Equation 2, and the prior would be r ∼ Gamma(ar, br), where ar and br are specified by the
investigator.

The prior term for the demographic parameters, p(Θ), expands out into its components
and as a product over the Y pairs of populations

p(Θ) =
Y∏
i=1

p(θA,i)p(θD1,i)p(θD2,i)p(ζD1,i)p(ζD2,i)p(τB,i)p(mi). (6)

The priors for the demographic parameters are θA ∼ Gamma(aθA , bθA), θD1 ∼ Gamma(aθD , bθD),
θD2 ∼ Gamma(aθD , bθD), ζD1 ∼ Beta(aζD , bζD), ζD2 ∼ Beta(aζD , bζD), τB ∼ U(0, 1), and
m ∼ Gamma(am , bm), where the hyper-parameters of each prior distribution can be spec-
ified by the investigator. By default, θA, θD1, and θD2 share the same prior (i.e., aθA = aθD
and bθA = bθD), but a separate gamma-distributed prior can be assigned to θA. Also, the ζD1,
ζD2, and m parameters are optional (i.e., the investigator can assume that there has been no
migration between populations of each pair and/or the population size of each descendant
population has been constant through time).

2.1.3 Priors on divergence models

The prior term for the vector of divergence times for each of the Y pairs of populations,
T, can be expanded as

p(T) = p(t)p(τ | t), (7)

where τ is an ordered set of divergence-time parameters {τ1, . . . , τ|τ|} whose length |τ| can
range from 1 to Y, and t is a vector of indices (t1, . . . , tY), where ti ∈ {1, . . . , |τ|}. These
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indices map each of the Y pairs of populations to a divergence-time parameter in τ. Thus,
T is the result of applying the mapping function

f(τ, t, i) = τti (8)

to each population pair i, such that T = (T1 = f(τ, t, 1), . . . , TY = f(τ, t, Y)).
Biologically speaking, τ contains the times of divergence events, the length of which |τ|

is the number of divergence events shared across the Y pairs of populations. For example, if
τ contains a single divergence-time parameter τ1, all Y pairs of populations are constrained
to diverge at this time (i.e., t would contain the index 1 repeated Y times, and T would
contain the value τ1 repeated Y times), whereas if it contains Y divergence-time parameters,
the model is fully generalized to allow all of the pairs to diverge at unique times.

Unlike the model implemented in msBayes, here I place priors on t and τ, rather than
|τ| and τ. As a result, t determines the number of divergence-time parameters (|τ|) in the
model. Below, I first describe the prior used for τ and the timescale it imposes on the model
before discussing the priors implemented for t.

Each τ within τ is iid as τ ∼ Gamma(aτ , bτ), where aτ and bτ are specified by the
investigator. Thus, given the number of unique divergence-time classes in t, this determines
the probability of prior term p(τ | t). The divergence times are in coalescent units relative to
the size of a constant reference population, which I denote θC , that is equal to the expectation
of the prior on the size of the descendant populations

θC = E(θD), (9)

Given the size of the descendant populations are iid as θD1 ∼ Gamma(aθD , bθD) and θD2 ∼
Gamma(aθD , bθD), this becomes

θC = aθDbθD . (10)

More specifically, the τ parameters are in units of θC/µ generations, which I denote as
4NC generations. Thus, each τ within τ is proportional to time and can be converted to
the number of generations of the reference population, which I denote τGC , by assuming a
mutation rate and multiplying by the effective size of the reference population

τGC = τ×
θC
µ

= τ×
aθDbθD
µ

. (11)

Thus, for each of the divergence times in τ to be on the same scale, the relative mutation
rates among the pairs of populations are assumed to be known and fixed according to the
user-provided values in ν.

As described by Oaks et al. [7], to get the divergence times in units proportional to the
expected number of mutations, they must be scaled by the realized population size for locus
j of population-pair i

Ti,j = Ti ×
θC

θ̄D,iρi,j
, (12)

where θ̄D,i is the mean of θD1 and θD2 for pair i. This gives us the vector of scaled divergence
times T = (T1,1, . . . , TY,kY ).
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As for the prior term p(t), the total sample space of t is all the possible partitionings
of the Y pairs of populations into 1 to Y divergence-time classes, where each partitioning
consists of non-overlapping and non-empty subsets whose union is the Y pairs. Hereinafter, I
refer to these partitionings as “ordered” divergence models or partitions. The total number
of possible partitions is a sum of the Stirling numbers of the second kind over all possible
numbers of categories |τ|

BY =
Y∑
|τ|=1

 1

|τ|!

|τ|−1∑
j=0

(−1)j
(|τ|
j

)
(|τ| − j)Y

 , (13)

which is the Bell number [20]. The original msBayes model samples over the unordered
realizations of t, such that the sample space is reduced to all the possible integer partitions
of Y [4, 7, 21–23] (Table S1). I denote the set of all possible integer partitions of the Y
pairs of populations as a(Y) and the length of that set as |a(Y)|, and I hereinafter refer to
these integer partitions as “unordered” divergence models or partitions. The advantages,
disadvantages, and justification of ignoring the order of t is discussed in detail below.

I implement two prior probability distributions over the space of all possible divergence
models (t). The first simply gives all possible unordered partitions of Y elements equal
probability

p(t) =
1

|a(Y)| , (14)

i.e., a discrete uniform prior over all the integer partitions of Y (unordered divergence models).
I denote this prior as t ∼ DU{a(Y)}.

The second prior is based on the Dirichlet process, which is a stochastic process that
groups random variables into an unknown number of discrete parameter classes [24, 25]. The
Dirichlet process has been used as a non-parametric Bayesian approach to many inference
problems in evolutionary biology [26–31]. Here, I use the Dirichlet process to place a prior
over all possible ordered partitions of Y population pairs into divergence-time parameter
classes (i.e., “divergence events”). As discussed above, the time of each divergence-time
parameter is drawn from the base distribution τ ∼ Gamma(aτ , bτ). The partitioning of the
population pairs to divergence-time classes is controlled by the concentration parameter χ,
which determines how clustered the process will be. I take a hierarchical approach and use a
prior probability distribution (i.e., hyperprior) for χ [32]. More specifically, I use a gamma-
distributed prior χ ∼ Gamma(aχ, bχ), where aχ and bχ are specified by the investigator. I
use t ∼ DP (χ) to denote this Dirichlet-process prior.

This provides a great deal of flexibility for specifying the prior uncertainty regarding
divergence models. The concentration parameter χ determines the prior probability that
any two pairs of populations i and j will be assigned to the same divergence-time parameter

p(ti = tj) =
1

1 + χ
, (15)

and also the prior probability of the number of divergence-time parameters

p(|τ| | χ, Y) =
c(Y, |τ|)χ|τ|∏Y
i=1(χ+ i− 1)

, (16)
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where c(·, ·) are the unsigned Stirling numbers of the first kind. Equations 15 and 16 show
that smaller values of χ will favor fewer divergence-time parameters, and thus more clustered
models of divergence, whereas larger values will favor more divergence-time parameters, and
thus less clustered models of divergence.

2.2 Differences between this model and the original msBayes model

2.2.1 The prior on divergence models

One of the key differences between my model and that of msBayes [4] is the prior dis-
tribution on divergence models. As discussed in Oaks et al. [7], in msBayes the prior used
for t is a combination of a discrete uniform prior over the possible number of divergence
events |τ| from 1 to Y with a multinomial distribution on the number of times each index of
τ appears in t, with the constraint that all τ parameters are represented at least once (see
Equation 2 of [7]). I denote this prior used by msBayes as t ∼ DU{1, . . . , Y}. Oaks et al. [7]
discuss how placing a uniform prior over the number of divergence parameters (denoted |τ|
here, and as Ψ in [4]) imposes an “U-shaped” prior over divergence models (t; see Figure 5B
of [7]). To avoid this, I place priors directly on the sample space of divergence models, thus
eliminating the parameter Ψ from the model. I introduce two priors on divergence models:
(1) a prior that is uniform over all unordered divergence models, and (2) a Dirichlet-process
prior on all ordered divergence models. The latter provides an investigator with a great deal
of flexibility in expressing their prior beliefs about models of divergence.

2.2.2 Estimating ordered divergence models

As mentioned above, msBayes samples over unordered divergence models (i.e., unordered
partitions of the Y pairs of populations). That is, the identity of each population pair, and
all the information associated with it, is discarded. In my implementation, inference can be
done on either unordered or ordered models of divergence. This is discussed in more detail
in the description of the ABC implementation below.

2.2.3 The priors on nuisance parameters

I have replaced the use of continuous uniform distributions for priors on many of the
model’s parameters (τ, θA, θD1, θD2, ζD1, ζD2, r, m) with more flexible parametric distribu-
tions from the exponential family. I introduce gamma-distributed priors for rate parameters
that have a sample space of all positive real numbers (τ, θA, θD1, θD2, r, m), and beta-
distributed priors for parameters that are proportions bounded by zero and one (ζD1 and
ζD2). These priors provide an investigator with much greater flexibility in expressing prior
uncertainty regarding the parameters of the model.

In addition, I have modified the prior on the sizes of the descendant populations of each
pair. As described by Oaks et al. [7], msBayes uses the joint prior

θD1, θD2 ∼ Beta(1, 1)× 2× U(aθ , bθD), (17)

such that the user-specified uniform prior on descendant population size is a prior on
the mean size of the two descendant populations of each pair. Under my model, the

9



sizes of the descendant populations of each pair are iid as θD1 ∼ Gamma(aθD , bθD) and
θD2 ∼ Gamma(aθD , bθD). This relaxes the assumption that the sizes of the two descendant
populations are interdependent and negatively correlated.

2.2.4 Flexibility in parameterizing the model

In the new implementation, I provide the ability to control the richness of the model.
For the θ parameters, by default, the model is fully generalized to allow each population pair
to have three parameters: θA, θD1, and θD2. Furthermore, if an investigator prefers to reduce
the number of parameters, any model of θ parameters nested within this general model can
also be specified, including the most restricted model where the ancestral and descendant
populations of each pair share a single θ parameter.

I also provide the option of eliminating the parameters associated with the post-divergence
bottlenecks in the descendant populations of each pair (τB, ζD1, and ζD2), which constrains
the descendant populations to be of constant size from present back to the divergence event.
Also, rather than eliminate the bottleneck parameters, I allow ζD1 and ζD2 to be constrained
to be equal, which removes one free parameter from the model for each of the population
pairs.

Overall, my implementation allows an investigator to specify a model that has as many
as seven parameters per population pair (θA, θD1, θD2, τB, ζD1, ζD2, and m) or as few as one
parameter per pair (θ), in addition to the ni− 1 coalescence-time parameters (i.e., the node
heights of the gene tree).

2.2.5 Time scale

As described above, divergence times are in units of θC/µ generations, where θC is the
expectation of the prior on descendant-population size. As described by Oaks et al. [7], in
msBayes, θC is half of the upper limit of the continuous uniform prior on the mean of the
descendant population sizes. This is only equal to the expectation of the prior if the lower
limit of the prior is zero.

2.3 ABC estimation of the posterior of the model

2.3.1 Sampling from the prior

To estimate the approximate posterior of Equation 3, I use an ABC rejection algorithm.
The first step of this algorithm entails collecting a random sample of parameter values from
the joint prior and their associated summary statistics. Each sample is generated by (1)
drawing values of all the model’s parameters, which I denote Λ, from their respective prior
distributions; (2) simulating gene trees G = (G1,1, . . . , GY,kY ) for each locus of each popu-
lation pair by drawing coalescent times from a multi-population Kingman-coalescent model
given the demographic parameters; (3) simulating sequence alignments X = (X1,1, . . . , XY,kY )
along the gene trees under the HKY85 substitution parameters φ = (φ1,1, . . . , φY,kY ) that
have the same number of sequences and sequence lengths as the observed dataset; and (4)
calculating population genetic summary statistics S = (S1,1, . . . , SY,kY ) from the simulated
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sequence alignments. Optionally, an additional step can be performed to reduce the sum-
mary statistics to the means across loci for each population pair to get S = (S1, . . . , SY).
Either way, S contains the same summary statistics as those estimated from the observed
data S∗. After repeating this procedure n times, we have a random sample of parameter
vectors Λ = (Λ1, . . . ,Λn) from the model prior and their associated vectors of summary
statistics S = (S1, . . . ,Sn).

For all of the analyses below, I use four summary statistics for each pair of populations:
π [33], θW [34], πnet [35], and SD(π − θW ) [36]. Furthermore, in addition to model parame-
ters, each sample Λ also contains four statistics that summarize T: the mean (T̄), variance
(s2
T), dispersion index (DT = s2

T/T̄), and the number of divergence time parameters (|τ|).
Previously, these have been denoted as E(τ), V ar(τ), Ω, and Ψ, respectively [3, 4, 7]. I use
T̄ and s2

T in place E(τ) and V ar(τ) to make clear that these values do not represent the
prior or posterior expectation/variance of divergence times. I use DT in place of Ω to clarify
that this is a statistic rather than a parameter of the model. Lastly, I use |τ| in place of
Ψ, because the number of divergence-time parameters is no longer a parameter in the new
implementation.

2.3.2 Obtaining an approximate posterior from the prior samples

I use a rejection algorithm to retain an approximate posterior sample of Λ from the prior
sample Λ = (Λ1, . . . ,Λn). First, the observed summary statistics S∗, and the summary
statistics of the prior samples S = (S1, . . . ,Sn), are standardized using the means and
standard deviations of the statistics from the prior sample (i.e., the prior mean is subtracted
from each statistic, and the difference is divided by the prior standard deviation). After
all statistics are standardized, the Euclidean distance between S∗ and each S within S is
calculated. The samples that fall within a range of tolerance ε around S∗ are retained. The
range of tolerance is determined by specifying the desired number of posterior samples to be
retained. Post-hoc adjustment of the posterior sample can also be performed with a number
of regression techniques [37–39]. For analyses below, I use the general linear model (GLM)
regression adjustment [39] as implemented in ABCtoolbox v1.1 [40], which Oaks et al. [7]
showed performs very similarly to weighted local-linear regression and multinomial logistic
regression adjustments [37] for msBayes posteriors.

2.3.3 Ordering of taxon-specific summary statistics

As alluded to in the model description, msBayes does not maintain the order of the taxon-
specific summary statistics S within each S. Rather, the summary statistics are re-ordered
by descending values of average pairwise differences between the descendant populations (πb)
[4, 41]. This has the advantage of reducing the sample space of possible divergence models
t, but there are at least two disadvantages. First, additional information in the data is lost.
By discarding the identity of the Y pairs of populations, all pair-specific information about
the amount of data (e.g., the number of gene copies collected from each of the populations
[n1 and n2], the number of loci, and the length of the loci), and the taxon- and locus-specific
parameters (φ, ν, ρ, and υ) is lost. Second, the results are more difficult to interpret,
because divergence models and parameter estimates cannot be directly associated to the
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taxa under study.
The re-ordering of the summary statistic vectors also has an important implication for the

ABC algorithm. When calculating the Euclidean distance between the observed data and
each simulated dataset, the summary statistics being compared often represent sequence
alignments of different taxon pairs and/or loci. More specifically, the summary statistics
calculated from the observed sequence alignments are being compared to summary statistics
calculated from datasets simulated with potentially different (1) numbers of sequences (n1

and n2), (2) length of alignments, (3) numbers of loci (k), (4) HKY85 model parameters (φ),
(5) mutation-rate multipliers (ν), and (6) ploidy multipliers (ρ).

In the original descriptions of the msBayesmethod [3, 4], this re-ordering is justified by the
fact that the expected value of πb is unrelated to sample size n1 and n2 and thus exchangeable
among pairs. This is incorrect for two reasons. First, the entire vector of summary statistics
S for each pair of populations is re-ordered across pairs, which implies that the justification
for re-ordering πb applies to all the statistics within each S. However, the expectations for
statistics that estimate gross diversity (e.g., π and θW ) are not independent of sample size for
structured populations (e.g., the divergent pairs of populations modeled by msBayes), and
other statistics are not independent of sample size in general (e.g., SD(π − θW )). Second,
and more importantly, having the same expectation does not ensure random variables are
exchangeable. Rather, for variables to be exchangeable their marginal distributions must be
the same (i.e., they must be identically distributed). None of the summary statistics used
by msBayes, including πb, have this property when there is any variation among taxa or
loci in the (1) numbers of sequences (n1 and n2), (2) length of alignments, (3) numbers of
loci (k), (4) HKY85 model parameters (φ), (5) mutation-rate multipliers (ν), or (6) ploidy
multipliers (ρ). Whenever such variation is present (i.e., nearly all empirical applications),
the taxon-specific summary statistics S are not exchangeable, and the reshuffling of the
summary statistic vectors is not mathematically valid.

The magnitude of the affect of this violation of exchangeability is not known. Huang
et al. [4] demonstrated that the reordering of the summary statistic vectors can greatly
increase the method’s tendency to infer a single divergence event. By definition, if the
summary statistic vectors were exchangeable, the reordering would not change the likelihood
or posterior (barring sampling error). Thus, the results of Huang et al. [4] suggest the
reordering of the statistics is potentially introducing sizeable error to the analysis.

For comparability with msBayes, I maintain the option for re-ordering taxon-specific
summary statistics by πb. However, by default, the order is preserved, and ordered divergence
models are estimated. In all of the simulation-based analyses described below, the summary
statistic vectors are exchangeable, because the simulated datasets have the same (1) numbers
of sequences, (2) length of sequences, (3) numbers of loci, (4) HKY85 model parameters, (5)
mutation-rate multipliers, and (6) ploidy multipliers.

2.4 Assessing model-choice behavior and robustness

Following the simulation-based approach of Oaks et al. [7], I characterize the behavior
of several models under the ideal conditions where the data are generated from parameters
drawn from the same prior distributions used for analysis (i.e., the prior is correct). I selected
the following four model priors for these analyses (Table 2).
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1. The MmsBayes model represents the original msBayes implementation with the U-
shaped prior on unordered divergence models and uniform priors on divergence-time
and demographic parameters; t ∼ DU{1, . . . , Y}, τ ∼ U(0, 10), θA ∼ U(0, 0.05), and
θ̄D ∼ U(0, 0.05).

2. The MUshaped model with the U-shaped prior of msBayes on unordered divergence
models, but with exponential priors on divergence-time and demographic parameters;
t ∼ DU{1, . . . , Y}, τ ∼ Exp(mean = 2.887), θA ∼ Exp(mean = 0.025), θD1 ∼
Exp(mean = 0.025), and θD2 ∼ Exp(mean = 0.025).

3. The MUniform model with a uniform prior over unordered divergence models and ex-
ponential priors on divergence-time and demographic parameters; t ∼ DU{a(Y)},
τ ∼ Exp(mean = 2.887), θA ∼ Exp(mean = 0.025), θD1 ∼ Exp(mean = 0.025), and
θD2 ∼ Exp(mean = 0.025).

4. The MDPP model with a Dirichlet-process prior on ordered divergence models and
exponential priors on divergence-time and demographic parameters; t ∼ DP (χ ∼
Gamma(2, 2)), τ ∼ Exp(mean = 2.887), θA ∼ Exp(mean = 0.025), θD1 ∼ Exp(mean =
0.025), and θD2 ∼ Exp(mean = 0.025).

I selected the exponential prior on divergence time used in models MDPP , MUniform, and
MUshaped to have the same variance as the uniform prior in model MmsBayes. I selected the
exponential prior on population size used in models MDPP , MUniform, and MUniform to have
the same mean as the uniform prior in model MmsBayes, so that all four models have the
same θC and thus the same units of time. All of the models were the same in other respects,
with three free θ parameters for each population pair, two uniformly distributed (beta(1, 1))
ζD parameters per pair, no migration, no recombination, and re-sorting of taxon-specific
summary statistics by πb (i.e., sampling unordered divergence models). For all simulations,
I used a data structure of eight population pairs, with a single 1000 base-pair locus sampled
from 10 individuals from each population.

For each of the four models, I simulated 1 × 106 samples from the prior and 50,000
datasets, also drawn from the prior. I then analyzed each of the simulated datasets, retaining
a posterior of 1000 samples from the respective prior. A GLM-regression adjusted posterior
was also estimated from each of the posterior samples [39]. To assess the robustness of each
of the four models, I also analyzed the datasets simulated under the other three models.
Overall, for each model, I produced 200,000 posterior estimates, 50,000 from the datasets
simulated under that model, and 150,000 from the datasets simulated under the other three
models.

For each set of 50,000 simulated datasets, I used the posterior estimates to assess the
model-choice behavior of each model. I did this by assigning the 50,000 estimates of the pos-
terior probability of one-divergence event to 20 bins of width 0.05, and plotted the estimated
posterior probability of each bin against the proportion of replicates in that bin with a true
value consistent with one divergence event [7, 42]. Ideally, the estimated posterior proba-
bility of the one-divergence model should estimate the probability that the one-divergence
model is correct. For large numbers of simulation replicates, the proportion of the replicates
in each bin for which the one-divergence model is true will approximate the probability that
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the one-divergence model is the correct model. Thus, if the method has the desirable behav-
ior such that the estimated posterior probability of the one-divergence model is an unbiased
estimate of the probability that the one-divergence model is correct, the points should fall
near the identity line. For example, let us say the method estimates a posterior probability
of 0.90 for 1000 datasets simulated from the prior. If the method is accurately estimating the
probability that the one-divergence model is correct given the data, then the one-divergence
model should be the true model in approximately 900 of the 1000 replicates. Any trend away
from the identity line indicates the method is biased in the sense that it is not accurately
estimating the probability that the one-divergence model is the correct model.

I constructed these plots using two criteria for the one-divergence model: (1) the number
of divergence-time parameters (|τ| = 1) and (2) the dispersion index of divergence times
(DT < 0.01). For the latter, DT < 0.01 has been commonly used as an arbitrary criterion
for a single “simultaneous” divergence event (e.g., [3, 5, 6]). I focused on the one-divergence
model to assess model-choice behavior, because it is often of biogeographic interest and is
easily comparable among the three different priors used on divergence models.

In addition to the four models above, I also assessed the behavior of a model that samples
over ordered divergence models (i.e., the order of the taxon-specific summary statistic vectors
were maintained for the observed and simulated datasets); all other settings were identical to
theMDPP model. I denote this model asM◦

DPP . I simulated 1×106 prior samples and 50,000
datasets, and analyzed them as above. I was not able to analyze the simulated datasets of
the other models under the ordered model, because the identity of the population pairs is
not contained in the simulations of the other models.

2.5 Assessing power

I evaluated the power of the same four models (Table 2) to detect random variation in
divergence times using methods similar to Oaks et al. [7]. For all power simulations, I used
a data structure identical to that of the empirical dataset of Philippine vertebrates analyzed
by Oaks et al. [7], which consists of 22 pairs of populations. Due to the larger number of
pairs, I used a different hyperprior on the concentration parameter for the MDPP model; I
used a prior of t ∼ DP (χ ∼ Gamma(1.5, 18.1)) over divergence models for the modelMDPP .
All other aspects of the four models in Table 2 were identical to those used in the validation
analyses described above. For each of the four models, I generated 2× 106 samples from the
prior.

Next, I simulated datasets from three series of models in which the divergence times
of the 22 pairs were random (i.e., no clustering; |τ| = 22). The models comprising each
series differ in the variance of the distribution from which the divergence times are randomly
drawn. When the variance of random divergence times is small, all of the models in Table 2
are expected to struggle to detect this variation and will often incorrectly estimate highly
clustered models of divergence (i.e., few divergence events). The goal is to assess how much
temporal variation in random divergence times is necessary before the behavior of the models
of Table 2 begins to improve. This will determine the timescales over which the models can
reliably detect random variation in divergence times and avoid spurious inference of clustered
divergence models.

Specifically, I simulated datasets from the following three series of six models (Table 3).
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1. The MmsBayes models are identically distributed as MmsBayes except the divergence
times for each of the 22 pairs of populations are randomly drawn from a series of
uniform distributions, U(0, τmax), where τmax was set to: 0.2, 0.4, 0.6, 0.8, 1.0, and 2.0,
in 4NC generations.

2. TheMUniform models are identically distributed asMUniform andMDPP except the 22
divergence times are randomly drawn from the same series of uniform priors as above.

3. TheMExp models are also identically distributed as MUniform and MDPP except the
22 divergence times are randomly drawn from a series of of exponential distributions:
Exp(mean = 0.058), Exp(mean = 0.115), Exp(mean = 0.173), Exp(mean = 0.231),
Exp(mean = 0.289), and Exp(mean = 0.577). These exponential distributions have
the same variance as their uniform counterparts in the first two series of models.

For each of the six models in each of the three series of models, I simulated 1000 datasets
(18,000 datasets in total). I then analyzed each simulated dataset under all four prior models
(Table 2), producing 72,000 posterior estimates, each with 1000 samples. I also estimated a
GLM-regression adjusted posterior from each of the posterior samples [39].

2.6 An empirical application

I also assessed the behavior of the newly implemented models when applied to the em-
pirical dataset of Oaks et al. [7], which is comprised of sequence data from 22 pairs of taxa
from the Philippine Islands ([43]; Dryad DOI: 10.5061/dryad.5s07m). I analyzed these data
under five different models, which are detailed in Table 4. All of these models except one
(Msimple

DPP ) have six free demographic parameters per pair of taxa (θA, θD1, θD2, τB, ζD1, and
ζD2), in addition to the ni−1 coalescent times. Three of these models use a Dirichlet-process
prior on divergence models: MDPP , Minform

DPP , and Msimple
DPP . The MDPP model represents the

priors that Oaks et al. [7] would have selected to reflect their prior uncertainty about the pa-
rameters of the model if provided the more flexible distributions that are now implemented.
To assess prior sensitivity, the Minform

DPP model uses a more informative exponentially dis-
tributed prior on divergence times, but otherwise is identical to MDPP . To assess sensitivity
to parameterization, I also applied the simplest possible model under the new implemen-
tation (Msimple

DPP ) with only a single demographic parameter (θ) per taxon pair, in addition
to the ni − 1 coalescent times. I also applied the original msBayes model (MmsBayes) with
priors selected to make the results directly comparable to those of the MDPP model; the
uniform prior on divergence times was selected to have the same variance as the exponential
prior of the MDPP model, and the prior on population size was selected to have the same
mean so that the models are on the same timescale. I also applied a model with a uniform
distribution over divergence models (MUniform). For each of these models, I simulated 2×107

samples from the prior, and retained an approximate posterior of the 10,000 samples with
the smallest Euclidean distance from the summary statistics calculated from the empirical
sequence alignments.

To compare models that sample over ordered versus unordered models of divergence, I
also analyzed the data from the subset of nine-taxon pairs that are sampled from the Islands
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of Negros and Panay in the Philippines. The model I used for these analyses had a Dirichlet-
process prior over divergence models and two demographic parameters (θA and θD) for each
pair of taxa, in addition to the ni − 1 coalescent times (see Table 4 for details). One of the
models, which I denote M◦DPP , maintained the identity of the taxon pairs and sampled over
ordered models of divergence, while the other (MDPP ) re-sorted the summary statistics of
the pairs by πb, losing the identity of the taxa and thus sampled over unordered models of
divergence. For both analyses, I simulated 5×107 samples from the prior and retained an
approximate posterior of 10,000 samples.

3 Results

3.1 Validation analyses: Estimation accuracy

In terms of estimating the variance of divergence times (DT), the models with exponen-
tially distributed priors (MUshaped, MUniform, and MDPP ) perform similarly when applied
to datasets generated under all four of the models in Table 2 (Figure S1). The MmsBayes

model performs similarly to these models when applied to its own datasets, but is sensitive
to model violations and is more biased when applied to data generated under the other
three models (Figure S1). Results are similar for the GLM-adjusted estimates of DT , albeit
the regression adjustment tends to improve estimates of this continuous statistic for all the
models (Figure S2).

The same general pattern is seen for estimates of T̄, with (1) all four models performing
similarly when applied to the data generated under theMmsBayes model, (2) the models with
exponentially distributed priors performing similarly when applied to data generated under
the other three models, and (3) the MmsBayes model is sensitive to model violations and is
more biased whenever applied to data generated under other models (Figure S3). Also, the
regression adjustment tends to slightly improve estimates of this continuous statistic for all
of the models (Figure S4).

In terms of estimating the number of divergence events (|τ|), the MDPP model has the
lowest root mean square error (RMSE) when applied to data generated under most of the
models of Table 2 (Figure S5). The MmsBayes model performs slightly better when applied
to its own data, but is the worst performer when applied to data generated under other
models (Figure S5). There is a trend of MDPP > MUniform > MUshaped > MmsBayes in terms
of estimation accuracy as measured by RMSE when the models are applied to data gener-
ated under most of the models (Figure S5). Unlike for the continuous statistics, regression
adjustment of this discrete statistic tends to increase estimation bias; all of the models tend
to underestimate |τ| after the GLM-adjustment (Figure S6).

3.2 Validation analyses: Model-choice accuracy

The msBayesmodel, and my modification of it, is a model-choice method with the primary
purpose of estimating the probabilities of models of divergence across taxa. Thus, it is
critical to assess the method’s ability to accurately estimate the posterior probabilities of
divergence models. Consistent with the findings of Oaks et al. [7], my results demonstrate
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that the unadjusted estimates of divergence-model posterior probabilities are generally more
accurate than regression-adjusted estimates (compare the plots along the upper-left to lower-
right diagonal for Figure 1 versus S7 and Figure 2 versus S8). Regression adjustment results
in biased estimates of the posterior probability of the one-divergence model when all model
assumptions are satisfied, which is well illustrated in Figure S8. As a result, I will focus my
discussion of the results on the unadjusted estimates.

I find that all four models accurately estimate the posterior probability of the one-
divergence model when applied to their own datasets (i.e., when the prior is correct; see
diagonal of Figures 1 & 2). The MUniform and MDPP models show robustness to prior vi-
olations and perform well when applied to data generated under other models (Figures 1
& 2). However, both are less accurate and tend to underestimate the probability of the
one-divergence model when applied to the data generated under MUshaped (Figures 1 & 2).
In contrast, the MmsBayes model is biased toward overestimating the posterior probability
of the one-divergence model when applied to data generated under the other three models
(Figures 1 & 2). This bias is particularly strong whenever divergence models are not dis-
tributed under its U-shaped prior (Figure 1C–D). The other model with the U-shaped prior
on divergence models, but exponential priors on parameters (MUshaped), performs similarly to
the MmsBayes model in that it performs well when applied to its own data, but overestimates
the probability of the one-divergence model when applied to data generated by the other
models (Figures 1 & 2). However, the bias is stronger in the MmsBayes model than MUshaped.

Overall, the results suggest that the MDPP and MUniform models are relatively robust in
terms of model-choice accuracy, and when model violations do cause them to be biased, they
tend to under-estimate the probability of the model with a single, shared divergence event.
In contrast, the MmsBayes model is very sensitive to model violations, and strongly over-
estimates the probability of the one-divergence model whenever the model is misspecified.
Furthermore, the results suggest that using exponentially distributed priors on nuisance pa-
rameters rather than uniform priors helps theMUshaped model perform better thanMmsBayes,
but it is still hindered by the U-shaped prior on divergence models and tends to over-estimate
the probability of the one-divergence model whenever there are violations of the model.

3.3 Validation analyses: Ordered divergence models

The results show that the method performs similarly when sampling over ordered models
of divergence (Figures S9 & S10). This suggests that the method is not adversely affected by
the increase in the number of possible discrete models (from 22 unordered to 4140 ordered
models) when there are eight pairs of populations. This is encouraging, because, as discussed
above, estimating unordered models of divergence by shuffling the summary statistic vectors
calculated from the sequence alignments is not valid for most empirical datasets. Given
these results, estimation of unordered divergence models should be avoided for empirical
applications of the method.

3.4 Power analyses: Estimation accuracy

All of the models I evaluated (Table 2) struggle to estimate the variance of divergence
times DT regardless of which of the three series of models (Table 3) the data were gener-
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ated under (Figures S11–13). The models with the U-shaped prior on divergence models
(MmsBayes and MUshaped) tend to underestimate the variance in divergence times (Plots A–L
of Figures S11–13). whereas the models with Uniform or Dirichlet-process priors over di-
vergence models tend to overestimate variance in divergence times (Plots M–X of Figures
S11–13).

When the divergence times of the 22 population pairs are randomly drawn from a series
of exponential priors (MExp), the MDPP model is the best estimator of DT , followed by
MUniform (Figure S11). The MmsBayes model is strongly biased toward underestimating DT ,
estimating values of zero for most of the replicates across all the data models of MExp

(Figure S11). The results of the MUshaped model are intermediate between those of MmsBayes

and the new models MDPP and MUniform (Figure S11).
Similarly, when the true divergence times are randomly drawn from a series of uniform

priors (MUniform), the MDPP and MUniform models tend to over-estimate the variance in
divergence times, whereas the MmsBayes model underestimates DT , estimating values of zero
for most replicates across all the data models of MUniform (Figure S12). Again, the per-
formance of the MUshaped model is intermediate between the MmsBayes and MDPP/MUniform

models (Figure S12). The results are very similar when the four models are applied to the
data simulated under theMmsBayes series of models (Figure S13).

3.5 Power analyses: Model choice

The modifications of the msBayes model decrease the method’s bias toward clustered
divergences when applied to data generated under random divergence times (Figure 3 & S14–
16). TheMmsBayes model performs the worst of the four models across all three series of data-
generating models, inferring a single divergence event across most of the 18,000 simulations
(Figure 3A–D & plots A–F of Figures S14–16). Importantly, the MmsBayes model tends to
strongly support these estimates of one divergence across most of the simulations (Figure 5A–
D & plots A–F of Figures S17–19). The MDPP model also prefers the one-divergence model
when divergences are random over narrow windows of time, but performs much better when
divergences are random over a timescale of 1–2 coalescent units (Figure 3M–P & plots S–X
of Figures S14–16). However, even when MDPP infers the one-divergence model over narrow
timescales, the posterior probability support is always low (Figure 5M–P & plots S–X of
Figures S17–19). The MUniform model never infers the one-divergence model in any of the
simulation replicates but still tends to infer relatively few (4–6) divergence events when
divergences are random over longer periods (Figure 3 I–L & plots M–R of Figures S14–16).
Using exponential priors on divergence-time and demographic parameters does increase the
power of the MUshaped model compared to MmsBayes across all three series of data models,
but the U-shaped prior still prevents the model from performing as well as the MDPP and
MUniform models (Figure 3 & S14–16).

The improved power of the new models is even more pronounced when looking at esti-
mates of the variance of divergence times (DT) across the simulations (Figure 4 & S20–22).
The performance among the models is so different, that the histograms of DT estimates
cannot be plotted along a shared x-axis. The MDPP and MUniform models perform similarly
across all three series of data models, inferring values of DT consistent with one divergence
event (DT < 0.01) in almost none of the replicates across all the simulations. In contrast,
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the MmsBayes model infers values consistent with a single divergence event in most of the
replicates across all the simulations. Using exponential priors on divergence-time and de-
mographic parameters greatly increases the power of the MUshaped model to detect variation
in divergence times relative to MmsBayes, but it still has less power than the models with
Dirichlet-process or uniform priors across divergence models (Figure 4 & S20–22). Although
the DT threshold of 0.01 is arbitrary, Oaks et al. [7] did show via simulation that the true
value ofDT will almost always be greater than 0.01 when divergences are random over periods
of 0.1 coalescent units or more (see Figure S4 of [7]).

As mentioned above, the increased power of the new models is also evident when looking
at the estimated posterior probability of the one-divergence model across the power analyses
(Figure 5 & S17–19). The MDPP and MUniform models estimate low posterior probability of
|τ| = 1 across all of the simulations. This is in contrast to the MmsBayes model, which infers
high posterior probabilities of a single divergence for most replicates across all simulations
(Figure 5 & S17–19). The exponential priors on divergence-time and demographic param-
eters (model MUshaped) result in lower estimates of the probability of one divergence when
compared to MmsBayes, but higher estimates when compared to MUniform and MDPP (Fig-
ure 5 & S17–19). The MDPP and MUniform models do frequently support the one-divergence
model according to a Bayes factor criterion of greater than 10, but still less frequently than
theMmsBayes model. This result is not surprising given the extremely small prior probability
of the one-divergence model under the MDPP and MUniform models (i.e., very few posterior
samples of the one-divergence model will result in a large Bayes factor under these models).
However, the small posterior probability of the one-divergence model estimated underMDPP

andMUniform should prevent an investigator from overinterpreting the Bayes factor as strong
support for clustered divergences.

Lastly, when looking at the estimated posterior probability of DT being consistent with
one shared divergence (p(DT < 0.01|Bε(S

∗))), I find the same pattern of model behavior,
withMDPP andMUniform inferring low probabilities across all simulations,MmsBayes inferring
high probabilities, and MUshaped inferring intermediate values (Figure 6 & S23–25).

3.6 Empirical results

As expected based on the results of Oaks et al. [7], when the Philippines data are analyzed
under the MmsBayes model, there is strong support for very few divergence events shared
among all 22 pairs of taxa, with a maximum a posteriori (MAP) estimate of one-shared
divergence (Figure 7A). When these data are analyzed using models allowed by the new
implementation, there is much less support for highly clustered models and much greater
uncertainty regarding the number of divergence events shared among the taxa, especially
under the DPP models (Figure 7B–E). Figure 7 also shows the prior distribution across the
number of divergence events (|τ|) for each model, as well as the average prior probability
of an unordered and ordered model of divergence (t) across |τ|. Estimates under the new
models tend to be similar to the prior, which is expected under such a parameter-rich model
when there is limited information from the data (four summary statistics from a single locus
for each pair of taxa).

The disparity between the results of the MmsBayes model and the new models is even
more pronounced when looking at the 10 divergence models (t) estimated to have the highest

19



probability under each of the models (Figures S26–30). Again, the new models estimate more
divergences, a large amount of posterior uncertainty, and an order of magnitude smaller
probability for their respective MAP-divergence model when compared to the MmsBayes

model (Figures S26–30).
Figure 8 shows the estimated posterior probability distribution over the number of di-

vergence events when the data from the nine-taxon pairs from the Islands of Negros and
Panay are analyzed under DPP models that sample over unordered (MDPP ) and ordered
(M◦DPP ) models of divergence. The results are similar under both models and, again, yield
a large amount of uncertainty about the number of divergence events that is similar to the
prior uncertainty. The small difference between the results of the MDPP and M◦DPP mod-
els is consistent across multiple analyses, and thus could be due to error introduced to the
MDPP model by the invalid shuffling of the summary statistic vectors. Both models esti-
mate a similar set of 10 unordered divergence models with the highest posterior probability
(Figures S31 and 32).

The main advantages of the M◦DPP model over the MDPP are that (1) the incorrect
shuffling of the summary statistic vectors is avoided, (2) the identity of the taxa is maintained,
and thus a fully marginalized estimate of divergence times across the taxa can be obtained
(Figure S33), and (3) the probability of co-divergence among any set of taxa can be estimated
from the posterior sample.

4 Discussion
My results demonstrate that using alternative priors on parameters and divergence mod-

els improved the behavior of the msBayes model. In the new implementation, model-choice
estimation is more accurate and shows greater robustness to model violations (Figure 1 & 2).
The original model is very sensitive to violations and, when present, strongly over-estimates
the probability of one-divergence event shared across all taxa (Figure 1 & 2). When more
appropriate priors are used for divergence-time and demographic parameters, and either a
Dirichlet-process or uniform prior applied across divergence models, the model is less sensi-
tive to violations, and, when violations do cause bias, the method tends to underestimate
the probability of models with temporally clustered divergences (Figure 1 & 2). Given that
clustered models are often of particular interest to biogeographers, this behavior of the new
method can be considered conservative.

The modifications also improve the method’s power to detect random variation in di-
vergence times, reducing the tendency to estimate clustered divergences (Figures 3–6). My
results are similar to those of Oaks et al. [7] in that I find msBayes will often infer strong
support for clustered divergences when divergences are random over quite broad timescales
(Figures 3–6). My results expand on this by showing that this behavior is consistent across
a range of conditions underlying the data. The new method, dpp-msbayes, has greater
power to detect random temporal variation in divergences, is less prone to spurious inference
of clustered divergence models, and much less likely to incorrectly infer such models with
strong support (Figures 3–6).

By evaluating a model intermediate between the old and new implementation (MUshaped),
I was able to determine the relative affects of my modifications to the model. Across all of
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the analyses, the results show that using better priors on divergence-time and demographic
parameters alone does improve the performance of the method. The magnitude of the bias
toward inferring support for the one-divergence model when there are model violations is
reduced when the exponential priors are used in place of the uniform priors (Figure 1 &
2). Furthermore, using exponential priors improves the method’s power to detect tempo-
rally random divergences (Figures 3–6). Throughout the analyses, the intermediate model
(MUshaped) performs better than the msBayes model, but not as well as the models with
alternative priors on divergence models. This suggests, as predicted by Oaks et al. [7, 15],
that the tendency of msBayes to erroneously support models of temporally clustered diver-
gences is caused by a combination of (1) small marginal likelihoods of models with more τ
parameters due to uniform priors on divergence-time and demographic parameters and (2)
the U-shaped prior on divergence models giving low prior density to models with intermedi-
ate numbers of divergence parameters. The former essentially rules out models with many
τ parameters, which causes the latter to act like an "L-shaped" prior with a spike of prior
density on the one-divergence model. Given the parameter richness of the model and the
relatively small amount of information in the summary statistics, it is not surprising that
the combination of these two factors can create a strong tendency to infer clustered models
of divergence.

While the modifications improve the behavior of the model, I urge caution when using the
method and interpreting its results. The method attempts to approximate the posterior of
a very parameter-rich model using relatively little information from the data. For example,
when applied to the dataset of 22 taxon pairs from the Philippines [7], the model has as many
as 604–625 free parameters (depending on |τ|), and samples over 1002 unordered divergence
models. Even under the simplest possible model allowed under the new implementation,
the model still has 471–492 free parameters. Furthermore, the stochastic coalescent and
mutational processes being modeled predict a large amount of variation in possible datasets
even when the parameter values are known. The richness and stochastic nature of the model
makes for a difficult inference problem, especially when using a small number of summary
statistics calculated from the sequence alignments of each taxon pair. The population-genetic
summary statistics used by the method contain little information about many of the free
parameters in the model. Thus, I expect the improved method will still be sensitive to
priors, and the power, while improved, may still be low. While there is much less prior
sensitivity under the new model compared to those observed by Oaks et al. [7], there is still
an effect when comparing the results of the empirical data analyzed under a diffuse (MDPP )
and informative (Minform

DPP ) divergence-time prior (Figure 7 C versus D). The fact that the
posterior shifts toward the prior under the informative prior suggests that the shift away
from the prior toward fewer divergence events under the diffuse prior might still be caused
by small marginal likelihoods of models with more divergence-time parameters (Figure 7).

Nonetheless, it is reassuring to see a large amount of posterior uncertainty when the
new implementation is applied to the empirical datasets (Figure 7 and 8). Applications of
the msBayes model often result in strong posterior support for estimated scenarios (e.g.,
[3, 5–12]), as I found here (Figure 7). Given the richness of the model, the variance of the
processes being modeled, and the relatively small amount of information in the summary
statistics calculated from the sequence data, finding strong posterior support for any scenario
is unexpected. Based on results of the empirical and power analyses (Figures 5–8), the new
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implementation more accurately reflects posterior uncertainty and avoids spurious support
for biogeographical scenarios.

I also urge caution when using dpp-msbayes due to the lack of theoretical validation
of Bayesian model choice when the full data are replaced by summary statistics that are
insufficient for discriminating across models under comparison [44], which is certainly the case
here. Robert et al. [44] demonstrated that ABC estimates of model posterior probabilities
can be inaccurate when such across-model insufficient statistics are used.

Given all of these caveats, I encourage investigators to view this method as a means of
exploring their data for general temporal patterns of divergences across taxa, rather than a
rigorous means of evaluating hypotheses. As recommended by Oaks et al. [7], any results
from the method should be accompanied by (1) analyses under a variety of priors to assess
the assumptions underlying model inference and the prior sensitivity of the results, and
(2) simulation-based power analyses to provide insight into the temporal resolution of the
method. Both approaches are important to help guide the interpretation of results.

Given the difficulty of this estimation problem, I anticipate that full-likelihood methods
that can leverage all of the information present in the sequence data will become increasingly
important for robustly estimating shared evolutionary history across taxa [45]. With improv-
ing numerical methods for sampling over models of differing dimensionality [46, 47], advances
in Monte Carlo techniques [48], and increasing efficiency of likelihood calculations [49], an-
alyzing rich comparative phylogeograpical models in a full-likelihood Bayesian framework is
becoming computationally practical, especially when considering that simulating millions of
random datasets from the prior under the simple ABC rejection approach is inefficient and
computationally nontrivial.

5 Conclusions
I introduced a new model for estimating shared divergence histories across taxa from

DNA sequence data within an approximate-Bayesian model-choice framework. The new
method, dpp-msbayes, takes a non-parametric approach to the problem by using a Dirichlet-
process prior on the temporal distribution of divergences across taxa. The new method shows
improved robustness, accuracy, and power compared to the existing method, msBayes. Com-
pared to msBayes, the new approach better estimates posterior uncertainty, which greatly
reduces the chances of incorrectly estimating biogeographical scenarios of shared divergence
events. This is important, because models of shared divergence events are often of particular
interest to researchers who employ these methods. This new tool will allow evolutionary
biologists to better leverage comparative genetic data to assess the affects of regional and
global biogeographical processes on biodiversity.
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Figure Captions

Figure 1. Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–
L) MUniform, and (M–P) MDPP when analyzing data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K,
& O) MUniform, and (D, H, L, & P) MDPP . The unadjusted posterior
probability of a single divergence event, based on |τ| = 1, from 50,000
posterior estimates are assigned to bins of width 0.05 and plotted against
the proportion of replicates in each bin where the truth is |τ| = 1.

Figure 2. Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–
L) MUniform, and (M–P) MDPP when analyzing data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K,
& O) MUniform, and (D, H, L, & P) MDPP . The unadjusted posterior
probability of a single divergence event, based on DT < 0.01, from 50,000
posterior estimates are assigned to bins of width 0.05 and plotted against
the proportion of replicates in each bin where the truth is DT < 0.01.

Figure 3. The power of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform,
and (M–P) MDPP to detect random variation in divergence times as sim-
ulated under the MmsBayes series of models. The plots illustrate the es-
timated number of divergence events ( ˆ|τ|) from analyses of 1000 datasets
simulated under each of the MmsBayes models, with the the estimated
probability of the model inferring one divergence event, p( ˆ|τ| = 1), given
for each combination. The 22 divergence times were randomly drawn as
indicated above each column of plots, where time is respresented as mil-
lions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation. Four of the six data-generating models of the
MmsBayes series are shown; please see Figure S14 for all results.

Figure 4. The power of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform,
and (M–P) MDPP to detect random variation in divergence times as sim-
ulated under the MmsBayes series of models. The plots illustrate the es-
timated dispersion index of divergence times (D̂T) from analyses of 1000
datasets simulated under each of the MmsBayes models, with the the es-
timated probability of the model inferring one divergence event, p(D̂T <
0.01), given for each combination. The 22 divergence times were randomly
drawn as indicated above each column of plots, where time is respresented
as millions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation. Four of the six data-generating models of the
MmsBayes series are shown; please see Figure S20 for all results.
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Figure 5. The tendency of models (A–D)MmsBayes, (E–H)MUshaped, (I–L)MUniform,
and (M–P) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MmsBayes series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(|τ| = 1|Bε(S

∗)), from analyses of
1000 datasets simulated under each of the MmsBayes models. The 22 di-
vergence times were randomly drawn as indicated above each column of
plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation. Four of
the six data-generating models of the MmsBayes series are shown; please
see Figure S17 for all results.

Figure 6. The tendency of models (A–D)MmsBayes, (E–H)MUshaped, (I–L)MUniform,
and (M–P) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MmsBayes series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(DT < 0.01|Bε(S

∗)), from analyses
of 1000 datasets simulated under each of the MmsBayes models. The 22
divergence times were randomly drawn as indicated above each column
of plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation. Four of
the six data-generating models of the MmsBayes series are shown; please
see Figure S23 for all results.

Figure 7. The (A–E) posterior and (F–J) prior probabilities of the number of diver-
gence events (|τ|) when the data of the 22 pairs of taxa from the Philippines
are analyzed under the five models indicated at the top of each column
of plots (Table 4). The average prior probability of an (K–O) unordered
and (P–T) ordered model of divergence (t) with |τ| divergence-time pa-
rameters is also shown. The posterior median of the dispersion index of
divergence times (DT) is also given for each model, followed by the 95%
highest posterior density interval in parentheses.

Figure 8. The posterior probabilities of the number of divergence events, |τ|, when
the data of the 9 pairs of taxa from Negros and Panay Islands are an-
alyzed under the DPP model that samples over (A) unordered and (B)
ordered models of divergence (Table 4). Both models share the same (C)
prior probability of the number of divergence events, and the average prior
probability of an (D) unordered and (E) ordered model of divergence (t)
with |τ| divergence-time parameters. The posterior median of the disper-
sion index of divergence times (DT) is also given for each model, followed
by the 95% highest posterior density interval in parentheses.
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Figure S1. Accuracy of unadjusted estimates ofDT when data generated under models
(A, E, I, & M)MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform,
and (D, H, L, & P) MDPP are analyzed with models (A–D) MmsBayes, (E–
H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A random sample of
5000 posterior estimates (from 50,000) are plotted. The root mean square
error (RMSE) calculated from the 5000 estimates is provided.

Figure S2. Accuracy of GLM-adjusted estimates of DT when data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K,
& O) MUniform, and (D, H, L, & P) MDPP are analyzed with models
(A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A
random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is
provided.

Figure S3. Accuracy of unadjusted estimates of T̄ when data generated under models
(A, E, I, & M)MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform,
and (D, H, L, & P) MDPP are analyzed with models (A–D) MmsBayes, (E–
H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A random sample of
5000 posterior estimates (from 50,000) are plotted. The root mean square
error (RMSE) calculated from the 5000 estimates is provided.

Figure S4. Accuracy of GLM-adjusted estimates of T̄ when data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K,
& O) MUniform, and (D, H, L, & P) MDPP are analyzed with models
(A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A
random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is
provided.

Figure S5. Accuracy of unadjusted estimates of |τ| when data generated under models
(A, E, I, & M)MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform,
and (D, H, L, & P) MDPP are analyzed with models (A–D) MmsBayes, (E–
H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A random sample of
5000 posterior estimates (from 50,000) are plotted. The root mean square
error (RMSE) calculated from the 5000 estimates is provided. Random
normal variates (N(0, 0.005)) have been added to the estimates and true
values of |τ| to reduce overlap of plot symbols.
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Figure S6. Accuracy of GLM-adjusted estimates of |τ| when data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, &
O) MUniform, and (D, H, L, & P) MDPP are analyzed with models (A–D)
MmsBayes, (E–H) MUshaped, (I–L) MUniform, and (M–P) MDPP . A random
sample of 5000 posterior estimates (from 50,000) are plotted. The root
mean square error (RMSE) calculated from the 5000 estimates is provided.
Random normal variates (N(0, 0.005)) have been added to the estimates
and true values of |τ| to reduce overlap of plot symbols.

Figure S7. Model-choice accuracy for models (A–D)MmsBayes, (E–H)MUshaped, (I–L)
MUniform, and (M–P)MDPP when analyzing data generated under models
(A, E, I, & M)MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform,
and (D, H, L, & P) MDPP . The GLM-adjusted posterior probability of a
single divergence event, based on |τ| = 1, from 50,000 posterior estimates
are assigned to bins of width 0.05 and plotted against the proportion of
replicates in each bin where the truth is |τ| = 1.

Figure S8. Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–
L) MUniform, and (M–P) MDPP when analyzing data generated under
models (A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, &
O) MUniform, and (D, H, L, & P) MDPP . The GLM-adjusted posterior
probability of a single divergence event, based on DT < 0.01, from 50,000
posterior estimates are assigned to bins of width 0.05 and plotted against
the proportion of replicates in each bin where the truth is DT < 0.01.

Figure S9. Estimation accuracy for model M◦
DPP when analyzing data generated un-

der M◦
DPP . A random sample of 5000 posterior estimates (from 50,000)

are plotted, including both (A, B, & C) unadjusted and (D, E, & F) GLM-
regression-adjusted estimates. Normal random variates (N(0, 0.005)) have
been added to the estimates and true values of |τ| (A & D) to reduce
overlap of plot symbols. The root mean square error (RMSE) calculated
from the 5000 estimates is provided.

Figure S10. Model-choice accuracy for model M◦
DPP when analyzing data generated

under M◦
DPP . The estimated posterior probability of a single divergence

event, based on (A & C) |τ| = 1 and (B & D) DT < 0.01, from 50,000
posterior estimates are assigned to bins of width 0.05 and plotted against
the proportion of replicates in each bin where the truth is |τ| = 1 or
DT < 0.01. Results based on the (A & B) unadjusted and (C & D) GLM-
adjusted posterior estimates are shown.
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Figure S11. Accuracy of DT estimates for models (A–F) MmsBayes, (G–L) MUshaped,
(M–R) MUniform, and (S–X) MDPP when analyzing data generated under
theMExp series of models. The true versus estimated value of the disper-
sion index of divergence times (DT , in 4NC generations) is plotted for 1000
datasets simulated under each of theMExp models, and the proportion of
estimates less than the truth, p(D̂T < DT), is shown for each data model.
The 22 divergence times were randomly drawn as indicated above each
column of plots, where time is respresented as millions of generations ago
(MGA) according to a per-site rate of 1×10−8 mutations per generation.

Figure S12. Accuracy of DT estimates for models (A–F) MmsBayes, (G–L) MUshaped,
(M–R) MUniform, and (S–X) MDPP when analyzing data generated under
the MUniform series of models. The true versus estimated value of the
dispersion index of divergence times (DT , in 4NC generations) is plotted
for 1000 datasets simulated under each of theMUniform models, and the
proportion of estimates less than the truth, p(D̂T < DT), is shown for each
data model. The 22 divergence times were randomly drawn as indicated
above each column of plots, where time is respresented as millions of gen-
erations ago (MGA) according to a per-site rate of 1×10−8 mutations per
generation.

Figure S13. Accuracy of DT estimates for models (A–F) MmsBayes, (G–L) MUshaped,
(M–R) MUniform, and (S–X) MDPP when analyzing data generated under
the MmsBayes series of models. The true versus estimated value of the
dispersion index of divergence times (DT , in 4NC generations) is plotted
for 1000 datasets simulated under each of theMmsBayes models, and the
proportion of estimates less than the truth, p(D̂T < DT), is shown for each
data model. The 22 divergence times were randomly drawn as indicated
above each column of plots, where time is respresented as millions of gen-
erations ago (MGA) according to a per-site rate of 1×10−8 mutations per
generation.

Figure S14. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as sim-
ulated under the MmsBayes series of models. The plots illustrate the es-
timated number of divergence events ( ˆ|τ|) from analyses of 1000 datasets
simulated under each of the MmsBayes models, with the the estimated
probability of the model inferring one divergence event, p( ˆ|τ| = 1), given
for each combination. The 22 divergence times were randomly drawn as
indicated above each column of plots, where time is respresented as mil-
lions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation.
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Figure S15. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as sim-
ulated under the MUniform series of models. The plots illustrate the es-
timated number of divergence events ( ˆ|τ|) from analyses of 1000 datasets
simulated under each of the MUniform models, with the the estimated
probability of the model inferring one divergence event, p( ˆ|τ| = 1), given
for each combination. The 22 divergence times were randomly drawn as
indicated above each column of plots, where time is respresented as mil-
lions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation.

Figure S16. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as simu-
lated under theMExp series of models. The plots illustrate the estimated
number of divergence events ( ˆ|τ|) from analyses of 1000 datasets simu-
lated under each of theMExp models, with the the estimated probability
of the model inferring one divergence event, p( ˆ|τ| = 1), given for each
combination. The 22 divergence times were randomly drawn as indicated
above each column of plots, where time is respresented as millions of gen-
erations ago (MGA) according to a per-site rate of 1×10−8 mutations per
generation.

Figure S17. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MmsBayes series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(|τ| = 1|Bε(S

∗)), from analyses of
1000 datasets simulated under each of the MmsBayes models. The 22 di-
vergence times were randomly drawn as indicated above each column of
plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation.

Figure S18. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MUniform series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(|τ| = 1|Bε(S

∗)), from analyses of
1000 datasets simulated under each of the MUniform models. The 22 di-
vergence times were randomly drawn as indicated above each column of
plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation.
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Figure S19. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under theMExp series of models.
The plots illustrate histograms of the estimated posterior probability of the
one divergence model, p(|τ| = 1|Bε(S

∗)), from analyses of 1000 datasets
simulated under each of theMExp models. The 22 divergence times were
randomly drawn as indicated above each column of plots, where time is
respresented as millions of generations ago (MGA) according to a per-site
rate of 1×10−8 mutations per generation.

Figure S20. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as sim-
ulated under the MmsBayes series of models. The plots illustrate the es-
timated dispersion index of divergence times (D̂T) from analyses of 1000
datasets simulated under each of the MmsBayes models, with the the es-
timated probability of the model inferring one divergence event, p(D̂T <
0.01), given for each combination. The 22 divergence times were randomly
drawn as indicated above each column of plots, where time is respresented
as millions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation.

Figure S21. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as sim-
ulated under the MUniform series of models. The plots illustrate the es-
timated dispersion index of divergence times (D̂T) from analyses of 1000
datasets simulated under each of the MUniform models, with the the es-
timated probability of the model inferring one divergence event, p(D̂T <
0.01), given for each combination. The 22 divergence times were randomly
drawn as indicated above each column of plots, where time is respresented
as millions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation.

Figure S22. The power of models (A–F) MmsBayes, (G–L) MUshaped, (M–R) MUniform,
and (S–X) MDPP to detect random variation in divergence times as simu-
lated under theMExp series of models. The plots illustrate the estimated
dispersion index of divergence times (D̂T) from analyses of 1000 datasets
simulated under each of theMExp models, with the the estimated proba-
bility of the model inferring one divergence event, p(D̂T < 0.01), given for
each combination. The 22 divergence times were randomly drawn as indi-
cated above each column of plots, where time is respresented as millions of
generations ago (MGA) according to a per-site rate of 1×10−8 mutations
per generation.
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Figure S23. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MmsBayes series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(DT < 0.01|Bε(S

∗)), from analyses
of 1000 datasets simulated under each of the MmsBayes models. The 22
divergence times were randomly drawn as indicated above each column
of plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation.

Figure S24. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under the MUniform series of
models. The plots illustrate histograms of the estimated posterior prob-
ability of the one divergence model, p(DT < 0.01|Bε(S

∗)), from analyses
of 1000 datasets simulated under each of the MUniform models. The 22
divergence times were randomly drawn as indicated above each column
of plots, where time is respresented as millions of generations ago (MGA)
according to a per-site rate of 1×10−8 mutations per generation.

Figure S25. The tendency of models (A–F)MmsBayes, (G–L)MUshaped, (M–R)MUniform,
and (S–X) MDPP to support one divergence event when there is random
variation in divergence times as simulated under theMExp series of mod-
els. The plots illustrate histograms of the estimated posterior probability
of the one divergence model, p(DT < 0.01|Bε(S

∗)), from analyses of 1000
datasets simulated under each of the MExp models. The 22 divergence
times were randomly drawn as indicated above each column of plots, where
time is respresented as millions of generations ago (MGA) according to a
per-site rate of 1×10−8 mutations per generation.

Figure S26. The divergence-model results when the 22 pairs of taxa from the Philip-
pines are analyzed under the MDPP model (Table 4). The 10 unordered
divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that
diverged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.
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Figure S27. The divergence-model results when the 22 pairs of taxa from the Philip-
pines are analyzed under the Minform

DPP model (Table 4). The 10 unordered
divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that
diverged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.

Figure S28. The divergence-model results when the 22 pairs of taxa from the Philip-
pines are analyzed under the Msimple

DPP model (Table 4). The 10 unordered
divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that
diverged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.

Figure S29. The divergence-model results when the 22 pairs of taxa from the Philip-
pines are analyzed under the MUniform model (Table 4). The 10 unordered
divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that
diverged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.
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Figure S30. The divergence-model results when the 22 pairs of taxa from the Philip-
pines are analyzed under the MmsBayes model (Table 4). The 10 unordered
divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that
diverged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.

Figure S31. The divergence-model results when the 9 pairs of taxa from the Islands
of Negros and Panay are analyzed under the MDPP model sampling over
unordered models of divergence. (Table 4). The 10 unordered divergence
models with highest posterior probability (p(t |Bε(S

∗))) are shown, where
the numbers indicate the inferred number of taxon pairs that diverged
at each event. The times indicate the posterior median and 95% highest
posterior density (HPD) interval conditional on each divergence model.
For each model, times are summarized across posterior samples by the
number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.

Figure S32. The divergence-model results when the 9 pairs of taxa from the Islands of
Negros and Panay are analyzed under the M◦DPP model sampling over or-
dered models of divergence. (Table 4). The posterior sample of divergence
models were summarized while ignoring the identity of the taxon pairs in
order to compare the results of the MDPP model. The 10 unordered diver-
gence models with highest posterior probability (p(t |Bε(S

∗))) are shown,
where the numbers indicate the inferred number of taxon pairs that di-
verged at each event. The times indicate the posterior median and 95%
highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by
the number of taxon pairs associated with each divergence. For models in
which there are multiple divergence events with the same number of taxon
pairs, the events are sorted by time to summarize the divergence times in
a consistant way.

Figure S33. The marginal divergence-time results when the 9 pairs of taxa from the
Islands of Negros and Panay are analyzed under the M◦DPP model that
samples over ordered models of divergence (Table 4). The times indicate
the posterior median and 95% highest posterior density (HPD) interval.
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Table 1: Summary of the notation used throughout this work; modified from Oaks et al. [7].

Symbol Description

Y Number of population pairs.

ni
The number of genome copies sampled from population pair i, with n1,i sampled from population 1, and n2,i

from population 2.
ki Number of loci sampled from population pair i.
K Total number of unique loci sampled.
Xi,j Sequence alignment of locus j sampled from population pair i.
S∗i,j Population genetic summary statistics calculated from Xi,j .
X Vector containing the sequence alignments of each locus from each population pair: (X1,1, . . . , XY,kY ).
S∗ Vector containing the summary statistics of each locus from each population pair: (S∗1,1, . . . , S

∗
Y,kY

).
Bε(S

∗) Multi-dimensional Euclidean space around the observed summary statistics, S∗.
ε Radius of Bε(S∗), i.e., the tolerance of the ABC estimation.
Gi,j Gene tree of the sequences in Xi,j .
G Vector containing the gene trees of each locus from each population pair: (G1,1, . . . , GY,kY ).
|τ| Number of population divergence-time parameters shared among the Y population pairs.
τ Time of population divergence in 4NC generations.
τ Set of divergence-time parameters: {τ1, . . . , τ|τ|}.
ti The index of the divergence-time in τ to which population pair i is mapped.
t Vector of divergence-time indices: (t1, . . . , tY ).
Ti Time of divergence in 4NC generations between the populations of pair i.
T Vector of divergence times for each of the population pairs: (T1, . . . , TY ).
Ti,j Scaled time of divergence between the populations of pair i for locus j.
T Vector containing the scaled divergence times of each locus from each population pair: (T1,1, . . . , TY,kY ).
θD1,i, θD2,i Mutation-rate-scaled effective population size of the 1st and 2nd descendent population, respectively, of pair i.
θA,i Mutation-rate-scaled effective population size of the population ancestral to pair i.
θD1, θD2 Vectors (θD1,1, . . . , θD1,Y ) and (θD2,1, . . . , θD2,Y ), respectively.
θA Vector containing the θA parameters for each population pair: (θA,1, . . . , θA,Y ).
υj Mutation-rate multiplier of locus j.
υ Vector containing the locus-specific mutation-rate multipliers: (υ1, . . . , υK).
α The shape parameter of the gamma prior distribution on υ.

ζD1,i, ζD2,i

θ-scaling parameters that determine the magnitude of the population bottleneck in the 1st and 2nd descendant
population of pair i, respectively. The bottleneck in each descendant population begins immediately after
divergence.

ζD1, ζD2 Vectors (ζD1,1, . . . , ζD1,Y ) and (ζD2,1, . . . , ζD2,Y ), respectively.
τB,i Proportion of time between present and Ti when the bottleneck ends for the descendant populations of pair i.
τB Vector containing the τB parameters for each population pair: (τB,1, . . . , τB,Y ).
mi Symmetric migration rate between the descendant populations of pair i.
m Vector containing the migration rates for each population pair: (m1, . . . ,mY ).

ρi,j
θ-scaling constant provided by the investigator for locus j of pair i. This constant is required to scale θ for

differences in ploidy among loci or differences in generation times among taxa.

νi,j
θ-scaling constant provided by the investigator for locus j of pair i. This constant is required to scale θ for

differences in mutation rates among loci or among taxa.
ρ Vector of ploidy and/or generation-time scaling constants: (ρ1,1, . . . , ρY,kY ).
ν Vector of mutation-rate scaling constants: (ν1,1, . . . , νY,kY ).
T̄ Mean of divergence times across the Y population pairs.
s2T Variance of divergence times across the Y population pairs.
DT Dispersion index of divergence times across the Y population pairs (s2T/T̄).
n Number of samples from the joint prior.
Λ Vector of parameter values drawn from the joint prior.

S
Vector containing the summary statistics calculated from data simulated under parameter values drawn from the

prior (Λ).
Λ Random sample of Λ1, . . . ,Λn drawn form the prior.
S Summary statistic vectors S1, . . . ,Sn for each Λ1, . . . ,Λn drawn from the prior.
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Table 2: The models evaluated in the simulation-based analyses. For the MDPP model,
the prior on the concentration parameter, χ ∼ Gamma(·, ·), was set to Gamma(2, 2) for
the validation analyses and Gamma(1.5, 18.1) for the power analyses. The distributions of
divergence times are given in units of 4NC generations followed in brackets by units of millions
of generations ago (MGA), with the former converted to the latter assuming a per-site rate
of 1×10−8 mutations per generation. For model MmsBayes, the priors for theta parameters
are θA ∼ U(0, 0.05) and θD1, θD2 ∼ Beta(1, 1)× 2× U(0, 0.05). The later is summarized as
θ̄D ∼ U(0, 0.05). For the MDPP and MUniform, and MUshaped models, θA, θD1, and θD2 are
independently and exponentially distributed with a mean of 0.025.

Priors

Model t τ θ

MmsBayes t ∼ DU{1, . . . , Y} τ ∼ U(0, 10 [25 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
MUshaped t ∼ DU{1, . . . , Y} τ ∼ Exp(mean = 2.887 [7.22 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
MUniform t ∼ DU{a(Y)} τ ∼ Exp(mean = 2.887 [7.22 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
MDPP t ∼ DP (χ ∼ Gamma(·, ·)) τ ∼ Exp(mean = 2.887 [7.22 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
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Table 3: The models used to simulate pseudo-replicate datasets for assessing the power of
the models in Table 2. The distributions of divergence times are given in units of 4NC

generations followed in brackets by units of millions of generations ago (MGA), with the
former converted to the latter assuming a per-site rate of 1×10−8 mutations per generation.
For all of the MmsBayes models, the priors for theta parameters are θA ∼ U(0, 0.05) and
θD1, θD2 ∼ Beta(1, 1) × 2 × U(0, 0.05). The later is summarized as θ̄D ∼ U(0, 0.05). For
the MUniform and MExp models, θA, θD1, and θD2 are independently and exponentially
distributed with a mean of 0.025.

Priors

Model series t τ θ

MmsBayes |τ| = 22 τ ∼ U(0, 0.2 [0.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
|τ| = 22 τ ∼ U(0, 0.4 [1.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
|τ| = 22 τ ∼ U(0, 0.6 [1.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
|τ| = 22 τ ∼ U(0, 0.8 [2.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
|τ| = 22 τ ∼ U(0, 1.0 [2.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)
|τ| = 22 τ ∼ U(0, 2.0 [5.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

MUniform |τ| = 22 τ ∼ U(0, 0.2 [0.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ U(0, 0.4 [1.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ U(0, 0.6 [1.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ U(0, 0.8 [2.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ U(0, 1.0 [2.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ U(0, 2.0 [5.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

MExp |τ| = 22 τ ∼ Exp(mean = 0.058 [0.14 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ Exp(mean = 0.115 [0.29 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ Exp(mean = 0.173 [0.43 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ Exp(mean = 0.231 [0.58 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ Exp(mean = 0.289 [0.72 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
|τ| = 22 τ ∼ Exp(mean = 0.577 [1.44 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)
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Table 4: The models used to analyze the data from the 22 pairs of taxa from the Philippines
(M), and a subset of nine of those pairs from the Islands of Negros and Panay (M). In
addition to the n − 1 coalescent times, the Msimple

DPP has only a single θ parameter for each
taxon pair. The remaining M models have three θ, two ζD, and one τB parameter. The
distributions of divergence times are given in units of 4NC generations followed in brackets
by units of millions of generations ago (MGA), with the former converted to the latter
assuming a per-site rate of 1×10−8 mutations per generation. The MDPP model (and its
M◦DPP counterpart that samples over ordered divergence models) has only two θ parameters
(the descendant populations of each pair share the same θ parameter, and there are no
bottleneck parameters).

Model Priors

MmsBayes t ∼ DU{1, . . . , Y} τ ∼ U(0, 34.64 [17.3 MGA]) θA ∼ U(0, 0.01)
θD1, θD2 ∼ Beta(1, 1)× 2× U(0, 0.01) ζD1 ∼ U(0, 1) ζD2 ∼ U(0, 1)

MUniform t ∼ DU{a(Y)} τ ∼ Exp(mean = 10 [5 MGA]) θA ∼ Exp(mean = 0.005)
θD1 ∼ Exp(mean = 0.005) θD2 ∼ Exp(mean = 0.005) ζD1 ∼ Beta(5, 1)
ζD2 ∼ Beta(5, 1)

MDPP t ∼ DP (χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 10 [5 MGA])
θA ∼ Exp(mean = 0.005) θD1 ∼ Exp(mean = 0.005) θD2 ∼ Exp(mean = 0.005)
ζD1 ∼ Beta(5, 1) ζD2 ∼ Beta(5, 1)

Minform
DPP t ∼ DP (χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 6 [3 MGA])

θA ∼ Exp(mean = 0.005) θD1 ∼ Exp(mean = 0.005) θD2 ∼ Exp(mean = 0.005)
ζD1 ∼ Beta(5, 1) ζD2 ∼ Beta(5, 1)

Msimple
DPP t ∼ DP (χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 10 [5 MGA])

θA = θD1 = θD2 ∼ Exp(mean = 0.005) ζD1 = ζD2 = 1.0

MDPP t ∼ DP (χ ∼ Gamma(1.5, 5.0)) τ ∼ Exp(mean = 10 [5 MGA])
θA ∼ Exp(mean = 0.005) θD1 = θD2 ∼ Exp(mean = 0.005) ζD1 = ζD2 = 1.0
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Figure 1: Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–L)
MUniform, and (M–P) MDPP when analyzing data generated under models (A, E, I, & M)
MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform, and (D, H, L, & P)MDPP . The
unadjusted posterior probability of a single divergence event, based on |τ| = 1, from 50,000
posterior estimates are assigned to bins of width 0.05 and plotted against the proportion of
replicates in each bin where the truth is |τ| = 1.
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Figure 2: Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–L)
MUniform, and (M–P) MDPP when analyzing data generated under models (A, E, I, & M)
MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, & P) MDPP .
The unadjusted posterior probability of a single divergence event, based on DT < 0.01,
from 50,000 posterior estimates are assigned to bins of width 0.05 and plotted against the
proportion of replicates in each bin where the truth is DT < 0.01.

42



0.0

0.2

0.4

0.6

0.8

1.0
p( ˆ|τ | = 1) = 1.0

τ ∼ U(0, 0.5 MGA)
A p( ˆ|τ | = 1) = 1.0

τ ∼ U(0, 1.5 MGA)
B p( ˆ|τ | = 1) = 0.999

τ ∼ U(0, 2.5 MGA)
C p( ˆ|τ | = 1) = 0.83

τ ∼ U(0, 5.0 MGA)

M
m
sB
a
y
es

D

0.0

0.2

0.4

0.6

0.8

1.0
p( ˆ|τ | = 1) = 0.994E p( ˆ|τ | = 1) = 0.939F p( ˆ|τ | = 1) = 0.714G p( ˆ|τ | = 1) = 0.141

M
U
sh
a
ped

H

0.0

0.2

0.4

0.6

0.8

1.0
p( ˆ|τ | = 1) = 0.0I p( ˆ|τ | = 1) = 0.0J p( ˆ|τ | = 1) = 0.0K p( ˆ|τ | = 1) = 0.0

M
U
n
if
orm

L

1 3 5 7 9 11 13 15 17 19 21
0.0

0.2

0.4

0.6

0.8

1.0
p( ˆ|τ | = 1) = 0.926M

1 3 5 7 9 11 13 15 17 19 21

p( ˆ|τ | = 1) = 0.605N

1 3 5 7 9 11 13 15 17 19 21

p( ˆ|τ | = 1) = 0.187O

1 3 5 7 9 11 13 15 17 19 21

p( ˆ|τ | = 1) = 0.003

M
D
P
P

P

Estimated number of divergence events, ˆ|τ |

D
en

si
ty

Inference
m

odel

Data modelMmsBayes

Figure 3: The power of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and (M–
P) MDPP to detect random variation in divergence times as simulated under theMmsBayes

series of models. The plots illustrate the estimated number of divergence events ( ˆ|τ|)
from analyses of 1000 datasets simulated under each of theMmsBayes models, with the the
estimated probability of the model inferring one divergence event, p( ˆ|τ| = 1), given for each
combination. The 22 divergence times were randomly drawn as indicated above each column
of plots, where time is respresented as millions of generations ago (MGA) according to a per-
site rate of 1×10−8 mutations per generation. Four of the six data-generating models of the
MmsBayes series are shown; please see Figure S14 for all results.
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Figure 4: The power of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and (M–
P) MDPP to detect random variation in divergence times as simulated under theMmsBayes

series of models. The plots illustrate the estimated dispersion index of divergence times
(D̂T) from analyses of 1000 datasets simulated under each of theMmsBayes models, with the
the estimated probability of the model inferring one divergence event, p(D̂T < 0.01), given
for each combination. The 22 divergence times were randomly drawn as indicated above each
column of plots, where time is respresented as millions of generations ago (MGA) according
to a per-site rate of 1×10−8 mutations per generation. Four of the six data-generating models
of theMmsBayes series are shown; please see Figure S20 for all results.
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Figure 5: The tendency of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP to support one divergence event when there is random variation in divergence
times as simulated under the MmsBayes series of models. The plots illustrate histograms
of the estimated posterior probability of the one divergence model, p(|τ| = 1|Bε(S

∗)), from
analyses of 1000 datasets simulated under each of theMmsBayes models. The 22 divergence
times were randomly drawn as indicated above each column of plots, where time is respre-
sented as millions of generations ago (MGA) according to a per-site rate of 1×10−8 mutations
per generation. Four of the six data-generating models of the MmsBayes series are shown;
please see Figure S17 for all results.
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Figure 6: The tendency of models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP to support one divergence event when there is random variation in divergence
times as simulated under the MmsBayes series of models. The plots illustrate histograms
of the estimated posterior probability of the one divergence model, p(DT < 0.01|Bε(S

∗)),
from analyses of 1000 datasets simulated under each of the MmsBayes models. The 22
divergence times were randomly drawn as indicated above each column of plots, where time
is respresented as millions of generations ago (MGA) according to a per-site rate of 1×10−8

mutations per generation. Four of the six data-generating models of theMmsBayes series are
shown; please see Figure S23 for all results.
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Figure 7: The (A–E) posterior and (F–J) prior probabilities of the number of divergence
events (|τ|) when the data of the 22 pairs of taxa from the Philippines are analyzed under
the five models indicated at the top of each column of plots (Table 4). The average prior
probability of an (K–O) unordered and (P–T) ordered model of divergence (t) with |τ|
divergence-time parameters is also shown. The posterior median of the dispersion index of
divergence times (DT) is also given for each model, followed by the 95% highest posterior
density interval in parentheses.

47



0.0

0.1

0.2

DT =3.02(0.67−5.91) Posterior 
D
P
P

A

0.0

0.1

0.2

DT =2.00(0.00−4.80) Posterior 
◦D
P
P

B

0.0

0.1

0.2 Prior

C

0.0

0.04

0.08

0.12

Prior 
(p

(t))

D

1 3 5 7 90.0

0.04

0.08

0.12

Prior 
(p

(t
◦
))

E

Number of divergences, |τ|

Pr
ob

ab
ili

ty

Figure 8: The posterior probabilities of the number of divergence events, |τ|, when the data
of the 9 pairs of taxa from Negros and Panay Islands are analyzed under the DPP model
that samples over (A) unordered and (B) ordered models of divergence (Table 4). Both
models share the same (C) prior probability of the number of divergence events, and the
average prior probability of an (D) unordered and (E) ordered model of divergence (t) with
|τ| divergence-time parameters. The posterior median of the dispersion index of divergence
times (DT) is also given for each model, followed by the 95% highest posterior density interval
in parentheses.
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Supporting Information
Oaks, J. R. An Improved Approximate-Bayesian Model-choice Method for Estimating
Shared Evolutionary History.
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Table S1: An example showing the number of divergence events (|τ|) and the associated
sample space of the unordered divergence models (integer partitions of Y pairs) and ordered
divergence models (partitions of Y pairs) for Y = 4 pairs of populations.

|τ| Unordered divergence models Ordered divergence models
1 4 1111
2 3 + 1; 2 + 2 1112, 1121, 1211, 2111, 1122, 1212, 1221
3 2 + 1 + 1 1123, 1213, 1231, 1223, 1232, 1233
4 1 + 1 + 1 + 1 1234
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Figure S1: Accuracy of unadjusted estimates of DT when data generated under models (A,
E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, &
P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is provided.
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Figure S2: Accuracy of GLM-adjusted estimates of DT when data generated under models
(A, E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H,
L, & P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform,
and (M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted.
The root mean square error (RMSE) calculated from the 5000 estimates is provided.
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Figure S3: Accuracy of unadjusted estimates of T̄ when data generated under models (A,
E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, &
P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is provided.
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Figure S4: Accuracy of GLM-adjusted estimates of T̄ when data generated under models (A,
E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, &
P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is provided.
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Figure S5: Accuracy of unadjusted estimates of |τ| when data generated under models (A,
E, I, & M) MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, &
P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is provided. Random
normal variates (N(0, 0.005)) have been added to the estimates and true values of |τ| to
reduce overlap of plot symbols.
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Figure S6: Accuracy of GLM-adjusted estimates of |τ| when data generated under models
(A, E, I, & M)MmsBayes, (B, F, J, & N)MUshaped, (C, G, K, & O)MUniform, and (D, H, L, &
P) MDPP are analyzed with models (A–D) MmsBayes, (E–H) MUshaped, (I–L) MUniform, and
(M–P) MDPP . A random sample of 5000 posterior estimates (from 50,000) are plotted. The
root mean square error (RMSE) calculated from the 5000 estimates is provided. Random
normal variates (N(0, 0.005)) have been added to the estimates and true values of |τ| to
reduce overlap of plot symbols.
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Figure S7: Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–L)
MUniform, and (M–P) MDPP when analyzing data generated under models (A, E, I, & M)
MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, & P) MDPP .
The GLM-adjusted posterior probability of a single divergence event, based on |τ| = 1,
from 50,000 posterior estimates are assigned to bins of width 0.05 and plotted against the
proportion of replicates in each bin where the truth is |τ| = 1.
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Figure S8: Model-choice accuracy for models (A–D) MmsBayes, (E–H) MUshaped, (I–L)
MUniform, and (M–P) MDPP when analyzing data generated under models (A, E, I, & M)
MmsBayes, (B, F, J, & N) MUshaped, (C, G, K, & O) MUniform, and (D, H, L, & P) MDPP .
The GLM-adjusted posterior probability of a single divergence event, based on DT < 0.01,
from 50,000 posterior estimates are assigned to bins of width 0.05 and plotted against the
proportion of replicates in each bin where the truth is DT < 0.01.
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Figure S9: Estimation accuracy for model M◦
DPP when analyzing data generated under

M◦
DPP . A random sample of 5000 posterior estimates (from 50,000) are plotted, including

both (A, B, & C) unadjusted and (D, E, & F) GLM-regression-adjusted estimates. Normal
random variates (N(0, 0.005)) have been added to the estimates and true values of |τ| (A &
D) to reduce overlap of plot symbols. The root mean square error (RMSE) calculated from
the 5000 estimates is provided.
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Figure S10: Model-choice accuracy for model M◦
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Figure S26: The divergence-model results when the 22 pairs of taxa from the Philippines are
analyzed under the MDPP model (Table 4). The 10 unordered divergence models with high-
est posterior probability (p(t |Bε(S

∗))) are shown, where the numbers indicate the inferred
number of taxon pairs that diverged at each event. The times indicate the posterior median
and 95% highest posterior density (HPD) interval conditional on each divergence model.
For each model, times are summarized across posterior samples by the number of taxon
pairs associated with each divergence. For models in which there are multiple divergence
events with the same number of taxon pairs, the events are sorted by time to summarize the
divergence times in a consistant way.
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Figure S27: The divergence-model results when the 22 pairs of taxa from the Philippines
are analyzed under the Minform

DPP model (Table 4). The 10 unordered divergence models
with highest posterior probability (p(t |Bε(S

∗))) are shown, where the numbers indicate the
inferred number of taxon pairs that diverged at each event. The times indicate the posterior
median and 95% highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by the number
of taxon pairs associated with each divergence. For models in which there are multiple
divergence events with the same number of taxon pairs, the events are sorted by time to
summarize the divergence times in a consistant way.
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Figure S28: The divergence-model results when the 22 pairs of taxa from the Philippines
are analyzed under the Msimple

DPP model (Table 4). The 10 unordered divergence models
with highest posterior probability (p(t |Bε(S

∗))) are shown, where the numbers indicate the
inferred number of taxon pairs that diverged at each event. The times indicate the posterior
median and 95% highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by the number
of taxon pairs associated with each divergence. For models in which there are multiple
divergence events with the same number of taxon pairs, the events are sorted by time to
summarize the divergence times in a consistant way.
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Figure S29: The divergence-model results when the 22 pairs of taxa from the Philippines
are analyzed under the MUniform model (Table 4). The 10 unordered divergence models
with highest posterior probability (p(t |Bε(S

∗))) are shown, where the numbers indicate the
inferred number of taxon pairs that diverged at each event. The times indicate the posterior
median and 95% highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by the number
of taxon pairs associated with each divergence. For models in which there are multiple
divergence events with the same number of taxon pairs, the events are sorted by time to
summarize the divergence times in a consistant way.
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Figure S30: The divergence-model results when the 22 pairs of taxa from the Philippines
are analyzed under the MmsBayes model (Table 4). The 10 unordered divergence models
with highest posterior probability (p(t |Bε(S

∗))) are shown, where the numbers indicate the
inferred number of taxon pairs that diverged at each event. The times indicate the posterior
median and 95% highest posterior density (HPD) interval conditional on each divergence
model. For each model, times are summarized across posterior samples by the number
of taxon pairs associated with each divergence. For models in which there are multiple
divergence events with the same number of taxon pairs, the events are sorted by time to
summarize the divergence times in a consistant way.
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Figure S31: The divergence-model results when the 9 pairs of taxa from the Islands of Ne-
gros and Panay are analyzed under the MDPP model sampling over unordered models of
divergence. (Table 4). The 10 unordered divergence models with highest posterior proba-
bility (p(t |Bε(S

∗))) are shown, where the numbers indicate the inferred number of taxon
pairs that diverged at each event. The times indicate the posterior median and 95% highest
posterior density (HPD) interval conditional on each divergence model. For each model,
times are summarized across posterior samples by the number of taxon pairs associated with
each divergence. For models in which there are multiple divergence events with the same
number of taxon pairs, the events are sorted by time to summarize the divergence times in
a consistant way.
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Figure S32: The divergence-model results when the 9 pairs of taxa from the Islands of
Negros and Panay are analyzed under the M◦DPP model sampling over ordered models of
divergence. (Table 4). The posterior sample of divergence models were summarized while
ignoring the identity of the taxon pairs in order to compare the results of the MDPP model.
The 10 unordered divergence models with highest posterior probability (p(t |Bε(S

∗))) are
shown, where the numbers indicate the inferred number of taxon pairs that diverged at each
event. The times indicate the posterior median and 95% highest posterior density (HPD)
interval conditional on each divergence model. For each model, times are summarized across
posterior samples by the number of taxon pairs associated with each divergence. For models
in which there are multiple divergence events with the same number of taxon pairs, the
events are sorted by time to summarize the divergence times in a consistant way.
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Figure S33: The marginal divergence-time results when the 9 pairs of taxa from the Islands
of Negros and Panay are analyzed under the M◦DPP model that samples over ordered models
of divergence (Table 4). The times indicate the posterior median and 95% highest posterior
density (HPD) interval.
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