Generalizing Wallis' formula

D Huylebrouck

[accepted for publication in "The American Mathematical Monthly"]

Abstract. The present note generalizes Wallis' formula, $\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \ldots$, using the EulerMascheroni constant g and the Glaisher-Kinkelin constant A:

$$
\frac{4^{\gamma}}{2^{\ln 2}}=\frac{\sqrt{2}}{1} \cdot \frac{\sqrt{2}}{\sqrt[3]{3}} \cdot \frac{\sqrt[4]{4}}{\sqrt[3]{3}} \cdot \frac{\sqrt[4]{4}}{\sqrt[5]{5}} \cdot \frac{\sqrt[6]{6}}{\sqrt[5]{5}} \cdot \frac{\sqrt[6]{6}}{\sqrt[7]{7}} \ldots \text { and }\left(\frac{2^{2} \pi \mathrm{e}^{\gamma}}{A^{12}}\right)^{\frac{\pi^{2}}{6}}=\frac{\sqrt[4]{2}}{1} \cdot \frac{\sqrt[4]{2}}{\sqrt[9]{3}} \cdot \frac{16}{\sqrt[9]{3}} \cdot \frac{\sqrt[16]{4}}{\sqrt[25]{5}} \cdot \frac{\sqrt[36]{6}}{\sqrt[25]{5}} \cdot \frac{\sqrt[36]{6}}{\sqrt[49]{7}} \ldots
$$

Wallis' formula, named after the English mathematician John Wallis (1616-1703), is popular in many calculus courses (see [2], [1] p. 338]). It is a slowly convergent product, but its importance is historic and aesthetic. The present paper proposes two similar equally pleasing formulas, in a rather straighforward way, without using the gamma function for generating these product formulas. Perhaps some readers will take up the challenge of finding even easier proofs on the level of a calculus course, similar to those for Wallis' formula.

The Dirichlet eta function is defined for any complex number s with real part >0 by:

$$
\eta(s)=\frac{1}{1^{s}}-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots .
$$

For $s=0$ it lead Y. L. Yung and J. Sondow to a remarkably elegant proof for Wallis' formula $\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \ldots$ (see [2]), and their proof will be adapted here to other values of s.

Theorem. For appropriate values ofs (and if $\sqrt[n]{2 n}$ is interpreted as $2 n$),

$$
\begin{equation*}
e^{2 \eta^{\prime}(s)}=\frac{\sqrt[2 s]{2}}{\sqrt[1 s]{1}} \cdot \frac{2 \sqrt[s]{2}}{\sqrt[3]{3}} \cdot \frac{4_{5}^{4}}{\sqrt[3^{s}]{3}} \cdot \frac{\sqrt[4]{4}}{\sqrt[5]{5}} \cdot \frac{\sqrt[6]{6}}{\sqrt[5]{5}} \cdot \frac{6^{5}}{7 \sqrt[s]{7}} \ldots \tag{*}
\end{equation*}
$$

Proof. By definition,

$$
\begin{aligned}
& \eta(s)=\frac{1}{1^{s}}-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \quad(\text { for } \operatorname{Re}(s)>0) \\
& =\frac{1}{2}+\frac{1}{2}\left[\left(\frac{1}{1^{s}}-\frac{1}{2^{s}}\right)+\left(-\frac{1}{2^{s}}+\frac{1}{3^{s}}\right)+\left(\frac{1}{3^{s}}-\frac{1}{4^{s}}\right)+\left(-\frac{1}{4^{s}}+\frac{1}{5^{s}}\right)+\ldots\right] \quad \quad \quad(\text { for } \operatorname{Re}(s)>-1) \\
& \text { Thus: } \eta^{\prime}(\mathrm{s})=\frac{1}{2}\left[\left(-\frac{\ln (1)}{1^{s}}+\frac{\ln (2)}{2^{s}}\right)+\left(\frac{\ln (2)}{2^{s}}-\frac{\ln (3)}{3^{s}}\right)+\left(-\frac{\ln (3)}{3^{s}}+\frac{\ln (4)}{4^{s}}\right)+\left(\frac{\ln (4)}{4^{s}}-\frac{\ln (5)}{5^{s}}\right)+\ldots\right] \\
& =\frac{1}{2} \ln \left(\frac{2^{1 / 2^{s}}}{1^{1 / 1^{s}}} \cdot \frac{2^{1 / 2^{s}}}{3^{1 / 3^{s}}} \cdot \frac{4^{1 / 4^{s}}}{3^{1 / 3^{s}}} \cdot \frac{4^{1 / 4^{s}}}{5^{1 / 5^{s}}} \ldots\right) \text {, } \\
& \text { and so } \mathrm{e}^{2 \eta^{\prime}(\mathrm{s})}=\frac{2^{1 / 2^{s}}}{1^{1 / 1^{s}}} \cdot \frac{2^{1 / 2^{s}}}{3^{1 / 3^{s}}} \cdot \frac{4^{1 / 4^{s}}}{3^{1 / 3^{s}}} \cdot \frac{4^{1 / 4^{s}}}{5^{1 / 5^{s}} \ldots}
\end{aligned}
$$

In the case $s=0$, the litterature tells us $\eta^{\prime}(0)=\frac{1}{2} \ln \left(\frac{\pi}{2}\right)$, and this leads to the familiar Wallis formula $\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \ldots$.

In the case $s=1, \eta^{\prime}(1)$ can be obtained from the property $\sum_{k=1}^{\infty}(-1)^{k} \frac{\ln (k)+\gamma}{k}=$ $-\frac{1}{2}(\ln 2)^{2}$ (see [5]). Indeed, using the Euler-Mascheroni constant γ, it follows that

$$
\begin{aligned}
\eta^{\prime}(1) & =\sum_{k=1}^{\infty}(-1)^{k} \frac{\ln (k)}{k}=-\gamma \sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}-\frac{1}{2}(\ln 2)^{2} \\
& =-\gamma(-\ln 2)-\frac{1}{2}(\ln 2)^{2}=\frac{1}{2}(2 \gamma-\ln 2) \ln 2=\frac{1}{2} \ln 2^{(2 \gamma-\ln 2)},
\end{aligned}
$$

Substitution in (*) leads to:
$2^{(2 \gamma-\ln 2)}=\frac{2^{1 / 2}}{1^{1 / 1}} \cdot \frac{2^{1 / 2}}{3^{1 / 3}} \cdot \frac{4^{1 / 4}}{3^{1 / 3}} \cdot \frac{4^{1 / 4}}{5^{1 / 5}} \ldots$,
and this is the formula given in the abstract.
In the case $s=2$, we need the Glaisher-Kinkelin constant A, given by
$A=\lim _{n \rightarrow+\infty} \frac{H(n)}{n^{\frac{n^{2}}{2}+\frac{n}{2}+\frac{1}{12}} \cdot e^{-\frac{n^{2}}{4}}}=1.28242 \ldots$
where the 'hyperfactorial' $H(n)$ is defined by $H(n)=\prod_{k=1}^{n} k^{k}$.
Now combining the expression for $\eta^{\prime}(s)$ (see [3]) for $s=2$ and a well-known result using A (see [4]), implies that
$\eta^{\prime}(2)=\frac{1}{2} \frac{\pi^{2}}{6} \ln 2+\frac{1}{2} \frac{\pi^{2}}{6}[\gamma+\ln (2 \pi)-12 \ln A]=\frac{1}{2} \frac{\pi^{2}}{6} \ln \left(\frac{2^{2} \pi \mathrm{e}^{\gamma}}{A^{12}}\right)$.
Substitution in $\left({ }^{*}\right)$ leads to:
$\left(\frac{2^{2} \pi \mathrm{e}^{\gamma}}{A^{12}}\right)^{\frac{\pi^{2}}{6}}=\frac{2^{1 / 2^{2}}}{1^{1 / 1^{2}}} \cdot \frac{2^{1 / 2^{2}}}{3^{1 / 3^{2}}} \cdot \frac{4^{1 / 4^{2}}}{3^{1 / 3^{2}}} \cdot \frac{4^{1 / 4^{2}}}{5^{1 / 5^{2}}} \ldots$
and this is the formula given in the abstract.

References

1. Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, ISBN: 0-471-31515-X, 432 pages, July 1998.
2. J. Sondow and E. W. Weisstein, Wallis' Formula, MathW orld - A Wolfram Web Resource, http://mathworld.wolfram.com/WallisFormula.html.
3. E. W. Weisstein, Dirichlet Eta Function, MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/DirichletEtaFunction.html.
4. R. G. Wilson, Decimal Expansion of Zeta'(2) (the first derivative of the zeta function at 2), Sequence A000129, The On-line Encyclopedia of Integer Sequences, http://oeis.org/A073002.
5. Equality with Euler-Mascheroni constant:
http://math.stackexchange.com/questions/100871/equalitywith-eulermascheroni-constant.
