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Abstract. The present note generalizes Wallis’ formula, 
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Mascheroni constant g and the Glaisher-Kinkelin constant A: 
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Wallis’ formula, named after the English mathematician John Wallis (1616 –1703), is popular in 
many calculus courses (see [2], [1] p. 338]). It is a slowly convergent product, but its importance is 
historic and aesthetic. The present paper proposes two similar equally pleasing formulas, in a 
rather straighforward way, without using the gamma function for generating these product 
formulas. Perhaps some readers will take up the challenge of finding even easier proofs on the 
level of a calculus course, similar to those for Wallis’ formula. 
 
The Dirichlet eta function is defined for any complex number s with real part > 0 by: 
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 For s = 0 it lead Y. L. Yung and J. Sondow to a remarkably elegant proof for Wallis’ 

formula 
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2   (see [2]), and their proof will be adapted here to other values of s. 

 

Theorem. For appropriate values of s (and if 
0

2n n is interpreted as 2n),  

e2’(s)  = s
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Proof. By definition, 
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     (for Re(s)>0) 
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 (for Re(s)>-1) 

 Thus: ’(s) = 
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 and so e2’(s) = ...
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In the case s = 0, the litterature tells us ’(0) = 
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1  , and this leads to the familiar 

Wallis formula 
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 In the case s = 1, '(1) can be obtained from the property ∑ 1   = 

ln 2  (see [5]). Indeed, using the Euler-Mascheroni constant , it follows that  

 '(1)  = ∑ 1  = ∑ 1  ln 2   

  = - ln 2  ln 2  = 2 ln 2 ln2 =  2ln22ln
2

1  ,  

 Substitution in (*) leads to: 
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 and this is the formula given in the abstract. 
 In the case s = 2, we need the Glaisher-Kinkelin constant A, given by  
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 where the ‘hyperfactorial’ H(n) is defined by H(n) =
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 Now combining the expression for ’(s) (see [3]) for s = 2 and a well-known result using A 
(see [4]), implies that  
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 Substitution in (*) leads to: 
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 and this is the formula given in the abstract. 
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