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The notion of Symmetric Informationally Complete Positive Operator-Valued
Measures (SIC-POVMs) arose in physics as a kind of optimal measurement basis
for quantum systems [10, 6]. However the question of the existence of such
systems is identical to the question of the existence of a maximal set of complex
equiangular lines. That is to say, given a complex Hilbert space of dimension d,
what is the maximal number of (complex) lines one can find which all make
a common (real) angle with one another, in the sense that the inner products
between unit vectors spanning those lines all have a common absolute value? A
maximal set would consist of d2 lines all with a common angle, the absolute value
of whose cosine is equal to 1√

d+1
. The same question has also been posed in the

real case and some partial answers are known: see [9, A002853] for the known
results; and for some of the theory see [3, chapter 11]. But at the time of writing
no unifying theoretical result has been found in the real or the complex case:
some sporadic low-dimensional numerical constructions have been converted into
algebraic solutions but beyond this very little is known. It is conjectured [6, 10]
that such maximal structures always arise as orbits of certain fiducial vectors
under the action of the Weyl (or generalised Pauli) group. In this paper we
point out some new construction methods in the lowest dimensions (d = 2 and
d = 3). We should mention that the SIC-POVMs so constructed are all unitarily
equivalent to previously known SIC-POVMs.

SIC-POVMs and Complex Equiangular Lines

Let d > 1 be a positive integer and let Cd denote complex Hilbert space of dimension d
equipped with the usual Hermitian positive-definite inner product, denoted by 〈 , 〉. A
complex line is a 1-dimensional complex subspace of Cd. We shall view such a line as being
spanned by a unit vector u which is unique up to a phase (an element of the complex unit
circle). As in the real case (where the phase ambiguity however only extends to ±1) we may
ask about the relative angle between two such complex lines. Although the definition of such
angles is open to several interpretations [7] we shall adopt the usual convention here and
define the angle αu,v between two lines spanned by unit vectors u,v to be the inverse cosine
of the absolute value of their Hermitian inner product 〈u,v〉, viz:

αu,v = arccos (|〈u,v〉|) .

Notice that this definition is unchanged if we multiply u or v or both by (possibly distinct)
phases. We follow Scharnhorst [7] in referring to αu,v as the Hermitian angle between the
vectors u and v. In [6] it is shown that the generating set Sd of unit vectors for a complete
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(maximal) set of equiangular lines in Cd will necessarily have cardinality d2 and each pair of
distinct vectors u,v will satisfy

|〈u,v〉| = 1√
(d+ 1)

. (1)

We shall speak about SIC-POVMs and complete sets of equiangular lines as though they
were the same object: the translation from one perspective to another may be found in [6].
Also where it will cause no confusion we shall not distinguish between row and column
vectors, to avoid cluttering up the exposition with transpose symbols. To illustrate the basic
idea we shall look at the simplest non-trivial real Euclidean example.

Example. Let d = 2 and consider R2 equipped with the usual inner (dot) product. Then the

three unit vectors (1, 0), ( 1
2 ,
√
3
2 ) and (− 1

2 ,
√
3
2 ) span three one-dimensional subspaces which

constitute a (maximal) set of 3 equiangular lines in R2, with the mutual angle between them
being arccos( 1

2 ) = π
3 .

In [6] we find the first systematic numerical search for SIC-POVMs in low dimensions,
with the smaller dimensional examples being converted into complete algebraic solutions.
This was followed by [1], [8] and [2] (the literature is in fact much broader: for a much more
extensive set of references see [2]). The framework in which all of this previous work has been
completed is that of the action of the standard d-dimensional (Heisenberg-)Weyl Group Wd

upon a single fiducial vector fd: the orbit (modulo phases) of fd under the action of Wd is
then the entire SIC-POVM. Hence the focus has been upon finding such fiducial vectors fd
since the basis for the expression of the Xd and Zd matrices which generate Wd is assumed
fixed, hence the numerics can focus on just one vector in each dimension.

The focus of this paper is somewhat different: we explore some other ways in which such
structures can arise in dimensions 2 and 3. The original idea behind these constructions was
to try to find a way of generating all of the elements of a SIC-POVM from a single matrix,
by somehow creating a (not necessarily unitary) matrix which takes a simple vector like
v0 = (1, 0, . . . , 0) and then successively ‘twists’ it to new vectors which have the appropriate
angle to all of the previous ones. As we shall see below, this was possible for d = 2 but
is too ambitious for higher dimensions, even for d = 3. So instead we built SIC-POVMs
starting with v0 and building up in a sequence via simple geometric steps, based on the
single-matrix dimension 2 example, which give the appropriate angles as we go along. Once
again, this works in dimensions 2 and 3 but so far we have not been able to generalise the
method to higher dimensions. However it points to a possible new heuristic for achieving
such constructions in the general case.

Thanks to Marcus Appleby for valuable discussions and for his comments on an earlier
draft of this paper. I would also like to thank Terry Rudolph for many helpful ideas and I
am grateful for his group’s hospitality at Imperial College, where this work was done.

d = 2: an almost-cyclic construction

Theorem 1. There is a 2×2 complex matrix M whose first four powers applied to a fiducial
vector generate a SIC-POVM in d = 2.

Proof (by construction). Let v0 = (1, 0) ∈ C2. If we start with v0 as the first vector of a
SIC-POVM it follows from (1) that up to appropriate phases, the remaining 3 vectors (in

dimension d = 2) must be of the form ( 1√
3
,
√

2
3e
iθj ), for some angles θj ∈ [0, 2π), j = 1, 2, 3.

So if we postulate the existence of a 2 × 2 matrix M which begins with v0 and cycles us
around to three more vectors v1 = Mv0, v2 = M2v0, v3 = M3v0 then the first column of M
must be of this same form. We do not insist that M be unitary: this would be unnecessarily
restrictive given that we are only looking for equiangular lines, not necessarily unit vectors.
As it turns out the matrix that we end up constructing does in fact generate a sequence of
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four unit vectors, but its eigenvalues are not of modulus one and so subsequent powers give
non-unit vectors.

Since any SIC-POVM in dimension 2 may be represented as a tetrahedron of vectors in
the Bloch sphere, we may unitarily rotate it so that any chosen pair of its representative
vectors lies in the X,Z-plane. Hence these two vectors may be viewed as real vectors in the
sense that their coordinates in the computational basis of C2 are real numbers. So we may
take the form of M to be:

M =
1√
3

(
1 reiρ√
2 seiσ

)
for appropriate non-negative real numbers r, s, ρ, σ. For any integer j we shall write vj =
M jv0. If we write out the equations governing the absolute values of the inner products
between the vectors {v0, v1} and the vector v2 and try to solve them so that they satisfy
equation (1) then we see a neat solution for 〈v0,v2〉 is r = 1√

2
, ρ = π

3 . Moving on to 〈v1,v2〉
then gives us another ‘obvious’ solution as s = 2, σ = 4π

3 . Somewhat surprisingly, it turns
out that this solution for v2 which was picked only because it was easy to understand, goes
on to generate a fourth vector v3 which has precisely the desired angles with the previous
three. So we have a SIC-POVM

{vj : j = 0, 1, 2, 3}

all generated from the initial vector v0 by successive multiplication by the single matrix

M =
1√
3

(
1 1√

2
e
iπ
3

√
2 −2e

iπ
3

)
.

For completeness we list the SIC-POVM vectors as

v0 =

(
1
0

)
, v1 =

1√
3

(
1√
2

)
, v2 =

i√
3

(
e

−iπ
3

−
√

2

)
, v3 =

1√
3

(
1

−
√

2e
−iπ
3

)
.

So it seems our matrix M is able to twist v0 and the next 2 successive vectors v1,v2 by
exactly the right amount in order to manufacture a SIC-POVM; thereafter (on both sides,
ie for positive and negative powers of M) the vectors sacrifice the angle and begin to grow
in magnitude. For example v−1 and v4 each have length

√
2 and the magnitudes go on to

grow symmetrically about the SIC-POVM from there onwards (see below). It is as though
the behaviour is perfectly constrained just while we need it to be, then it shakes off the
constraints and spins off to infinity.

The eigenvalues of M are λ± = − i
2 ±

1
2

√
1 + 2

√
3i, so since they differ in magnitude it

follows that the limiting behaviour of Mrv0 as r → ±∞ is for the vectors to head towards
infinity in magnitude in both directions, with the Hermitian angle between successive vectors
vj and vj+1 tending to zero; however with the limiting pseudo-angle [7, §2] between successive
vectors equal to the argument of the relevant eigenvalue (ie λ− as r →∞ and λ+ as r → −∞).

The following image, taken from [5], may help to visualise the behaviour of this matrix:
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where the fiducial vector lies somewhere in the centre, there is a major cluster of vectors of
constrained length generated around the centre at the heart of which is the ‘glowing light’
of the particular SIC-POVM configuration, but it gradually (then exponentially) diverges in
both directions; the central beam depicts the fact that the powers of M end up converging
to the same vector in a Hermitian angle sense; whereas the widening beam schematically
represents the constant non-zero pseudo-angle between successive vectors, which becomes
more significant in absolute (Euclidean distance) terms as the vectors grow in magnitude. If
we begin at the central point of the series, between v1 and v2, then these vectors yield a
sequence of integers representing the squared absolute values in both directions as follows:

1, 1, 2, 3, 5, 9, 15, 26, 45, 77, 133, 229, 394, 679, 1169, 2013, 3467, 5970, . . .

This sequence does not appear in any of Sloan’s online integer sequences [9].
Another way of visualising the symmetry of this SIC-POVM is to consider what happens

if we interpolate the infinite sequence . . . , v0, v1 = Mv0, v2 = M2v0, v3 = M3v0, . . .
using any matrix square root of M (notice the eigenvalues tell us that M has precisely four
(similarity classes of) distinct square roots [4, p54]). Choose any such matrix Q with Q2 = M .
Then the central part (namely the part in which we are most interested) can be indexed
instead as

v0 = u−3/2, v1 = u−1/2, v2 = u1/2, v3 = u3/2,

where the subscripts this time refer to half-integral powers of M as applied to a central
vector u0 = Q3v0.

One final curious fact is that the fourth power of M takes v0 to the non-unit vector v4 =
(0,
√

2) (which spans the subspace orthogonal to v0). Let u0 = (0, 1) be a unit vector in the
direction of v4. If we now set B = (M†)−1 and define ur = Bru0 then the set {u0,u1,u2,u3}
also forms a SIC-POVM which is a kind of ‘dual’ to the above in that for all integers j by
the properties of the inner product,

〈uj ,vj〉 = 〈(M†)−ju0,M
jv0〉 = 〈(M†)−j(M†)ju0,v0〉 = 〈u0,v0〉 = 0.

This is not however the natural dual coming from the adjoint structure - it depends seemingly
upon the orthogonality of v0 and v4, something which a priori is unexpected. If we denote
by X the Pauli X matrix X = ( 0 1

1 0 ) which is the involution which flips v0 and u0, then
saying that the uj form a SIC-POVM is the same as saying that the matrix XM†X also
generates a SIC-POVM from the fiducial v0.
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d = 2, 3: a bi-cyclic structure

Motivated by the ‘shape’ of the SIC-POVM constructed in the previous section we began to
look for an exact algebraic solution in dimensions d = 2, 3 starting with a couple of simple
assumptions about structure. Such solutions proved relatively straightforward in these low
dimensions. In addition for d = 2 there is a kind of internal exponential structure to this
exact solution, which we shall explain below. However these techniques in their original form
cannot be extended to higher dimensions.

Theorem 2. Let d = 2 or 3. There exists a d×d unitary matrix Ud of multiplicative order d
which takes a fiducial vector v0 to a set of d vectors v0,v1, . . . ,vd−1, each of which represents
one of the orbits O0,O1, . . . ,Od−1 generated under left multiplication by a fixed d×d diagonal
unitary matrix Dd of multiplicative order

(
d+1
2

)
. The disjoint union of these d orbits is a

SIC-POVM.

Proof. Once again the proof is by construction. For general d it is a fact of linear algebra [4,
theorem 2.3.1] that given any basis of Cd we can find unitaries to change the basis to one
in which these d initial column vectors form an upper-triangular matrix. Now given any
SIC-POVM set of d2 vectors it is always possible to take a subset of d vectors which forms
a basis, and therefore in view of the result just stated we may choose these d such that
following an appropriate unitary transformation the column vectors may be arranged to
form an upper-triangular matrix. This observation will allow us to construct SIC-POVMs
with a particularly transparent geometric structure, because once we have the triangular
basis we multiply our basis vectors by a diagonal matrix whose non-zero entries are phases,
to create a series of d orbits, each of which is determined – by virtue of the ‘triangular’
and diagonal substructures – solely by the number of non-zero entries in the vector. So our
SIC-POVM is then automatically partitioned into d orbits under the diagonal matrix Dd and
we cycle between the orbits using a unitary matrix Ud of order d, which we shall construct
below.

For any complex vector or matrix N we denote its transpose by NT , its entrywise complex
conjugate by N∗ and its conjugate transpose by N† = N∗T . Let {vj} be a basis for Cd and

let {wk} be its dual basis, so w†kvj = 〈wk,vj〉 = δkj for all j, k, where δkj is the Kronecker
delta. We would like to find a unitary matrix U which cycles between these vectors, so that
for all k:

Uvk = vk+1

(where we understand the subscript indices as cycling modulo d). I am grateful to Marcus
Appleby for pointing out the following lemma, which shows that this is possible if and only
if the Gram matrix Gv of the chosen basis {vk} is circulant, that is 〈vj ,vk〉 = 〈vj+1,vk+1〉
for all j, k.

Lemma 3. With notation as above, let A be a d× d complex matrix satisfying the following
equivalent conditions:

(i) Avj = vj+1 for all j

(ii) A =
∑d−1
k=0 vk ⊗w†k−1

Then A is unitary if and only if Gv is circulant.

Proof. We first need to prove the assertion that (i) and (ii) are equivalent. That (ii) implies
(i) follows from the definitions; the converse is a consequence of the fact that since {vj} is a

basis for the space and {w†k} is a basis for the dual space, the set {vj ⊗w†k} is a basis for
the matrix operator space in which A lives.

So assume that A is the matrix defined in (ii): we must show that being unitary under
the standard Hermitian inner product, in the sense that A†A = AA† = Id where Id is
the d× d identity matrix, is equivalent to the Gram matrix Gv being circulant. Writing out
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the change-of-basis equations and using the definition of the dual basis, we see that

vl =

d−1∑
k=0

(GTv )lkwk. (2)

Since {vj} is a basis it follows that A is unitary if and only if A†Avl = vl for all l, which
means:

d−1∑
k=0

wk−1 ⊗ v†k

d−1∑
j=0

vj ⊗w†j−1vl = vl for all l.

Now w†j−1vl = δj−1,l = δj,l+1 and so the terms in the inner sum are non-zero only when j =
l + 1. So by the definition of the Gram matrix Gv the sum becomes:

d−1∑
k=0

(Gv)k,l+1wk−1 = vl for all l.

Using the index k + 1 in place of k and transposing gives

d−1∑
k=0

(GTv )l+1,k+1wk = vl for all l

and since {vj} and {wk} are bases, (2) shows that each of the above statements is equivalent
to

(Gv)m,n = (Gv)m+1,n+1

for all m,n. This completes the proof of the lemma.

Let us specialise to the case d = 2 or 3 with our initial vector v0 which is (1, 0) for
d = 2 and (1, 0, 0) for d = 3. Armed with the above lemma we now search for v1, . . . ,vd−1
such that the basis {vk} has upper-triangular form and such that the Gram matrix Gv is
circulant. Since it is also automatically Hermitian this reduces considerably the possibilities
for the vectors. Henceforth all of the vectors we consider will be assumed to be unit vectors.

d = 2 : If we perform the same trick as in the previous section by identifying any SIC-
POVM in dimension 2 with a tetrahedron in the Bloch sphere then we may assume once again
that our second vector v1 is 1√

3
(1,
√

2). Notice that this automatically fulfils the circulant

criterion, since in dimension 2 it boils down to the single requirement that 〈v0,v1〉 = 〈v1,v0〉
which by the fact that the inner product is Hermitian forces both to be real. So we may
write our candidate for a unitary matrix which cycles between v0 and v1 as

U2 =
1√
3

(
1 α√
2 β

)
for some complex numbers α, β. If we require that U2 be unitary and of multiplicative order 2
it follows that in fact U2 must be Hermitian and so α =

√
2 and β = ±1. Writing out the

equations for U2
2 we find that the only possibility is:

U2 =
1√
3

(
1
√

2√
2 −1

)
,

and we may verify that indeed U2v0 = v1 and U2v1 = v0. We now look for a diagonal
matrix D2 of phases which will take our initial vectors v0 and v1 by left multiplication
to 2 more vectors which comprise the remaining part of the generators for a maximal set of
equiangular lines. Notice that the upper left-hand entry of D2 must be 1, since v0 is always
in a Dd-orbit of its own (all other vectors in any SIC-POVM containing v0 are forced to have
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their first entry equal to a phase times 1√
(d+1)

). So our diagonal matrix in this case will look

like

D2 =

(
1 0
0 ζ

)
where ζ is some phase. We set v2 = D2v1 and v3 = D2v2 = D2

2v1. Writing out the
equations for the set {v0,v1,v2,v3} to form a spanning set for a maximal set of equiangular
lines in dimension 2 we observe first that the equiangularity between v0 and the other three
is automatic, by our choice of first entries (see the discussion of d = 3 below for a deeper
insight into this property, which is the essence of the advantage of this construction method).
So we only need worry about the angles among the remaining vectors v1,v2 and v3, which
boil down to just three equations of the form

|1 + 2ζr| =
√

3,

where r = 1 or 2. This forces ζ to be one of the primitive cube roots of unity, and we are done.
Notice that the requirement that D3

2 = I2 would also have forced ζ to be one of the cube
roots of unity (without necessarily having been a solution which provided a SIC-POVM!).
However we did not impose this a priori in case a similar situation should arise to that in
the first section, where the generating matrix was not of finite order.

Remark. The way in which the above example and its counterpart below in dimension 3
were originally discovered was by considering ‘Hadamard’ multiplication of rank 1 projectors
with the density matrices corresponding to the upper-triangular vector set, since the structure
shone through much more clearly there than in any other format; presumably because the
phase ambiguities are removed. If we consider that our matrix D2 is in fact the diagonal
matrix of a vector h = (1,−eπi3 ) say, and if we form the rank 1 projector from h which is

the Hermitian matrix H = h†h =

(
1 −e

−πi
3

−e
πi
3 1

)
, then the following remarkable fact arises:

the set {
v0, e

iθmHv0, (H ∗ eiθmH)v0, (H ∗H ∗ eiθmH)v0

}
or equivalently {

v0, e
iθmHv0, (eiθmHv0) ∗ h, (eiθmHv0) ∗ h ∗ h

}
is a SIC-POVM, where θm denotes the so-called magic angle θm = arccos 1√

3
, and where

the ∗ denotes Hadamard (elementwise) multiplication of vectors and/or matrices. What we
lose however in this version is the finite order property of the transition unitary eiθmH : while
(under Hadamard multiplication) the matrix H still has finite order, the unitary matrix eiθmH

has infinite multiplicative order. In this context we mention that our original transition
matrix U2 above may be expanded as the exponential

U2 = e−iθmY Z,

where Y =
(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
are the usual Pauli matrices.

d = 3 : This time our vector v0 = (1, 0, 0) and we must find a unitary matrix U3 which
takes us from v0 cyclically to vectors v1 and v2 which have respectively 2 and 3 non-zero
entries (the upper-triangular format referred to above). We know by the same argument as
in dimension 2 that the first entry of each of these vectors must have absolute value 1

2 , so
let the top entry of v1 be 1

2e
ix for some x ∈ [0, 2π). The hypothesis that the Gram matrix

of the set {v0,v1,v2} be circulant in particular forces 1
2e
ix = 〈v0,v1〉 = 〈v2,v0〉 and so the

top entry of v2 must equal 1
2e
−ix. So let us write

v1 =

 1
2e
ix

√
3
2 e

iy

0

 , v2 =


1
2e
−ix

reiη√
3
4 − r2e

iκ


7



for suitable real non-negative y, r, η, κ. We remark first that κ may be set to be zero since it
has no impact upon any other quantities, including the effect of our target D3 matrix, as we
shall explain below. It remains to ensure that the middle inner product 〈v1,v2〉 then also
equals 1

2e
ix. (Notice that the other 3 non-diagonal inner products in the Gram matrix are

forced to obey the same circulant rule here because the Gram matrix is Hermitian and the
dimension is only 3). So we only need solve the equation:

1

2
eix = 〈v1,v2〉 =

1

4
e−2ix +

√
3

2
rei(η−y), (3)

which upon multiplying throughout by 2e2ix 6= 0 becomes

(eix)3 −
√

3rei(η−y)(eix)2 − 1

2
= 0.

Viewed as an equation in the variable eix and bearing in mind the role of sixth roots of
unity in this theory, this equation has a particularly suggestive form: namely if we take the
phase ei(η−y)(eix)2 in the central term to be ±i then the whole equation has the shape of
a sixth root of unity minus its real and imaginary components. That is, if we set (eix)3 =

e
πi
3 = 1

2 +
√
3
2 i, set r = 1

2 and ensure that the phase in the middle term is equal to i, then
we have a solution. So one neat form is to set η = π

2 , y = 2π
9 and so the vectors become:

v0 =

1
0
0

 , v1 =

 1
2e

πi
9

√
3
2 e

2πi
9

0

 , v2 =

 1
2e
−πi9
i
2
1√
2


and using the formula in (ii) of lemma 3 gives our transition unitary U3 to be:

U3 =


1
2e

πi
9 − i

2
1√
2√

3
2 e

2πi
9

i
2
√
3
e
πi
9 − 1√

6
e
πi
9

0
√

2
3e

−2πi
9 − i√

3
e

−2πi
9


which has multiplicative order 3. So we have our substructure of a triangular basis.

It remains to search for a diagonal matrix D3 of phases such that the (subspaces generated
by the) orbits of these vectors under left multiplication by D3 do in fact constitute a full set
of equiangular lines. As in the d = 2 case the top left-hand entry of D3 must be 1. So let us
write

D3 =

 1 0 0
0 ξ 0
0 0 ζ


for some phases ξ, ζ. We observe that D3v1 =

 1
2e

πi
9

√
3
2 e

2πi
9 ξ

0

 and so 〈v1, D3v1〉 = 1
4 + 3

4ξ. For

this to be of absolute value 1
2 we require that ξ = −1. Substituting this in turn into the

equation for 〈D3v1,v2〉 yields an inner product 1
2e
− 5πi

9 , which is also of the correct absolute
value. So far, so good: we have a collection of four vectors which span four equiangular lines.
The final step is to check whether there is an appropriate choice of ζ to generate the other
five.

Returning for a moment to the case of general d, observe that for any positive integers r, s
and j, since Dd is by construction unitary:

〈Dr
dvs+j ,vs〉 = 〈vs+j , D†d

r
vs〉 = 〈vs+j , Dn−r

d vs〉,

where n is the lowest common multiple of the orders of the eigenvalues chosen so far for Dd.
In other words, all of the vectors in orbit Os+j will have the correct Hermitian angle with
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all of those in orbit Os, since by stage (s+ j) we have already verified that vs+j makes the
correct angle with all of orbit Os and since Dd does not affect anything in the vectors of
orbit Os beyond the s-th entry, the same must be true of all of the Dd-multiples of vs+j
no matter what our choice of eigenvalue at the (s + j)-level. So the point about the upper-
triangular structure we have created may be seen here (for d = 2 it was rather trivial): once
we have created k levels in the sense that we have vectors v0, . . . ,vk−1 and all of their finite
orbits O0, . . . ,Ok−1 under repeated multiplication by Dd, and once we are sure that the
subsequent vectors vk, . . . ,vd−1 make the correct Hermitian angle with all of these orbits,
then we may choose any phases for the k, . . . , (d−1)-st eigenvalues of Dd safe in the knowledge
that the images of the vectors vk, . . . ,vd−1 under any power of the resulting matrix Dd will
automatically make the correct Hermitian angle with the orbits O0, . . . ,Ok−1. So we are
reduced at each k+ 1-st stage to ensuring that the set of new vectors {Dr

dvk} has the correct
set of mutual angles with one another and with the subsequent vectors vk+1, . . . ,vd−1; the
previous orbits automatically ‘fall into line’. This also shows that within each level we only
need to check |Ok| equations rather than the usual

(|Ok|
2

)
, since for any integers r, s:

〈Dr
dvk, D

s
dvk〉 = 〈vk, D†d

r
Ds
dvk〉 = 〈vk, Ds−r

d vk〉.

So in dimension 3 it is a consequence of the above discussion that no matter what our
choice of ζ, the vectors Dt

3v2 for integer t will always have the correct angle with vec-
tors v0, v1, and D3v1. So we only need to focus on the inner products between the vec-
tors Dt

3v2 for t = 0, 1, 2, 3, 4, 5. A glance at the shape of the vector v2 shows that for any
integers s, t, since D3 is automatically unitary:

〈Ds
3v2, D

t
3v2〉 = 〈v2, D

t−s
3 v2〉 =

1

4
+ (−1)t−s

1

4
+

1

2
ζt−s,

explicitly showing that the individual vectors are unit vectors when s = t. Without loss of
generality we may assume when s 6= t that 0 ≤ s < t ≤ 5, so in particular 1 ≤ t− s ≤ 5. The
above expression shows immediately that if t − s is odd then we have the correct absolute
value of 1

2 ; when t − s is even (ie equal to 2 or 4) one sees that any primitive cube root
or indeed sixth root of unity will once again yield the correct absolute value of 1

2 . So for
simplicity we shall set

ζ = e
2πi
3 ,

hence D3 has the form

D3 =

 1 0 0
0 −1 0

0 0 e
2πi
3

 ,

whence our full set of vectors is:

O0 = {

1
0
0

},
O1 = {

 1
2e

πi
9

√
3
2 e

2πi
9

0

 ,

 1
2e

πi
9

−
√
3
2 e

2πi
9

0

},
O2 = {

 1
2e

−πi
9

i
2
1√
2

 ,

 1
2e

−πi
9

− i
2

1√
2
e

2πi
3

 ,

 1
2e

−πi
9

i
2

1√
2
e

4πi
3

 ,

 1
2e

−πi
9

− i
2

1√
2

 ,

 1
2e

−πi
9

i
2

1√
2
e

2πi
3

 ,

 1
2e

−πi
9

− i
2

1√
2
e

4πi
3

}.
Notice we have split it into its three natural D3-orbits: O0 generated by v0, O1 generated
by v1 and O2 generated by v2. Also we remark that D6

3 = I3, so in fact in this case we are
able to stick to finite-order unitaries both for the transition matrix between orbits, and for
the diagonal matrix which generates each orbit.

This completes the proof of theorem 2.

9



We should mention that the mere creation of the initial set {v0,v1,v2} does not in any
way guarantee that it can be extended to a SIC-POVM in the above fashion. For example
it is possible to create a set of three totally real vectors (using x = 0 above and then solving
equation (3)) which have no corresponding diagonal matrix to extend them to a full set.

Remark. Any attempt to extend this methodology beyond d = 3 using the näıve diagonal
approach which worked in d = 2, 3 is unfortunately doomed to fail - in a sense one ‘runs
out of degrees of freedom’ far too quickly. This does not rule out a kind of ‘block diagonal’
approach, which we hope to be the subject of future work.
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