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VARIATIONS ON A GENERATING-FUNCTION THEME: ENUMERATING

COMPOSITIONS WITH PARTS AVOIDING AN ARITHMETIC SEQUENCE

MATTHIAS BECK AND NEVILLE ROBBINS

Abstract. A composition of a positive integer n is a k-tuple (λ1, λ2, . . . , λk) ∈ Z
k
>0 such that

n = λ1 + λ2 + · · · + λk. Our goal is to enumerate those compositions whose parts λ1, λ2, . . . , λk

avoid a fixed arithmetic sequence. When this sequence is given by the even integers (i.e., all parts
of the compositions must be odd), it is well known that the number of compositions is given by the
Fibonacci sequence. A much more recent theorem says that when the parts are required to avoid
all multiples of a given integer k, the resulting compositions are counted by a sequence given by a
Fibonacci-type recursion of depth k. We extend this result to arbitrary arithmetic sequences. Our
main tool is a lemma on generating functions which is no secret among experts but deserves to be
more widely known.

Life is the twofold internal movement of composition and decomposition at once general and
continuous. Henri de Blainville (1777–1850)

1. Introduction

A composition of a positive integer n is a k-tuple (λ1, λ2, . . . , λk) ∈ Z
k
>0 such that

n = λ1 + λ2 + · · ·+ λk .

The integers λ1, λ2, . . . , λk are the parts and k is the length of the composition. Our goal is to
enumerate all compositions of a given integer for which the parts come from or avoid a fixed set,
in our case formed by an arithmetic sequence. This goal is merely a variation on a theme that
is well known to the experts (see, e.g., [7, 8, 10, 11, 12, 13]), so that our paper has a definite
expository flavor; we mainly wish to exhibit an approach to enumerating compositions that we find
particularly elegant.

Enumeration results on integer compositions and partitions (for which we do not distinguish
k-tuples that are permutations of each other) form a classic body of mathematics going back to at
least Euler, including numerous applications throughout mathematics and some areas of physics.
The books [2, 3, 9] serve as good introductions to this area of study.

Given a set A ⊆ Z>0, let cA(n) denote the number of compositions of n (of any length) with
parts in A. Our point of departure is the case where A consists of odd integers:
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Theorem 1. If A is the set of odd positive integers then cA(n) equals the nth Fibonacci number
fn, defined recursively (as usual) through

f1 = f2 := 1

fj := fj−1 + fj−2 for j ≥ 3 .

At times it will be more natural to consider compositions of an integer whose parts avoid a given
set A, and so we define Ā := Z>0 \A. For example, Theorem 1 says that, when A is the set of even
positive integers then cĀ(n) equals the nth Fibonacci number.

It is not clear who first proved Theorem 1. The earliest reference we are aware of is [10] but
we suspect that the theorem has been known earlier. Cayley’s collected works [4, p. 16] contains
the result that c{j∈Z: j≥2}(n) equals the nth Fibonacci number, but the fact that c{j∈Z: j≥2}(n) =
c{2j+1: j≥0}(n) is nontrivial (see, e.g., Sill’s recent bijective proof [16]).

Theorem 1 virtually begs to be extended. Perhaps surprisingly, the most natural generalization
appeared only recently [14, 15]:

Theorem 2. Fix a positive integer k and let A be the set of all positive multiples of k. Then cĀ(n)
is given by the sequence (fn) defined recursively through

fj := 2j−1 for 1 ≤ j ≤ k − 1

fk := 2k−1 − 1

fj := fj−1 + fj−2 + · · ·+ fj−k for j > k .

Naturally, Theorem 1 is the special case k = 2 of Theorem 2. The instances k = 3 and k = 4 give
rise to Tribonacci numbers [1, Sequence A001590] and Tetranacci numbers [1, Sequence A001631],
respectively.

Our goal is to give short proofs of these results using a basic but powerful tool—Lemma 3 below—
that deserves to be more widely known. (Thus our real goal is to spread the word.) This tool will
naturally give rise to further generalizations and closed formulas for composition counting functions.
We denote the generating function for the counting function cA(n) by CA(x) := 1+

∑

n≥1 cA(n)x
n.

Lemma 3. CA(x) =
1

1−∑m∈A xm
.

The earliest reference for this lemma we are aware of is Feller’s book [5, p. 311] on probability
theory, which was first published in 1950. The earliest combinatorics paper that includes Lemma 3
seems to be [13].

Lemma 3 follows immediately from dissecting the generating function CA(x) according to how
many parts a composition has: since the generating function for all compositions with exactly j

parts in A equals
(
∑

m∈A xm
)j
,

(1) CA(x) = 1 +
∑

j≥1

(

∑

m∈A
xm

)j

=
1

1−∑m∈A xm
.

We note that Lemma 3 is equivalent to the (equally simple) fact that cA(n) =
∑

m∈A cA(n−m).
We could now leave it up to the reader as a (fun) exercise to derive Theorems 1 and 2 from Lemma

3, including the challenge to find more results of the kind. We will give proofs and further results,
such as Theorem 4 below, but the reader who would like to experience the charm of Lemma 3 first
hand should now take pencil, paper, and a good cup of coffee, before reading on.

The following sample result is novel but we think of it merely as a variation of the theme of using
Lemma 3 to count compositions, as will hopefully become apparent in the next section.
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Theorem 4. Fix positive integers k and m with m < k, and let A := {m+ jk : j ∈ Z≥0}. Then
cĀ(n) is given by the sequence (fn) defined recursively through

fj := 2j−1 for 1 ≤ j ≤ m− 1

fj := 2j−1 − 2j−m for m ≤ j ≤ k

fj := fj−1 + · · ·+ fj−m+1 + fj−m−1 + · · ·+ fj−k+1 + 2fj−k for j > k .

Note that we could let m = k, as long as the recursion is interpreted correctly, which yields
Theorem 2; in this sense, Theorem 4 can be viewed as a generalization of Theorem 2.

To conclude this introduction section, we remark that the recent literature has seen more sophis-
ticated applications of the above sequence constructions to general combinatorial structures; see,
e.g., [6].

2. Proofs

To warm up, we start with the case A = Z>0. In this case Lemma 3 says

CA(x) =
1

1−
∑

m≥1 x
m

=
1

1− x
1−x

=
1− x

1− 2x
= 1 +

x

1− 2x
= 1 +

∑

n≥1

2n−1xn,

confirming that there are 2n−1 compositions of the positive integer n. The above line contains
essentially all ingredients we need for more complicated sets A.

Proof of Theorem 2. Fix a positive integer k and let A be the set of all positive multiples of k. By
Lemma 3,

CĀ(x) =
1

1− x+x2+···+xk−1

1−xk

=
1− xk

1− x− x2 − · · · − xk
.

Developing the right-hand side into a power series 1 +
∑

n≥1 fn x
n gives

(

1− x− x2 − · · · − xk
)



1 +
∑

n≥1

fn x
n



 = 1− xk,

and comparing coefficients yields the identities

f1 = 1

f2 = f1 + 1 = 2

f3 = f2 + f1 + 1 = 4

...

fk−1 = fk−2 + fk−3 + · · ·+ f1 + 1 = 2k−2

fk = fk−1 + fk−2 + · · ·+ f1 = 2k−1 − 1

fj = fj−1 + fj−2 + · · ·+ fj−k for j > k . �

Proof of Theorem 4. Fix positive integers k and m with m < k, and let A := {m+ jk : j ∈ Z≥0}.
By Lemma 3,

CĀ(x) =
1

1− x+···+xm−1+xm+1+···+xk

1−xk

=
1− xk

1− x− · · · − xm−1 − xm+1 − · · · − xk−1 − 2xk
.
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Developing the right-hand side into a power series as in our proof of Theorem 2 yields the coefficient
identities

fj = 2j−1 for 1 ≤ j ≤ m− 1

fj = 2j−1 − 2j−m for m ≤ j ≤ k

fj = fj−1 + · · · + fj−m+1 + fj−m−1 + · · ·+ fj−k+1 + 2fj−k for j > k . �

3. Closed Formulas

The classic formula

(2)
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

for the nth Fibonacci number follows at once from a partial-fraction expansion of the Fibonacci
generating function x

1−x−x2 . Since all generating functions that appear in our paper evaluate to
rational functions, we can obtain closed formulas just as effortlessly for any of the composition
counting functions we discussed. We give a sample.

Theorem 5. Let A = {1 + 3j : j ∈ Z≥0}, and let

α ≈ 0.6572981061 and β, γ ≈ −0.5786490531 ± 0.6525757633 i

be the three roots of 1− x2 − 2x3. Then

(3) cĀ(n) =
1 + α

(2 + 6α)

(

1

α

)n

+
1 + β

(2 + 6β)

(

1

β

)n

+
1 + γ

(2 + 6γ)

(

1

γ

)n

.

Proof. By Lemma 3,

CĀ(x) =
1

1− x2+x3

1−x3

=
1− x3

1− x2 − 2x3
.

This rational function comes with the partial-fraction expansion

CĀ(x) =
1−α3

−2α−6α2

x− α
+

1−β3

−2β−6β2

x− β
+

1−γ3

−2γ−6γ2

x− γ

which, using 1− α3 = α2 + α3 and the analogous relations for β and γ, gives

CĀ(x) =
1 + α

(2 + 6α)

1

1− x
α

+
1 + β

(2 + 6β)

1

1− x
β

+
1 + γ

(2 + 6γ)

1

1− x
γ

.

The result now follows from expanding the geometric series. �

One of the charming consequences of the formula (2) for the Fibonacci sequence is that the term

− 1√
5

(

1−
√
5

2

)n

converges to zero so quickly that we can compute the nth Fibonacci number as the

nearest integer to 1√
5

(

1+
√
5

2

)n

. Unfortunately, the situation with the formula for cĀ(n) presented

in Theorem 5 is not quite as friendly, since α, β, and γ all have absolute value less than 1, and thus
each of the three terms in (3) grows exponentially with n.

Repeating the steps in the proof of Theorem 5 for the case A = {2 + 3j : j ∈ Z≥0} gives a similar
picture: here we need to consider the three roots

α ≈ 0.5897545123 and β, γ ≈ −0.2948772562 ± 0.8722716255 i
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of 1 − x− 2x3. Again all of them have absolute value less than 1, and so each of the three terms
in the associated composition counting function

cĀ(n) =
1 + α2

(1 + 6α2)

(

1

α

)n

+
1 + β2

(1 + 6β2)

(

1

β

)n

+
1 + γ2

(1 + 6γ2)

(

1

γ

)n

grows exponentially with n.
On the other hand, if we consider the case A = {3j : j ∈ Z>0}, we need the roots

α ≈ 0.5436890127 and β, γ ≈ −0.7718445063 ± 1.1151425080 i

of 1−x−x2 −x3. Here the complex roots have absolute value larger than 1, and so the associated
composition counting function

cĀ(n) =
1 + α

(1 + 2α+ 3α2)

(

1

α

)n

+
1 + β

(1 + 2β + 3β2)

(

1

β

)n

+
1 + γ

(1 + 2γ + 3γ2)

(

1

γ

)n

is well approximated by the first term; in fact, cĀ(n) equals the nearest integer to
1+α

(1+2α+3α2)

(

1
α

)n
,

for any n > 0. Of course, the error decreases exponentially; it is smaller than 1% already for n = 4.
Table 1 gives the first twenty values for the three composition counting functions mentioned in

this section; here we use the notation c3,j(n) for the number of compositions of n with parts not
congruent to j (mod 3).

n c3,1(n) c3,2(n) c3,0(n)
1 0 1 1
2 1 1 2
3 1 2 3
4 1 4 6
5 3 6 11
6 3 10 20
7 5 18 37
8 9 30 68
9 11 50 125
10 19 86 230
11 29 146 423
12 41 246 778
13 67 418 1431
14 99 710 2632
15 149 1202 4841
16 233 2038 8904
17 347 3458 16377
18 531 5862 30122
19 813 9938 55403
20 1225 16854 101902

Table 1. Evaluations of the composition counting functions avoiding arithmetic
sequences modulo 3.
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4. Concluding Remarks

There exist bivariate versions of all results we have discussed so far, where one keeps track of both
the number n whose compositions we want to count and the numberm of parts in the compositions.
Let cA(n,m) denote the number of compositions of n with precisely m parts in the set A, and let

CA(x, y) :=
∑

n,m≥0

cA(n,m)xnym,

where we set cA(0, 0) := 1. Of course, this means we can recover our previous generating function
as CA(x) = CA(x, 1). The accompanying version of Lemma 3, which one easily verifies by inserting
a y into the beginning of the large parenthesis in (1), seems to have first appeared in [10].

Lemma 6. CA(x, y) =
1

1− y
∑

m∈A xm
.

For example, when A is the set of all positive odd integers,

CA =
1

1− y x
1−x2

=
1− x2

1− x2 − xy
= 1 +

xy

1− x2 − xy
.

This yields a recurrence similar to the one given by Pascal’s triangle, and in fact, cA(n,m) are
binomial coefficients, as can also be easily proved bijectively.

The usefulness of Lemma 3 is not restricted to the cases treated so far. For example, for A = Z≥2

we obtain

CA(x) =
1

1− x2

1−x

=
1− x

1− x− x2
= 1 +

x2

1− x− x2
,

which is the rational generating function for the Fibonacci series appended by a constant term of
1; this confirms Cayley’s result mentioned in the introduction. One might just as well consider,
e.g., A = Z≥3:

CA(x) =
1

1− x3

1−x

=
1− x

1− x− x3
= 1 +

x3

1− x− x3
,

whose corresponding composition counting function cA(n) is hence given by a third-order linear
recurrence.

As a final example, we give a simple generating-function proof of the following result of Zeilberger
[17], which was inspired by Sills [16].

Theorem 7. Fix positive integers a and b. Then the number of compositions of n with parts a and
b equals the number of compositions of n+a with parts in {a+ bj : j ≥ 0} (and thus, by symmetry,
also the number of compositions of n+ b with parts in {aj + b : j ≥ 0}).

This theorem generalizes the fact that both compositions with odd parts (the case a = 1, b = 2)
and compositions with parts greater than 1 (the case a = 2, b = 1) are counted by the Fibonacci
numbers.

Proof. Let A = {a, b} and B = {a+ bj : j ≥ 0}. By Lemma 3,

CB(x) =
1

1− xa

1−xb

=
1− xb

1− xa − xb
= 1 +

xa

1− xa − xb
= 1 + xaCA(x) . �

All of the results in this section are merely further examples of the treasure trove that Lemma 3
provides.
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