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Abstract

Ascent sequences are those consisting of non-negative integers in which the size of each
letter is restricted by the number of ascents preceding it and have been shown to be equinu-
merous with the (2+2)-free posets of the same size. Furthermore, connections to a variety
of other combinatorial structures, including set partitions, permutations, and certain in-
teger matrices, have been made. In this paper, we identify all members of the (4,4)-Wilf
equivalence class for ascent sequences corresponding to the Catalan number Cn = 1

n+1

(

2n

n

)

.
This extends recent work concerning avoidance of a single pattern and provides appar-
ently new combinatorial interpretations for Cn. In several cases, the subset of the class
consisting of those members having exactly m ascents is given by the Narayana number
Nn,m+1 = 1

n

(

n

m+1

)(

n

m

)

.
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1 Introduction

An ascent in a sequence x1x2 · · ·xk is a place j ≥ 1 such that xj < xj+1. An ascent sequence
x1x2 · · ·xn is one consisting of non-negative integers in which x1 = 0 and satisfying the condition,

xi ≤ asc(x1x2 · · ·xi−1) + 1, 1 < i ≤ n,

where asc(x1x2 · · ·xk) is the number of ascents in the sequence x1x2 · · ·xk. An example of such
a sequence is 0101303543, whereas 00110242 is not since 4 exceeds asc(001102)+ 1 = 3. Ascent
sequences were first studied by Bousquet-Mélou, Claesson, Dukes, and Kitaev [2], where they
were shown to have the same cardinality as the (2+2)-free posets of the same size. Since then
they have been studied in a series of papers by various authors and connections have been made
to many other combinatorial structures. See, for example, [6, 7, 10] as well as [9, Section 3.2.2]
for further information.

We will refer to a sequence of non-negative integers, where repetitions are allowed, as a pattern.
Let π = π1π2 · · ·πn be an ascent sequence and τ = τ1τ2 · · · τm be a pattern. Then we say that π
contains τ if π has a subsequence that is order isomorphic to τ , that is, if there is a subsequence
πf(1), πf(2), . . . , πf(m), where 1 ≤ f(1) < f(2) < · · · < f(m) ≤ n, such that for all 1 ≤ i, j ≤ m,
we have πf(i) < πf(j) if and only if τi < τj and πf(i) > πf(j) if and only if τi > τj . Otherwise, π
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is said to avoid τ . For example, the ascent sequence 01001341404654 has three occurrences of
the pattern 210, namely, the subsequences 310, 410, and 654, but avoids the pattern 201. Note
that within an occurrence of a pattern τ , letters corresponding to equal letters in τ must be
equal within the occurrence.

To be consistent with the usual notation for ascent sequences which contains 0s, we will write
patterns for ascent sequences using non-negative integers in accordance with [8], though patterns
for other structures like permutations and set partitions are traditionally written with positive
integers. Given a set of patterns T , let Sn(T ) denote the set of ascent sequences of length n

avoiding all of the patterns in T , and let Sn(T ) denote the number of such sequences. Fur-
thermore, if 0 ≤ m < n, then let Sn,m(T ) denote the subset of Sn(T ) whose members contain
exactly m ascents and let Sn,m(T ) = |Sn,m(T )|.

The Catalan numbers Cn = 1
n+1

(

2n
n

)

have been shown to count many structures in both enu-
merative and algebraic combinatorics. Perhaps the most fundamental structure enumerated
by Cn is the set of lattice paths from (0, 0) to (2n, 0) using up (1, 1) steps and down (1,−1)
steps that never dip below the x-axis (called Catalan or Dyck paths). In terms of avoidance,
it was shown by Knuth [12] that Cn counts the permutations of [n] = {1, 2, . . . , n} avoiding
a single classical pattern τ , where τ is any member of S3 (see also [9, Chapter 4]). Later, it
was shown that Cn is also the number of partitions of [n] avoiding either 1212 or 1221 (called
non-crossing and non-nesting partitions, respectively; see, e.g., [11]). More recently, in terms of
ascent sequences, the numbers Cn have been shown to count Sn(021), see [8]. See [15, A000108]
for more information! on these numbers. To date, there are at least 204 structures known to be
enumerated by the Catalan numbers; see Stanley’s website [16] for a complete list.

Recall that the Narayana numbers given by Nn,m = 1
n

(

n

m

)(

n

m−1

)

, 1 ≤ m ≤ n, refine the Catalan

numbers in that Cn =
∑n

m=1 Nn,m and have generating function

∑

1≤m≤n

Nn,mxnym =
1− x(1 + y)−

√

(1 + x(1 − y))2 − 4x

2x
.

Among other things, the Narayana numbers Nn,m count the Dyck paths of semilength n having
m peaks as well as the 132-avoiding permutations of length n having m−1 ascents (see, e.g., [15,
A001263] and [3] for other combinatorial interpretations). More recently, the Narayana numbers
have been shown to count certain classes of ascent sequences (see [8, 14]).

Our main result, Theorem 1.1 below, identifies all members of the (4, 4)-Wilf equivalence class
for ascent sequences corresponding to the Catalan number Cn (excepting those pattern pairs
that are trivially equivalent to either 0101 or 0012). In addition to providing apparently new
combinatorial interpretations for the Catalan (and Narayana) sequence, this extends recent work
concerning the avoidance of a single pattern in ascent sequences (see [5, 8, 14, 17]). We now
state our main result.

Theorem 1.1. If n ≥ 1, then Sn(u, v) = Cn for the following pairs (u, v):

(1) (0001, 1012) (2) (0010, 0021) (3) (0011, 0021)
(4) (0021, 0121) (5) (0121, 0132) (6) (0121, 1032)
(7) (0122, 0132) (8) (0122, 1032).

In addition, we have Sn,m(u, v) = Nn,m+1 if 0 ≤ m < n for the pairs (4)-(8).

Theorem 1.1 will follow from combining results in the next two sections. For cases (4)-(8), we
show that the ascent sequences avoiding the pair of patterns in question either are in one-to-one
correspondence with or synonymous with ascent sequences avoiding the single pattern 021. We
then show that cases (2) and (3) are equivalent and in the third section identify a bijection
between (3) and Dyck paths of twice the length. In the final section, we further enumerate the
members of Sn(021) according to the joint distribution of three statistics and make use of the
kernel method [1] in our derivation.
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2 Pattern avoiding ascent sequences

We first consider cases (4) and (5) in Theorem 1.1 above.

Proposition 2.1. If n ≥ 1, then Sn(0021, 0121) = Sn(0121, 0132) = Sn(021) and, for 0 ≤ m <

n, we have Sn,m(0021, 0121) = Sn,m(0121, 0132) = Nn,m+1.

Proof. We prove only the first set of equalities, the second following from the first by [8, Theorem
2.15]. Clearly, a member of Sn(021) avoids both 0021 and 0121. So we will show that any
π ∈ Sn(0021, 0121) must avoid 021 by showing that within π, no letter i ≥ 1 can occur to the
right of any letter j > i. Suppose, to the contrary, that there is such an occurrence within π

involving the letters a and b, where b > a. Clearly, we must have a > 1, for if a = 1, then
there would be an occurrence of 0121 within π corresponding to a subsequence of the form 01b1.
Furthermore, no a’s can occur to the left of b, for otherwise there would be an occurrence of
0121 of the form 0aba. We may also assume, without loss of generality, that b is left-most of all
letters of its kind. Thus, some letter c, where 0 < c < a, must have been repeated prior to the
left-most occurrence of b in order to allow for the letter a to be “skipped” when one considers a
left-to-right scan of the left-most occurrences of the distinct letters of π. But then there would
be an occurrence of 0021 in π corresponding to a subsequence of the form ccba. Thus, there are
no such l! etters a and b within π, which completes the proof.

To show Sn(0121, 0132) = Sn(021), note first that a member of Sn(021) avoids both 0121 and
0132. To complete the proof, we’ll show that if an ascent sequence π = π1π2 · · ·πn contains 021,
then it must contain 0121 or 0132. Suppose that the letters 2 and 1 within an occurrence of
021 in π correspond to the actual letters x and y, where x > y ≥ 1; clearly one may take the 0
within the occurrence to be π1 = 0. If y = 1, then π would contain an occurrence of 0121 since
there must be a 1 to the left of x as the first nonzero element in any ascent sequence is 1. If
y > 1, then 01xy is an occurrence of 0132 in π, which completes the proof.

The following result shows several of the equivalences in Theorem 1.1.

Proposition 2.2. If n ≥ 1 and 0 ≤ m < n, then

Sn,m(0121, 0132) = Sn,m(0121, 1032) = Sn,m(0122, 0132) = Sn,m(0122, 1032).

Proof. We first define a bijection between Sn,m(0121, 0132) and Sn,m(0122, 0132). To do so, note
that ρ ∈ Sn,m(0121, 0132) implies either ρ is binary or of the form ρ = αβ, where α is a binary
word starting with 0 but not consisting of all 0s and β is a nonempty word not containing 1 and
containing no descent in which the smaller letter is greater than 1. Define the ascent sequence ρ′

by either letting ρ′ = ρ if ρ is binary or otherwise letting ρ′ = αβ′, where β′ is obtained from β by
replacing all but the first occurrence of each letter r > 1 with 1. For example, if n = 12, m = 5,
and ρ = 001122020404 ∈ S12,5(0121, 0132), then ρ′ = 001121010401 ∈ S12,5(0122, 0132). One
may verify that the mapping ρ 7→ ρ′ is a bijection from Sn,m(0121, 0132) to Sn,m(0122, 0132).
A similar bijection s! hows Sn,m(0121, 1032) = Sn,m(0122, 1032).

To complete the proof, we show Sn,m(0121, 0132) = Sn,m(0121, 1032), and for this, we show in
fact Sn(0121, 0132) = Sn(0121, 1032) = Sn(0121, 0132, 1032). To do so, suppose λ ∈ Sn(0121).
If λ contains an occurrence of 1032 corresponding to a subsequence abcd, then it would also
contain an occurrence of 0132 corresponding to the subsequence 0acd. Suppose then that λ

contains an occurrence τ of 0132 corresponding to a subsequence abcd, where we may assume
a = 0, b = 1, and that the occurrence of the letter c is left-most. Since λ avoids 0121, no letter
d can occur to the left of the first occurrence of c. Thus, there must be at least one descent to
the left of the left-most occurrence of any letter i > d, in particular, for i = c. Then λ would
contain an occurrence of 1032 corresponding to the subsequence xycd, where x and y denote
the letters belon! ging to the aforementioned descent.
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Our next result shows the equivalence of the cases of avoiding {0010, 0021} and {0011, 0021}.

Proposition 2.3. If n ≥ 1 and 0 ≤ m < n, then Sn,m(0010, 0021) = Sn,m(0011, 0021).

Proof. We will show that both sets can be generated inductively by equivalent recursive pro-
cedures. We first consider the case of avoiding 0010 and 0021. Let Un = Sn(0010, 0021). Let
π ∈ Uℓ for some ℓ < n, where we use the alphabet of positive rather than non-negative integers.
We wish to add letters to π, including at least one zero, so as to create a member of Un (with the
typical representation). If π 6= 12 · · · ℓ, then we may write π = αβ, where α is possibly empty,
t ∈ {2, 3, . . . , ℓ}, and β = β1β2 · · ·βt with β1 ≥ β2 and β2 < β3 < · · · < βt. In this case, we will
say that π has exactly t active sites corresponding to the slots between the letters βi and βi+1

for each i ∈ [t − 1] as well as the position directly after letter βt, in which case we will write
ase(π) = t. If π = 12 · · · ℓ, then we let ase(π) = ℓ+ 1, the active sites in this case corresponding
to the positions directly following each letter in the word 01 · · · ℓ. Let Uℓ,t denote the subset of
Uℓ consisting of those members for which ase(π) = t.

We now generate members of Un from members π ∈ Uℓ,t for various ℓ < n and t by writing a
single 0 before π and then inserting letters in the active sites of π as follows.

1. Choose some subset, possibly empty, of the active sites of π in which to write at least one

letter.

2. In the left-most active site selected, write a run of 0s.

3. In each subsequently chosen active site, write a string of the letter directly preceding it.

In the case when π 6= 12 · · · ℓ and the (left-most) active site selected in the first step above
directly follows β1, then an additional ascent is created when a run of zeros is written there
since β1 ≥ β2 ≥ 1. Let 0π′ denote the ascent sequence in this case that results when the three
steps above are performed on 0π. Thus, one may also add in this case to the end of 0π′ a
sequence of the form (m+ 1)i1(m+ 2)i2 · · · (m+ d)id , where d ≥ 1, ij ≥ 1 for each j ∈ [d], and
the number of ascents in the original sequence π is m− 2.

Let Vn = Sn(0011, 0021) and Vℓ,t be defined exactly as Uℓ,t above except that 0011 occurs in
place of 0010. Then one may describe a similar recursive procedure for generating the members
of Vn from the members of Vℓ,t for various ℓ < n and t, except that step 3 is replaced with

3′. In each subsequently chosen active site, write a string of 0s,

and the sequence (m+1)i1(m+2)i2 · · · (m+d)id described in the preceding paragraph is replaced
with (m+ 1)0i1−1(m+ 2)0i2−1 · · · (m+ d)0id−1.

Comparing the cardinalities of Un,r and Vn,r for 1 ≤ n ≤ 3 and 2 ≤ r ≤ n+ 1 shows that they
are the same. Comparing the two procedures above, one sees that the number of members of
Un,r that arise from each member of Uℓ,t is the same as the number of members of Vn,r that
arise from each member of Vℓ,t for various r, t, and ℓ, where n− ℓ ≥ 1 denotes the total number
of letters added in either procedure (in the form of 0s, repeated letters βj , or letters m + i at
the end). Thus, by induction, we have |Un,r| = |Vn,r| for all n and r. Note that the preceding
shows further that the sets Un,r and Vn,r have equivalent refinements according to the number
of ascents for fixed n and r, which implies the result.

Remark: By [8, Lemma 2.4], the case of avoiding {0001, 1012} corresponds to the avoidance
problem on set patterns for the patterns 1112 and 12123, which was treated in [13]. It is then
seen that the number of members of Sn(0001, 1012) containing m distinct letters is given by
Nn,m for 1 ≤ m ≤ n, by [13, Theorem 1.1].

Remark: From [8, Lemma 2.4], there are several cases of (4, 4) for ascent sequences that are
logically equivalent to avoiding either 1212 or 1123 by set partitions which we do not list here.
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3 A bijection for the case {0011,0021}

A Dyck path is one consisting of up (1, 1) steps and down (1,−1) steps which we will denote
by U and D, respectively, starting from the origin and ending on the x-axis. A return in a
Dyck path is a noninitial vertex on the x-axis. An elevated Dyck path is a nonempty Dyck path
whose only return is at the terminal vertex. The returns of a nonempty Dyck path split it into
elevated Dyck paths called the components of the path. Thus a nonempty Dyck path is elevated
when it has precisely one component.

In this section, we will define a bijection φ from (0011, 0021)-avoiding ascent sequences u of size
n to Dyck paths of size n, where size is measured as length for ascent sequences and number
of upsteps for Dyck paths. The bijection φ sends the number of 0s in u to the number of
components in the corresponding Dyck path and this will serve as an inductive hypothesis in
the definition. We then compare some statistics on (0011, 0021)-avoiding ascent sequences with
statistics on Dyck paths.

We make now the following useful observation. Suppose that u avoids the patterns 0011 and
0021 and that a number b serves as the 1 of a 001 pattern in u. It is plain that the first occurrence
of b in that role is also the last (else a 0011 would be present), and that the entries after this
occurrence and > b are (strictly) increasing (else a 0021 would be present). Thus, if 0 occurs
more than once, the nonzero entries following the second 0 must be increasing. In particular, 1
occurs at most once after the second 0 and, when it does occur, the entries between the second
0 and this 1 are all 0.

3.1 The bijection φ

First, set φ
(

(0)
)

= UD. Now split (0011, 0021)-avoiding ascent sequences (avoiders, for short) of
length ≥ 2 into 4 classes: (1) those consisting entirely of 0s, (2) those with only one 0 (necessarily
at the start), (3) those with more than one 0 but not all 0s and with no 1 after the second 0,
and (4) those with more than one 0 and a single 1 after the second 0. We deal with each case
in turn. Suppose we are given an avoider u of length ≥ 2.

Case 1. u is a sequence of n 0s. Set φ(u) = (UD)n, the “sawtooth” Dyck path.

Case 2. u has only one 0. Delete the first 0, decrement by 1 all other entries to get a one-size-
smaller avoider w, then elevate φ(w), that is, concatenate U, φ(w), and D.

Case 3. u has more than one 0 but is not all 0s and has no 1 after the second 0. Here u must
start 01 since, if u starts 00 and is not all 0s, then a 1 must occur after the second 0.

Let k ≥ 2 denote the total number of 0s in u. Form a one-size-smaller avoider w by deleting
the first 0 and decrementing by 1 all other nonzero entries. Note that w still has at least k 0s
and (by the inductive hypothesis) φ(w) has at least k components. Let P denote the result of
erasing the last k − 1 components from φ(w) and let Q denote the subpath consisting of the
erased components. Thus neither P nor Q is the empty path. Set φ(u) = UPDQ, schematically,

�� ❅❅
•

• •

•

P

Q

a Dyck path with k components.

Case 4. u has more than one 0 and a (single) 1 after the second 0. Let j ≥ 0 denote the length
of the segment strictly between the second 0 and the single 1. Delete this segment (it consists
entirely of 0s) and the single 1. Then decrement each nonzero entry after the second 0 (in
turn) by at least 1 (decrementing by 1 may result in an offending pattern) but by no more than
necessary to avoid an offending pattern. For example, the avoider 0123341120013057 contains
334 and 112 before the second 0, and so 4 and 2 are certainly forbidden later in the sequence.
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Thus the segment 013057 after the second 0 becomes 3057 after deleting and then 1036 after
decrementing.

Let w denote the avoider thus obtained. Note that w has length n− 1− j and contains at least
two 0s. So, by the inductive hypothesis, φ(w) is a Dyck path with at least 2 components and
thus of the form UPDUQDR or, schematically,

�� ❅❅�� ❅❅
•

• •

•

• •

•

P Q

R

with P,Q,R all Dyck paths (possibly empty). Set φ(u) = (UD)j+1UUPDQDR, schematically,

��❅❅ ��❅❅��
�� ❅❅

❅❅
•

•

• •

•

•

•

• •

• •

•

. . .

P
Q

R

with j + 1 UDs at the start.

Thus, for example, φ( (0, 1) ) = UUDD and the effect of φ on the 5 avoiders of length 3 is shown
below (with case number in parentheses).

��❅❅��❅❅��❅❅ ��❅❅��
��❅❅

❅❅ ��
��❅❅

❅❅��❅❅ ��
��❅❅��❅❅

❅❅ ��
��

��❅❅
❅❅

❅❅.............................. .............................. .............................. .............................. ..............................•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

•

•

•

000
(1)

001
(4)

010
(3)

011
(2)

012
(2)

The inductive step for the assertion “φ sends # 0s to # components” clearly holds for cases 1
and 2, and for case 3 by the remarks made in that case. As for case 4, suppose u has a total of k
0s. Then w has precisely k− j 0s. So φ(w) has k− j components (by the inductive hypothesis)
and R has k− j − 2 components. The final result consists of j + 1 UDs followed by an elevated
path and then by R for a total of (j + 1) + 1 + (k − j − 2) = k components, and the induction
step is verified.

To reverse the map, the image paths in the four classes can be distinguished as follows: (1)
sawtooth paths, (UD)n, (2) elevated Dyck paths, (3) paths that start UU but are not elevated,
and (4) paths that start UD but are not sawtooth. We leave the reader to take it from there.

3.2 Some equidistributions

The effect of the bijection φ on some statistics is shown in Table 1 below. The all-0s ascent
sequence 0n corresponds to the sawtooth path (UD)n. To avoid exceptional cases in the definition
of some statistics, the all 0s sequence and the sawtooth path are excluded in Table 1. The
abbreviation ht(P ) denotes the height (height of highest peak) of the Dyck path P .

(0011,0021)-avoiders, not all 0s Dyck paths, not a sawtooth

# initial 0s ↔

{

1, if P starts UD and ht(P ) ≥ 3;

1 + # initial UDs, otherwise.

# terminal 0s ↔ # terminal UDs

length of segment starting after
↔ # initial UDsthe second 0 and ending at 1

Table 1
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In the last statistic, the segment length is interpreted as 0 if either there is no second 0 or no 1
after the second 0; recall that there is at most a single 1 after a second 0.

Table 1 shows that the three statistics on the left have the same joint distribution on avoiders
as the corresponding three on the right have on Dyck paths. But there is a larger family of
statistics on avoiders that appear to have the same joint distribution as a corresponding family
on Dyck paths, as shown in Table 2. Here, the all-0s and the 012 · · · (n−1) ascent sequences and
the sawtooth, (UD)n, and pyramid, UnDn, Dyck paths are excluded to simplify the definition
of statistics, just as in Table 1. (The reader may give suitable interpretations of the statistics,
where needed, in the excluded cases.)

(0011,0021)-avoiders Dyck paths
not all 0s, not 012 · · · not (UD)n, not UnDn

# 0s ↔ length first ascent

length of segment starting at
↔ length first descentthe second 0 and ending at 1

# terminal 0s ↔ degree of elevation

minimum repeated entry ↔ # initial UDs

# terminal “max possible” entries ↔ # terminal UDs

# left to right maxima ↔ # UDs (peaks)

# right to left minima ↔ # returns to ground level

Table 2

The second statistic on the left is interpreted as 1 if either there is no second 0 or no 1 after the
second 0. In the fourth statistic, there always is a repeated entry (for n ≥ 2) because 012 · · · is
the only ascent sequence without repeated entries. In the fifth statistic, a “max possible” entry
ui is one for which the defining inequality “ui ≤ 1 + # ascents in (u1, . . . , ui−1)” becomes an
equality. We refer the reader to [4] for any definitions not given here regarding Dyck paths

It would be interesting to find a bijection to verify the conjectured equality of joint distributions
of Table 2.

4 A refinement of the case 021

In this section, we consider a refinement of the set An,m = Sn,m(021) and calculate the gen-
erating function of the distribution on An,m for the statistic recording the largest letter and
hence obtain an extension of [8, Theorem 2.15]. Our methods are algebraic and hence provide
an alternate proof of that result which was shown bijectively.

Given n ≥ 1 and 0 ≤ m < n, let An,m,r,s denote the subset of An,m whose members have largest
letter r and last letter s, where 0 ≤ s ≤ r ≤ m. For example, we have π = 0101103030 ∈
A10,4,3,0. The numbers an,m,r,s = |An,m,r,s| may be determined as described in the following
lemma.

Lemma 4.1. The array an,m,r,s may assume nonzero values only when n ≥ 1 and 0 ≤ s ≤
r ≤ m < n. It satisfies the condition an,0,0,0 = 1 if n ≥ 1, together with an,m,0,0 = 0 and
an,m,1,1 =

(

n−1
2m−1

)

if n,m ≥ 1. If n ≥ 3 and 1 ≤ m ≤ n − 1, then the numbers an,m,r,s satisfy
the recurrences

an,m,r,0 =

r
∑

j=0

an−1,m,r,j, r ≥ 1, (1)
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and

an,m,r,r = an−1,m,r,r +

r−1
∑

i=1

i
∑

j=0

an−1,m−1,i,j +

r
∑

j=0

an−2,m−1,r,j, r ≥ 2, (2)

with an,m,r,s = 0 if r > s ≥ 1 and a2,1,1,0 = 0.

Proof. The case when r = s = 0 is clear from the definitions. Observe also that when r ≥ 1,
deleting the final 0 from π ∈ An,m,r,0 provides a bijection with ∪r−1

j=0An−1,m,r,j, which implies
(1). Furthermore, note that An,m,r,s is empty if r > s ≥ 1 since we are to avoid 021.

So suppose π ∈ An,m,r,r, where 1 ≤ r ≤ m < n. If r = 1, then π ∈ An,m,1,1 is a binary sequence
that starts with 0, ends in 1, and contains exactly m ascents, which implies an,m,1,1 =

(

n−1
2m−1

)

.
So assume r ≥ 2. Then there are an−1,m,r,r members of An,m,r,r whose penultimate letter is also
r. On the other hand, there are an−1,m−1,i,j members of An,m,r,r in which the letter r occurs
once, the second largest letter is i, and the penultimate letter is j, where 0 ≤ j ≤ i ≤ r − 1
and i ≥ 1. Summing over all possible i and j implies that there are

∑r−1
i=1

∑i

j=0 an−1,m−1,i,j

members of An,m,r,r in which the letter r occurs once. Finally, if the letter r occurs more than
once within a member of An,m,r,r whose penultimate letter is less than r, then that letter must
be zero, for otherwise ther! e would be an occurrence of 021 (which may be obtained by taking
the left-most occurrences of 0 and r, together with the penultimate letter). Deleting the last two
letters from such members of An,m,r,r then provides a bijection with the set ∪r

j=0An−2,m−1,r,j,

which has cardinality
∑r

j=0 an−2,m−1,r,j. Combining the three cases above yields (2), which
completes the proof.

If n > m ≥ r ≥ 0, then let An,m,r(u) =
∑r

s=0 an,m,r,su
s. From the definitions, note that

An,m,0(u) =

{

1, if m = 0;

0, if m ≥ 1,

and

An,m,1(u) =

(

n− 1

2m

)

+

(

n− 1

2m− 1

)

u, m ≥ 1.

If n > m ≥ 0, then let An,m(u, v) =
∑m

r=0 An,m,r(u)v
r and Bn,m(v) =

∑m

r=0 an,m,r,rv
r. Note

that for all n ≥ 1, we have An,0(u, v) = Bn,0(v) = 1, Bn,1(v) = (n− 1)v, and

An,1(u, v) =

(

n− 1

2

)

v + (n− 1)uv.

The polynomials An,m(u, v) and Bn,m(v) satisfy the following recurrences when m ≥ 2.

Lemma 4.2. If m ≥ 2, then

An,m(u, v) = Bn−1,m(uv) +An−1,m(1, v) +An−2,m−1(1, uv)

+
uv

1− uv
(An−1,m−1(1, uv)− (uv)mAn−1,m−1(1, 1)) (3)

and

Bn,m(v) = Bn−1,m(v) +An−2,m−1(1, v) +
v

1− v
(An−1,m−1(1, v)− vmAn−1,m−1(1, 1)). (4)

Proof. By (1) and (2), we have

An,m,r(u) = An−1,m,r(1) + uran−1,m,r,r + urAn−2,m−1,r(1) + ur

r−1
∑

i=1

An−1,m−1,i(1), r ≥ 2.
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Thus, for m ≥ 2, we have

An,m(u, v) = An,m,0(u) +An,m,1(u)v +
m
∑

r=2

An,m,r(u)v
r

=

(

n− 1

2m

)

v +

(

n− 1

2m− 1

)

uv + (An−1,m(1, v)−An−1,m,1(1)v)

+ (Bn−1,m(uv)− an−1,m,1,1uv) + (An−2,m−1(1, uv)−An−2,m−1,1(1)uv)

+

m
∑

r=2

(uv)r
r−1
∑

i=1

An−1,m−1,i(1)

=

(

n− 1

2m

)

v +

(

n− 1

2m− 1

)

uv +

(

An−1,m(1, v)−

(

n− 1

2m

)

v

)

+

(

Bn−1,m(uv)−

(

n− 2

2m− 1

)

uv

)

+

(

An−2,m−1(1, uv)−

(

n− 2

2m− 2

)

uv

)

+

m−1
∑

i=1

An−1,m−1,i(1)

(

(uv)i+1 − (uv)m+1

1− uv

)

= Bn−1,m(uv) +An−1,m(1, v) +An−2,m−1(1, uv)

+
uv

1− uv
(An−1,m−1(1, uv)− (uv)mAn−1,m−1(1, 1)),

which gives (3).

By (2), we also have

Bn,m(v) =

(

n− 1

2m− 1

)

v +

(

Bn−1,m(v)−

(

n− 2

2m− 1

)

v

)

+

m
∑

r=2

vr
r−1
∑

i=1

An−1,m−1,i(1)

+
m
∑

r=2

An−2,m−1,r(1)v
r

=

(

n− 2

2m− 2

)

v +Bn−1,m(v) +
m−1
∑

i=1

An−1,m−1,i(1)

(

vi+1 − vm+1

1− v

)

+

(

An−2,m−1(1, v)−

(

n− 2

2m− 2

)

v

)

= Bn−1,m(v) +An−2,m−1(1, v) +
v

1− v
(An−1,m−1(1, v)− vmAn−1,m−1(1, 1)),

which completes the proof.

If n ≥ 1, then let An(u, v, w) =
∑n−1

m=0 An,m(u, v)wm and Bn(v, w) =
∑n−1

m=0 Bn,m(v)wm. Define
the generating functions f(x;u, v, w) and g(x; v, w) by

f(x;u, v, w) =
∑

n≥1

An(u, v, w)x
n

and
g(x; v, w) =

∑

n≥1

Bn(v, w)x
n.

Note that
f(x; 1, 1, w) =

∑

n≥1

An(1, 1, w)x
n =

∑

0≤m<n

Sn,m(021)xnwm.

The following functional equations are satisfied by f and g.
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Lemma 4.3. We have

f(x;u, v, w) =
x− 2x2 − wx3

1− x
+ xg(x;uv, w) + xf(x; 1, v, w)

+

(

wx2 +
uvwx

1− uv

)

f(x; 1, uv, w)−
u2v2wx

1− uv
f(x; 1, 1, uvw) (5)

and

(1 − x)g(x; v, w) =
x− x2 − wx3

1− x
+

(

wx2 +
vwx

1− v

)

f(x; 1, v, w)−
v2wx

1− v
f(x; 1, 1, vw). (6)

Proof. Multiplying (3) by wm and summing over m ≥ 2 implies for all n ≥ 3,

An(u, v, w) = 1 +

((

n− 1

2

)

v + (n− 1)uv

)

w + (Bn−1(uv, w)− 1− (n− 2)uvw)

+

(

An−1(1, v, w)− 1−

(

n− 1

2

)

vw

)

+ w (An−2(1, uv, w)− 1)

+
uvw

1− uv
(An−1(1, uv, w)− 1)−

u2v2w

1− uv
(An−1(1, 1, uvw)− 1)

= −1 +Bn−1(uv, w) +An−1(1, v, w) + w (An−2(1, uv, w)− 1)

+
uvw

1− uv
(An−1(1, uv, w)− uvAn−1(1, 1, uvw)) . (7)

Note that (6) is also seen to hold when n = 2, upon defining A0(u, v, w) = 1. Similarly,
recurrence (4) implies for all n ≥ 2,

Bn(v, w) = 1 + (n− 1)vw + (Bn−1(v, w) − 1− (n− 2)vw) + w(An−2(1, v, w)− 1)

+
vw

1− v
(An−1(1, v, w)− 1)−

v2w

1− v
(An−1(1, 1, vw)− 1)

= Bn−1(v, w) + w(An−2(1, v, w)− 1) +
vw

1− v
(An−1(1, v, w) − vAn−1(1, 1, vw)). (8)

Multiplying (7) by xn and summing over n ≥ 2 yields

f(x;u, v, w) − x = −
x2

1− x
+ xg(x;uv, w) + xf(x; 1, v, w) + wx2

(

f(x; 1, uv, w)−
x

1− x

)

+
uvwx

1− uv
(f(x; 1, uv, w)− uvf(x; 1, 1, uvw)) ,

which gives (5). Similarly, (8) implies

g(x; v, w)− x = xg(x; v, w) + wx2

(

f(x; 1, v, w)−
x

1− x

)

+
vwx

1− v
(f(x; 1, v, w)− vf(x; 1, 1, vw)) ,

which gives (6).

Let

h(x; t) =
∑

0≤m<n

Nn,m+1x
ntm =

1− x− xt−
√

(1 − x− xt)2 − 4x2t

2xt
.

We now state the generating function of the joint distribution on Sn(021) for the statistics
recording the largest letter and the number of ascents.
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Theorem 4.4. We have

f(x; 1, v, w) =
x(1 − v)[(1− x)2 − wx2]− v2wx(1 − x)h(x; vw)

(1− x)((1 − v)[(1 − x)2 − wx2]− vwx)
.

Proof. Letting u = 1 in (5), and substituting the expression for g(x; v, w) in (6), implies
(

1− x− wx2 −
vwx

1− v

)

f(x; 1, v, w)

=
x− 2x2 − wx3

1− x
−

v2wx

1− v
f(x; 1, 1, vw)

+
x

1− x

(

x− x2 − wx3

1− x
+

(

wx2 +
vwx

1− v

)

f(x; 1, v, w)−
v2wx

1− v
f(x; 1, 1, vw)

)

,

which may be rewritten as
(

1− x−
wx2

1− x
−

vwx

(1 − v)(1− x)

)

f(x; 1, v, w) = x−
wx3

(1− x)2
−

v2wx

(1− v)(1 − x)
f(x; 1, 1, vw).

(9)

To solve (9), we use the kernel method (see [1]). Setting the coefficient of f(x; 1, v, w) on the
left-hand side of (9) equal to zero, and solving for w = wo in terms of x and v, gives

wo =
(1− x)2(1 − v)

x(x(1 − v) + v)
.

Letting w = wo in (9) then implies

f(x; 1, 1, vwo) =
((1 − x)2 − wox

2)(1 − v)

v2wo(1 − x)

=
x((1 − x)2 − wox

2)(x(1 − v) + v)

v2(1− x)3

=
x

v(1 − x)
. (10)

If

t = vwo =
v(1− x)2(1− v)

x(x(1 − v) + v)
,

then solving for v = vo in terms of x and t gives

vo =
1− x− xt+

√

(1− x− xt)2 − 4x2t

2(1− x)
,

where we have chosen the principle root. Therefore, by (10), we have

f(x; 1, 1, t) =
x

vo(1− x)

=
2x

1− x− xt+
√

(1− x− xt)2 − 4x2t

=
1− x− xt−

√

(1− x− xt)2 − 4x2t

2xt
.

The desired formula now follows from (9).

Remark: Note that v marks the largest letter and w the number of ascents in the preceding
formula. Taking v = 1 recovers the generating function for the cardinality of Sn,m(021), which
is Nn,m+1. Using (5) and (6), one may obtain an expression for f(x;u, v, w), where u marks the
last letter.
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