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A SHORT PROOF OF THE DEUTSCH-SAGAN CONGRUENCE

FOR CONNECTED NONCROSSING GRAPHS

IRA M. GESSEL∗

1. Introduction

Let Nn be the number of connected noncrossing graphs on n vertices. Flajolet and
Noy [6] showed that for n ≥ 2,

Nn =
1

n− 1

2n−3
∑

i=n−1

(

3n− 3

n + i

)(

i− 1

i− n+ 1

)

. (1)

These numbers are sequence A007297 of the On-Line Encyclopedia of Integer Se-
quences [8]. Here is a table of small values of Nn.

n 1 2 3 4 5 6 7 8 9
Nn 1 1 4 23 156 1162 9192 75819 644908

Deutsch and Sagan [4] conjectured that

Nn ≡











1 (mod 3), if n is a power of 3 or twice a power of 3,

2 (mod 3), if n is a sum of two distinct powers of 3,

0 (mod 3), otherwise.

(2)

They noted that the first two cases are not hard to prove using Lucas’s theorem
for the residue of a binomial coefficient modulo a prime. A complicated proof of the
Deutsch-Sagan conjecture was given by Eu, Liu, and Yeh [5].

Here we give a simpler proof of Deutsch and Sagan’s conjecture using Lagrange
inversion. We then discuss some numbers related to the Nn that arose in Eu, Liu,
and Yeh’s proof, given by sums similar to (1) and then we show how these sums can
be evaluated explicitly.
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2. Proof of the congruence

We start by representing Nn as a coefficient of a power series. We use the notation
[xm]u(x) to denote the coefficient of u(x) in the power series u(x).

Lemma 1. For n ≥ 1,

Nn+1 =
1

n
[xn−1]

1

(1− x)n+2(1− 2x)n
. (3)

Proof. We rewrite (1) as

Nn+1 =
1

n

n−1
∑

k=0

(

3n

n− 1− k

)(

n + k − 1

k

)

. (4)

We have

1− 2x = (1− x)

(

1− x

1− x

)

,

so

1

(1− x)n+2(1− 2x)n
= (1− x)−2n−2

(

1− x

1− x

)

−n

=

∞
∑

j=0

(

n + j − 1

j

)

xj

(1− x)2n+2+j

=
∞
∑

j=0

(

n + j − 1

j

) ∞
∑

k=0

(

2n+ 1 + j + k

k

)

xj+k.

Then the coefficient of xn−1 is
n−1
∑

j=0

(

n+ j − 1

j

)(

3n

n− 1− j

)

,

which by (4) is nNn+1. �

Next, recall the following form of Lagrange inversion [9, p. 42, equation (5.65)].

Lagrange Inversion Theorem, First Form. Let G(t) be a formal power series

and let f = f(x) be the unique formal power series satisfying f = xG(f). Then for

any formal power series Φ(x),

[xn]Φ(f) =
1

n
[xn−1]Φ′(x)G(x)n.

The Deutsch-Sagan conjecture is an immediate consequence of the following result.
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Theorem 2. Let F =
∞
∑

m=0

x3m . Then

∞
∑

n=1

Nnx
n ≡ F + F 2 (mod 3).

Proof. We apply the Lagrange inversion theorem with G(x) = 1/(1−x)(1− 2x) and
Φ(x) = 1/(1− x), so that Φ′(x) = 1/(1− x)2. Then by Lemma 1, together with the
fact that N1 = 1, we have

∞
∑

n=0

Nn+1x
n =

1

1− α
(5)

where α is the unique formal power series satisfying

α =
x

(1− α)(1− 2α)
. (6)

By (6), α − 3α2 + 2α3 = x, so we have α(x) ≡ x− 2α(x)3 ≡ x + α(x)3 ≡ x+ α(x3)
(mod 3). Iterating this congruence gives

α(x) ≡ x+ x3 + α(x27) ≡ · · · ≡
∞
∑

m=0

x3m (mod 3). (7)

By (6),

1

1− α
= x−1(α− 2α2) ≡ x−1(α + α2),

so by (5),

∞
∑

n=1

Nnx
n ≡ α + α2 (mod 3). (8)

Then Deutsch and Sagan’s congruence (2) follows directly from (8) and (7). �
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3. Eu, Liu, and Yeh’s congruences

In their proof of the Deutsch-Sagan conjecture, Eu, Liu, and Yeh [5, Lemmas 1–4]
found the residues modulo 3 for four auxiliary sequences which they define by

f1(n) =
∑

i

(

3n + 1

n+ i+ 1

)(

i

n

)

f2(n) =
∑

i

(

3n

n+ i+ 1

)(

i

n

)

f3(n) =
∑

i

(

3n

n+ i

)(

i

n

)

f4(n) =
∑

i

(

3n− 1

n+ i+ 1

)(

i

n− 1

)

,

with f4(0) = 0. We will also consider a fifth sum

f5(n) =
∑

i

(

3n

n+ i+ 1

)(

i

n− 1

)

,

with f5(0) = 1.
The first few values of these sums are as follows:

n 0 1 2 3 4 5 6 7 8
f1(n) 1 6 48 420 3840 36036 344064 3325608 32440320
f2(n) 0 1 9 82 765 7266 69930 679764 6659037
f3(n) 1 5 39 338 3075 28770 274134 2645844 25781283
f4(n) 0 1 7 58 515 4746 44758 428772 4154403
f5(n) 1 4 30 256 2310 21504 204204 1966080 19122246

Eu, Liu, and Yeh noted that f1(n) = f2(n) + f3(n) and that f2(n) is the number
of edges in all noncrossing connected graphs on n + 1 vertices for n ≥ 1 (sequence
A045741). The sequence f5(n) is sequence A091527 in the OEIS, and f1(n), f3(n),
and f4(n) do not currently appear in the OEIS.

To derive Eu, Liu, and Yeh’s congruences by our method, we consider the more
general sequence hj,k,l(n), where j, k, l, and n are arbitrary integers, defined by

hj,k,l(n) =

n+j−k+l
∑

i=0

(

3n + j

n+ j − k + l − i

)(

n− l + i

i

)

.

http://oeis.org/A045741
http://oeis.org/A091527


A SHORT PROOF OF THE DEUTSCH-SAGAN CONGRUENCE 5

Then if 3n+ j ≥ 0 and n ≥ l, replacing the summation index i with i− n+ l gives

hj,k,l(n) =

2n+j−k
∑

i=n−l

(

3n + j

n+ i+ k

)(

i

n− l

)

.

Thus f1 = h1,1,0, f2 = h0,1,0, f3 = h0,0,0, f4 = h−1,1,1, and f5 = h0,1,1. A straightfor-
ward computation, as in the proof of Lemma 1, shows that

hj,k,l(n) = [xn]
xk−l−j

(1− x)n+k(1− 2x)n−l+1

= [xn]
xk−l−j

(1− x)k(1− 2x)−l+1
· 1

(1− x)n(1− 2x)n

Now we use the following form of Lagrange inversion (see, e.g., [7, equation (4.4)];
a closely related formula is [3, p. 150, Theorem D]):

Lagrange Inversion Theorem, Second Form. Let G(x) be a formal power series

and let f = f(x) be the unique formal power series satisfying f = xG(f). Then for

any formal Laurent series Ψ(x) and any integer n,

[xn]
Ψ(f)

1− xG′(f)
= [xn]Ψ(x)G(x)n.

or equivalently

[xn]
Ψ(f)

1− fG′(f)/G(f)
= [xn]Ψ(x)G(x)n.

As in the proof of Theorem 2, we apply this to the equation α = xG(α), where
G(x) = 1/(1− x)(1− 2x). Then

1

1− αG′(α)/G(α)
=

(1− α)(1− 2α)

1− 6α + 6α2
.

Now let

Hj,k,l =

∞
∑

n=k−j−l

hj,k,l(n)x
n.

Then taking

Ψ(x) =
xk−j−l

(1− x)k(1− 2x)−l+1

we obtain

Hj,k,l =
(1− 2α)lαk−j−l

(1− 6α+ 6α2)(1− α)k−1
, (9)

and thus
Hj,k,l ≡ (1 + α)l(1− α)1−kαk−j−l (mod 3). (10)



A SHORT PROOF OF THE DEUTSCH-SAGAN CONGRUENCE 6

Now let Fm =
∑

∞

n=0
fm(n)x

n. Then by (10) we have

F1 = H1,1,0 ≡ 1 (mod 3)

F2 = H0,1,0 ≡ α (mod 3)

F3 = H0,0,0 ≡ 1− α (mod 3)

F4 = H−1,1,1 ≡ α + α2 (mod 3)

F5 = H0,1,1 ≡ 1 + α (mod 3).

(11)

Then Eu, Liu, and Yeh’s congruences follow immediately from these congruences
and (7). We don’t state Eu, Liu, and Yeh’s congruences here since they are easy to
read off from the congruences in (11) and (7).

4. Evaluation of the sums

There are simple explicit formulas for the sums f1, f2, f3, f4, and f5 (and there is
a similar formula for Nn that we will give in section 5), though these formulas don’t
seem to yield simpler proofs for the congruences than the proofs we have already
given.

Theorem 3. The sequences fi(n) for i from 1 to 5 are given by the following explicit

formulas:

f1(n) = 22n
(

3

2
n

n

)

f2(n) = 22n−1

(

3

2
n

n

)

− 22n−1

(

3

2
n− 1

2

n

)

f3(n) = 22n−1

(

3

2
n

n

)

+ 22n−1

(

3

2
n− 1

2

n

)

f4(n) = −22n−1

3

(

3

2
n

n

)

+ 22n−1

(

3

2
n− 1

2

n

)

, for n > 0

f5(n) = 22n
(

3

2
n− 1

2

n

)

.

The evaluation of these sums is based on a binomial coefficient identity that is
equivalent to a terminating case of a hypergeometric series evaluation called Kum-
mer’s theorem [2, p. 9, Theorem 2.3]. There are many ways to prove this identity; we
give here a proof using Lagrange inversion. A short self-contained proof was given
by Wildon [10].
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Lemma 4.
n

∑

k=0

(

2n+ a

n− k

)(

a+ k − 1

k

)

= 22n
(

1

2
a+ n− 1

2

n

)

(12)

Proof. Let S be the left side of (12). Then S is equal to the coefficient of xn in
1/(1− x)n+1(1− 2x)a since

1

(1− x)n+1(1− 2x)a
=

1

(1− x)n+a+1

(

1− x

1− x

)a

=
∑

k

xk

(1− x)n+a+k+1

(

a + k − 1

k

)

=
∑

j,k

xj+k

(

n+ a + j + k

j

)(

a + k − 1

k

)

=
∑

m

xm
∑

k

(

n+ a+m

m− k

)(

a + k − 1

k

)

.

Let us take G(x) = 1/(1− x) and Ψ(x) = 1/(1 − x)(1 − 2x)a in the second form of
Lagrange inversion. The solution of f = xG(f) is

f =
1−

√
1− 4x

2

and Ψ(x)/
(

1− xG′(x)/G(x)
)

= (1− 2x)−a−1, so

S = [xn]
1

(1− 2f)a+1
= [xn]

1
(√

1− 4x
)a+1

= (−4)n
(

−(a+ 1)/2

n

)

= 22n
(

1

2
a+ n− 1

2

n

)

. �

We can now prove Theorem 3. Let

T1(n, i) =

(

3n+ 1

n+ i+ 1

)(

i

n

)

T2(n, i) =

(

3n

n+ i+ 1

)(

i

n

)

T3(n, i) =

(

3n

n+ i

)(

i

n

)

T4(n, i) =

(

3n− 1

n+ i+ 1

)(

i

n− 1

)



A SHORT PROOF OF THE DEUTSCH-SAGAN CONGRUENCE 8

T5(n, i) =

(

3n

n+ i+ 1

)(

i

n− 1

)

,

so that for m = 1, . . . , 5 we have fm(n) =
∑

i Tm(n, i). Then by Lemma 4 we have

f1(n) =
∑

i

T1(n, i) = 22n
(

3

2
n

n

)

f5(n) =
∑

i

T5(n, i) = 22n
(

3

2
n− 1

2

n

)

.

Also, it is easy to check that T2(n, i)+T3(n, i) = T1(n, i), as noted in [5], that T3(n, i)−
T2(n, i − 1) = T5(n, i − 1) for n > 0, and that T4(n, i) = 2

3
T5(n, i) − 1

3
T3(n, i + 1).

Thus f2(n) + f3(n) = f1(n), f3(n)− f2(n) = f5(n), and f4(n) =
2

3
f5(n)− 1

3
f3(n) for

n ≥ 1. We can then solve for f2, f3 and f4 in terms of f1 and f5, and we can check
that the formulas given in Theorem 3 also hold for fm(0) if m 6= 4. �

5. More Lagrange inversion

We can also prove Theorem 3, and derive a related formula for Nn, by Lagrange
inversion.

Let us define the power series β in x by

β =
x√

1− 4β
. (13)

If we define the power series α = α(x) by β = α − α2 in (13) (together with the
condition α(0) = 0) we see that α satisfies

α− α2 =
x

1− 2α
,

so α = x/(1−α)(1− 2α) and thus this α is the same power series as the α discussed
in sections 2 and 3. Applying the second form of Lagrange inversion, we have for
any power series Ψ(x),

[xn]
1− 4β

1− 6β
Ψ(β) = [xn]

Ψ(x)

(1− 4x)n/2
.

Then taking Ψ(x) = xi(1− 4x)r−1 gives

(1− 4β)r

1− 6β
βi =

∞
∑

n=0

22n−2i(−1)n−i

(

−1

2
n+ r − 1

n− i

)

.
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Since β = α− α2 and (−1)n−i
(

−n/2+r−1

n−i

)

=
(

3n/2−r−i
n−i

)

, we may write this as

(1− 2α)2r(α− α2)i

1− 6α + 6α2
=

∞
∑

n=0

22n−2i

(

3

2
n− r − i

n− i

)

xn. (14)

Then in the notation of section 3, by (9) and the formulas for the Fm given in (11),
we have

F1 =
1

1− 6α + 6α2

F2 =
α

1− 6α + 6α2

F3 =
1− α

1− 6α + 6α2

F4 =
α− 2α2

1− 6α + 6α2

F5 =
1− 2α

1− 6α + 6α2

from which the formulas of Theorem 3 can be obtained: F1 and F5 can be evaluated
by (14), F2 and F3 are linear combinations of F1 and F5, and F4 = −1

6
F1 +

1

2
F5 − 1

3
.

Similarly, the first form of Lagrange inversion gives

[xn]Φ(β) =
1

n
[xn−1]

Φ′(x)

(1− 4x)n/2
.

Let us take Φ(x) = (1− 4x)r. Then we have

(1− 4β)r = 1 +
∞
∑

n=1

(−4)n
r

n

(

−n/2 + r − 1

n− 1

)

xn = 1−
∞
∑

n=1

22n
r

n

(

3

2
n− r − 1

n− 1

)

xn,

so

(1− 2α)2r = 1−
∞
∑

n=1

22n
r

n

(

3

2
n− r − 1

n− 1

)

xn. (15)

From (5) it follows that
∑

∞

n=1
Nnx

n = x/(1− α), and by (6),

x

1− α
= α− 2α2 = 1

2
(1− 2α)− 1

2
(1− 2α)2,



A SHORT PROOF OF THE DEUTSCH-SAGAN CONGRUENCE 10

so by (15), for n ≥ 1 we have

Nn =
1

2

[

22n

n

(

3

2
n− 2

n− 1

)

− 22n−1

n

(

3

2
n− 3

2

n− 1

)]

=
22n−1

n

(

3

2
n− 2

n− 1

)

− 22n−2

n

(

3

2
n− 3

2

n− 1

)

. (16)

An equivalent formula was stated by Mark van Hoeij in the OEIS entry for sequence
A007297. The first term on the right side of (16), (22n−1/n)

(

3n/2−2

n−1

)

is twice se-

quence A078531, and the negative of the second term, (22n−2/n)
(

3n/2−3/2
n−1

)

is sequence
A085614. We note also that if n = 2m+ 1 then

22n−1

n

(

3

2
n− 2

n− 1

)

= 2
m! (6m)!

(2m)! (2m+ 1)! (3m)!

and if n = 2m+ 2 then

22n−2

n

(

3

2
n− 3

2

n− 1

)

= 6
m! (6m+ 1)!

(2m)! (2m+ 2)! (3m)!
.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55,
Washington DC, 1964.

[2] W. N. Bailey, Generalized Hypergeometric Series, Hafner, New York, 1972. Originally published
by Cambridge University Press, 1935.

[3] L. Comtet, Advanced Combinatorics, Reidel, Dodrecht-Holland, 1974.
[4] E. Deutsch and B. Sagan, Congruences for Catalan and Motzkin numbers and related sequences,

J. Number Theory 117 (2006), 191–215.
[5] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, On the congruences of some combinatorial numbers, Studies

in Applied Math. 116 (2006), 135–144.
[6] P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math.

204, (1999) 203–229.
[7] I. M. Gessel, A combinatorial proof of the multivariable Lagrange inversion formula, J. Combin.

Theory Ser. A 45 (1987), 178–195.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2013.
[9] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999.
[10] M. Wildon, Combinatorial identities, http://mathoverflow.net/questions/150093/, 2013.

Department of Mathematics, Brandeis University, Waltham, MA 02453

E-mail address : gessel@brandeis.edu

http://oeis.org/A007297
http://oeis.org/A078531
http://oeis.org/A085614
http://oeis.org
http://mathoverflow.net/questions/150093/

	1. Introduction
	2. Proof of the congruence
	3. Eu, Liu, and Yeh's congruences
	4. Evaluation of the sums
	5. More Lagrange inversion
	References

