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SOME COMBINATORIAL ARRAYS RELATED TO THE
LOTKA-VOLTERRA SYSTEM

SHI-MEI MA, TOUFIK MANSOUR, AND DAVID CALLAN

ABSTRACT. The purpose of this paper is to investigate the connection between the Lotka-
Volterra system and combinatorics. We study several context-free grammars associated with
the Lotka-Volterra system. Some combinatorial arrays, involving the Stirling numbers of the
second kind and Eulerian numbers, are generated by these context-free grammars. In particular,

we present grammatical characterization of some statistics on cyclically ordered partitions.
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1. INTRODUCTION

One of the most commonly used models of two species predator-prey interaction is the classical

Lotka-Volterra model:
dx dy
& —by). -2 =
dt x(a‘ y)? dt
where y(t) and x(t) represent, respectively, the predator population and the prey population as

y(—c+ dx), (1)

functions of time, and a, b, ¢, d are positive constants. In general, an n-th order Lotka-Volterra
system takes the form
d:l?i
dt

n

:)\ixi+:piZMi7j:Ej,z':1,2,...,n, (2)
j=1

where \;, M; ; are real real constants. The differential system (2)) is ubiquitous and arises often

in mathematical ecology, dynamical system theory and other branches of mathematics (see |2}

[3, 8, 16l 18, [19]). In this paper, we study several context-free grammars associated with (2)).

In his study [4] of exponential structures in combinatorics, Chen introduced the grammatical
method systematically. Let A be an alphabet whose letters are regarded as independent com-
mutative indeterminates. Following Chen, a context-free grammar G over A is defined as a set of
substitution rules that replace a letter in A by a formal function over A. The formal derivative
D is a linear operator defined with respect to a context-free grammar G.

Let [n] = {1,2,...,n}. The Stirling number of the second kind {7} is the number of ways
to partition [n] into k blocks. It is well known that S(n,k) = S(n — 1,k — 1) + kS(n — 1, k),
S5(0,0) =1 and S(n,0) =0 for n > 1 (see [20, A008277]). Let &,, be the symmetric group of all
permutations of [n]. A descent of a permutation m € &,, is a position ¢ such that 7(i) > w(i+1).
Denote by des () the number of descents of m. The Eulerian number <Z> is the number of
permutations in &,, with £ — 1 descents, where 1 < k < n (see [20, A008292]). Let us now recall

two classical results on grammars.
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Proposition 1 ([4, Eq. 4.8]). If G = {x — zy,y — y}, then

D"(x) = xzn: {Z}yk forn > 1.
k=1

Proposition 2 ([7, Section 2.1]). If G = {z — zy,y — zy}, then

D" (x) = Z <Z>$kyn_k+1 forn > 1.

k=1

This paper is a continuation of [4 [7]. Throughout this paper, arrays are indexed by n,i
and j. Call (an,; ;) a combinatorial array if the numbers a,,;; are nonnegative integers. For
any function H(z,p,q), we denote by H, the partial derivative of H with respect to y, where
y € {x,p,q}. In the next section, we present grammatical characterization of some statistics on

cyclically ordered partitions.

2. RELATIONSHIP TO CYCLICALLY ORDERED PARTITIONS

Recall that a partition = of [n], written 7  [n], is a collection of disjoint and nonempty
subsets By, Ba,..., By of [n] such that Ule B; = [n], where each B; (1 < i < k) is called a
block of . A cyclically ordered partition of [n] is a partition of [n] whose blocks are endowed
with a cyclic order. We always use a canonical representation for cyclically ordered partitions:
a list of blocks in which the first block contains the element 1 and each block is an increasing
list. For example, (123), (12)(3), (13)(2), (1)(23), (1)(2)(3), (1)(3)(2) are all cyclically ordered
partitions of [3]. The opener of a block is its least element. For example, the list of openers of
(13)(2) and (1)(3)(2) are respectively given by 12 and 132. In the following, we shall study some

statistics on the list of openers.

2.1. Descent statistic.

Consider the grammar
G={r—z+zyy—y+zy} (3)
From (3), we have
D(x) = x + xy,
D*(x) = x + 3zy + xy® + 22y,
D3(z) = & + Twy + 6xzy® + xy® + 62%y + 4ay® + 23y,
For n > 0, we define

n i 7
D'(x)= > angia'y’.
121,720
Since

D""Y(z)=D Z ani jo'y’
i7j

_ S i j . i, j+1 . i+l j
= E (i + J)an,i jz'y’ + E Q2 Yy T+ E Janix "y,
% i i
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we get
Ut = (04 J)anij + ianij-1 + jani-1, (4)

for 4,5 > 1, with the initial conditions ag;; to be 1 if (i,j) = (1,0), and to be 0 otherwise.
Clearly, a,,10 =1 and a0 = 0 for i > 2.
Define

o
A=Aw.pg)= ) anij—p'd.

7,%,5 20

We now present the first main result of this paper.

Theorem 3. The generating function A is given by

__ plp—g)e”
A= p— qe(p—Q)(ez_l) ’

_n+1 /it -1
()

Proof. By rewriting () in terms of generating function A, we have

Moreover, for all n,i,j > 1,

Az =p(1+q)Ap +q(1 +p)Ay (6)

It is routine to check that the generating function

- ~ plp—q)e”
A(:E,p, q) - p . qe(p_q)(ex_l)

satisfies ([@l). Also, this generating function gives K(O,p, q) = p, Z(x,p, 0) = pe® and AV(:E, 0,q) =
0 with ¢ # 0. Hence, A = A. Now let us prove that a,; ; = {"+1 <i+j_1>. Note that

i+ 7
d "t d n+1) 2t Lk AT
% 2wt = S S e ()] v
da:m’kzo (n+1)! dx =\ E+1) (n+1)! —\i
k
d k : (em_l)k—l—l .
_”%Z<Z<z‘>”> k+nr
k>0 \¢=0

By using the fact that

k y -
Z <Z <lj>p,> ub = /0 ]#,(i_l)du/ = le(u(p —-1) - ln(eu(P—l) —p)+1In(1 —p)),

k>0 \i=0

we obtain that

d ot wo(v — 1)e*
,U_x n;{;g QAn i k+1—i (n + 1)!,0 w = v — ele®—Dw(v—1)’
which implies
A, vw, w) = wv(v —1)e”

v — ele®=Nw(v-1)"’

as required. ]
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Define

Ay = E am-,j.

1>1,j>0
n +1
Clearly, a,, = Zk:() kl{Zﬁ-l :

Proposition 4. {Z}<k21> is the number of cyclically ordered partitions of [n] with k blocks

whose list of openers contains i — 1 descents.

Proof. To form such a cyclically ordered partition, start with a partition of [n] into &k blocks
in canonical form, each block increasing and blocks arranged in order of increasing first entries
(there are {Z} choices). The first opener is thus 1. Then leave the first block in place and
rearrange the £ — 1 remaining blocks so that their openers, viewed as a list, contain 7 — 1

k—1

~) choices).

descents (there are (

We can now conclude the following corollary from the discussion above.

Corollary 5. For all n,i,j > 1, ay;; is the number of cyclically ordered partitions of [n + 1]

with i + j blocks whose list of openers contains i — 1 descents.

2.2. Peak statistics.

The idea of a peak (resp. valley) in a list of integers (wj;)l, is an entry that is greater
(resp. smaller) than its neighbors. The number of peaks in a permutation is an important
combinatorial statistic. See, e.g., [I], [0, Ol 12] and the references therein. However, the question
of whether the first and/or last entry may qualify as a peak (or valley) gives rise to several
different definitions. In this paper, we consider only left peaks and right valleys. A left peak
index is an index ¢ € [n— 1] such that w;—; < w; > w;4+1, where we take wy = 0, and the entry w;
is a left peak. Similarly, a right valley is an entry w; with i € [2,n] such that w;—1 > w; < w41,
where we take w,4+1 = 0o. Thus the last entry may be a right valley but not a left peak. For
example, the list 64713258 has 3 left peaks and 3 right valleys. Clearly, left peaks and right
valleys in a list are equinumerous: they alternate with a peak first and a valley last. Peaks and
valleys were considered in [9]. The left peak statistic first appeared in [Il Definition 3.1].

Let P(n, k) be the number of permutations in &,, with k left peaks. Let P, (z) = Y_,5o P(n, k)z*.
It is well known [20, A008971] that -

P(z,z) = 1+ Z Pn(:n)%r:

n>1
Vi—z
V1 —zcosh(zy/1 — z) — sinh(zv/1 — x)

Let D be the differential operator %. Set £ =sec and y = tand. Then

D(x) = xy, D(y) = 2”. (7)
There is a large literature devoted to the repeated differentiation of the secant and tangent
functions (see [10, I}, 12] for instance). As a variation of (B]), it is natural to consider the

grammar
G:{x—>x+xy,y—>y+a:2}. (8)
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From (§), we have
D(z) =z + zy,
D*(x) = = + 3zy + xy? + 2°,
D3(x) = x + Txy + 6xy® + x> + 62° + 523y,

Define
D"(x) = Z bnmja;iyj.
121,520
Since
D"+1(x) =D bn7i7jxiyj
121,720
=D (i Dbpiga'y’ + Y ibniga'y £ b ety
4,J ,J ,J
we get

boyi,ij = (14 7)bnij +ibpij—1+ (5 + Dbpi—2j1

(9)

for ¢ > 1 and j > 0, with the initial conditions bg; ; to be 1 if (¢,5) = (1,0), and to be 0

otherwise. Clearly, b, 10 =1 for n > 1.
Define

B= B(ﬂj‘,p, q) = Z bn,i,jplqjm'
n,3,j>0 )

We now present the second main result of this paper.

Theorem 6. The generating function B is given by

PV q* — pe”

B(x,p,q) = .
) = eomh( Vi — (e — 1)) — qsh(v/ — PP(e" — 1)

Moreover, for alln,i,j > 1,

n+1 ) .
bn,2i-1,j = {22. 1 +j}P(2z —24j,1—1).

Proof. The recurrence ([@]) can be written as
By = p(1+q)By + (v° +q)By.

It is routine to check that the generating function

~ - PV ¢* — pPe”
B = B(z,p,q) =

VPP e et 1))~ qsnh(y/ e 1)

(10)

(11)

satisfies (II])). Also, this generating function gives E(O,p, q) = p and E(:L",O,q) = 0. Hence,

B=0.
It follows from (@) that by 2; ; = 0 for all (4, j) # (0,0). Now let us prove that

n+1 . .
bn,2i-1,j = {22. 1 +],}P(2z —244,1—1).
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Note that
c o c o n+1 x”
> bniji-2p'q’ 5 = > bn2i-1,j+1-20"¢" 7 =D > { : }Pj—l(p)qjm
nyij =0 C o n>0i21 C azoge1 &Y '
e? — 1)1 ;
—pe” Yy %Pj-l(p)q] = pge” P(p,q(e” — 1)),
= U-
Hence,
Y bnigp'd — = pe" P(p*/a* q(e” = 1)) = B(x,p,q),
n,i,§>0 '
as required. O

Let b, = EiZszO bni ;- It follows from (20) that b, = a,. In the following discussion, we

shall present a combinatorial interpretation for b, ; ;.

Lemma 7. Suppose that (wi)le 18 a list of distinct integers containing £ right valleys and that
w1 = 1. Then, among the k ways to insert a new entry m > max(w;) into the list in a noninitial
position, 20+ 1 of them will not change the number of right valleys and k — (204 1) will increase
it by 1.

Proof. As observed above, peaks and valleys alternate, a peak occurring first, and a valley
occurring last. Thus there are £ peaks. If m is inserted immediately before or after a peak or at

the very end, the number of valleys is unchanged, otherwise it is increased by 1.

Proposition 8. The number uy ¢ of cyclically ordered partitions on [n] with k blocks and £

right valleys in the list of openers satisfies the recurrence
Un ot = ktp_1 g0+ (204 Dup—1 5—10+ (k — 20)up—1 k—1,0-1 (12)
form>2£>0, 204+1<k<n.

Proof. Each cyclically ordered partition of size n is obtained by inserting n into one of size
n — 1, either as the last entry in an existing block or as a new singleton block. Let U, ; , denote
the set of cyclically ordered partitions counted by u, .. To obtain an element of U, , we
can insert n into any existing block of an element of U,,_; ¢ (this gives ku,_1 k¢ choices), or
insert n as a singleton block into an element of U, _1 ;1 ¢ so that the number of right valleys is
unchanged (this gives (2¢ 4 1)u,_1 r—1, choices ), or insert n as a singleton block into an element
of Up—1 k—1,0—1 so that the number of right valleys is increased by 1 (this gives (k—20)up—1 p—10-1

choices ). The last two counts of choices follow from Lemma [7]

Corollary 9. For all n,i,j > 1, by j is the number of cyclically ordered partitions on [n + 1]

with i + j blocks and % right valleys (equivalently, % left peaks) in the list of openers.
Proof. Comparing recurrence relations (@) and ([I2)), we see that by ; ; = Un+1,i+j,(i—1)/2-

Remark 10. A cyclically ordered partition of size n with k blocks and ¢ right valleys in the list of
openers is obtained by selecting a partition of [n| with k blocks in {Z} ways, and then arranging
the blocks suitably, in P(k,) ways. Hence up = {7} P(k,{) and we get a combinatorial proof

that cpi-1,j = {553} P21 =2+ j,i = 1).
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2.3. The longest alternating subsequences.
Let 7 = n(1)w(2) - - - m(n) € &,. An alternating subsequence of 7 is a subsequence 7 (i) - - - 7 (i)
satisfying
(i) > w(ie) < w(iz) > -+ w(ig).
The study of the distribution of the length of the longest alternating subsequences of permuta-
tions was recently initiated by Stanley [21] 22].
Denote by as (m) the length of the longest alternating subsequence of 7. Let

ap(n) = #{m € &, r as(m) = k},
and let Ly (x) = Y.7_, ar(n)z*. Define
Zn
L(z,z) = ZL”(x)ﬁ
n>0
Stanley [22] Theorem 2.3] obtained the following closed-form formula:

1+ p+2zef* + (1 — p)e?
1+p—a?+ (1 —p—a?)e2r?’

where p = v/1 — z2. Moreover, it follows from [I5 Corollary 8| that

L(z,z) = (1 —x)

—1 2_1 3 2_ 1
L(m,z):—\/:E NG + xsin(zvax ) . (13)
r+1 1 —xcos(zva? —1)
As an extension of (8], it is natural to consider the grammar
G={w—w+ws,z—z+zyy—y+z} (14)
From (I4]), we have
D(w) = w(l + ),
D*(w) = w(l + 3z + zy + 2%);
D3(w) = w(1 + Tz + 6xy + zy* + 62% + 32y + 223).
Define
D"(w) = w Z tn7i7jﬂj‘iyj.
4,520
Since
Dn+1(w) =D |w Z tn7i7jl‘iyj
4,520
= Z(l + ) + j)tn7i7j$iyj + Z tn7i7j:17i+1yj + Z ’L'tn,i,jl‘iyj—l—l + thn,i,jxi+2yj_1'
.7 i3 .3 i,J
we get
tnt1ig = (L+i+ §)tnig +tni-15+bnij—1+ (G + Dbni-2j+1 (15)

for i,j > 0, with the initial conditions ¢ ; ; to be 1if (¢,j) = (0,0) or (i, j) = (1,0), and to be
0 otherwise. Clearly, ¢, 0,0 =1 for n > 0.
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Define

T = :E , P, q Z tn,z,jp q -
n,i,7>0

We now present the third main result of this paper.

Theorem 11. The generating function T is given by

T(z,p,q) =e" P—q\P?— ¢ +psin((e” - 1) P-¢)

p+ta  pcos((e* —1)v/p? —¢?) — ¢

Moreover, for alln > 1,1 > 1 and j > 0,

n+1 .
I B ) (10

Proof. The recurrence (3] can be written as

T, =T+ p(l+q)T, + (0* + )Ty (17)

It is routine to check that the generating function

T:Tv(qu):el‘ P—qurpsin((er_n P — )
- Pra peos((e” —1)vVp* —¢?) —4q

satisfies (IT)). Also, this generating function gives T(O,p, q) = 1 and T (x,0,q) = e*. Hence,
T=T.
Now let us prove that t, 2,1, = {Zz;il}a,(z + j). Note that

n

n+1 T
Z tnij— zpq - = Z 2 zpq = Z { }Lj(p)qjm

n,i,7>0 n,i,7>0 n,j>0 I+ 1
(e* — 1 j .
="y e Li(p)d =" Lip,g(e” ~ 1),
7>0
Hence,
7 j‘/En T T
> tasb'd Sy = Lo/ ale” ~ 1) = T(2,p,q),
n,3,j>0 ’
as required. n

Let t,, = Eigl,jzo tnij- It follows from (I6) that ¢, = a,. Along the same lines as the proof
of Corollary B, we get the following.

Corollary 12. For alln > 1,9 > 1 and j > 0, t,, ; ; is the number of cyclically ordered partitions

of [n+ 1] with i+ j+ 1 blocks and the length of the longest alternating subsequence of the list of
openers equals 1.
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3. A PRODUCT OF THE STIRLING NUMBERS OF THE SECOND KIND AND BINOMIAL
COEFFICIENTS

Consider the grammar
G={z—>z+2*+ayy—y+y>+azy} (18)
From (I8]), we have
D(z) =z + ay + 2%,
D?(x) = z + 3zy + 2zy® + 322 + 42y + 223,
D3(z) = x + Tey + 122> + 621> + 72 4 242y + 182%y% 4 1223 + 1823y + 627,

For n > 0, we define

p
E Cn,i 'y’

1>1,7>0
Since
D" (z Z Cni gty
Z i+ ] Cn z]$ y + Z 1+ ] Cn ijiyj-I—l + Z(Z + j)cn,i,j$i+1yja
i7j
we get
Cnttig = (E+J)cnig + (i + 7 —1D)cnij1+ (i +75—enio (19)

for ¢ > 1 and j > 0, with the initial conditions ¢g;; to be 1 if (¢,5) = (1,0), and to be 0
otherwise. Clearly, ¢, 10 =1 for n > 1.
Define

n

_ _ i
C=Clzpa)= D cnijp'd.

n,1,520

We now present the fourth main result of this paper.

Theorem 13. The generating function C' is given by

€T

pe
C(x,p,q) = :
(@0 9) 1—(p+q)(e” —1)
Moreover, for all n,i,j > 1,
S n+1)/it+75—-1
gm0, -
Proof. The recurrence ([I9) can be written as
Co=p(1+p+q)Cp+q(l+p+q)0C,y. (21)

It is routine to check that the generating function

xT

pe

C:pd) = 145 @ =)
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satisfies (Z2I)). Also, this generating function gives G(O,p, q) = p and 5(3;,0,(]) = 0. Hence,
C = C. Now let us prove that Cnij=(i+J— 1)!{”+1 (i+§_1). Note that

i+J
d Lt il d n-+1 g+l k k ; .
D D D 3l D DR K sy ol (T 0%
dx i (n+1)! dx = S E+1)(n+1)! —\i
d (¢" — 1)F+! k. k
=v— ——(1
LD D A
k>0
- ve’
BEEDCE)
which implies
vwe”
C =
(IIJ‘,U'UJ,ZU) 1_w(1+v)(em_1)7
as required. ]

Let ¢, = > ;51 j>0 Cniiyj- 1t follows from @0) that ¢, = >} Qkk'{Zﬁ .

4. DESCENT STATISTIC OF HYPEROCTAHEDRAL GROUP AND PERFECT MATCHINGS

Let us first recall some definitions. The Whitney numbers of the second kind W, (n, k) can

- ()1

i=k

be explicitly defined by

They satisfy the recurrence
Wi(n, k) = Wp(n—1,k—1)+ (1 +mk)W,,(n — 1, k),

with initial conditions W,,,(0,0) = 1 and W,,,(n,0) = 0 for n > 1 (see [5]). In particular, Wa(n, k)
also known as the type B analogue of Stirling numbers of the second kind (see [20, A039755]).

The hyperoctahedral group By, is the group of signed permutations of the set +[n] such that
w(—i) = —n (i) for all ¢, where +[n] = {£1,4£2,...,+n}. For each 7 € B,,, we define

desp(m) :=#{i €{0,1,2,...,n—1}|7(i) > (i + 1)},

where 7(0) = 0.
Let
B, (z) = Z gdesB(m) — ZB(n, k)",
T€B, k=0

The polynomial B, (x) is called an Eulerian polynomial of type B, while B(n,k) is called an
Eulerian number of type B (see [20 A060187]). The numbers B(n, k) satisfy the recurrence

relation

B(n+1,k) = (2k +1)B(n, k) + (2n — 2k + 3)B(n, k — 1)
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for n,k > 0, where B(0,0) = 1 and B(0,k) = 0 for £ > 1. The first few of the polynomials
B, (z) are
Bi(z) =1+ x,
By(z) = 1+ 62 + 2%,
Bs(z) = 14 23z + 232° 4 2°.
Recall that a perfect matching of [2n] is a partition of [2n] into n blocks of size 2. Denote by

N(n, k) the number of perfect matchings of [2n] with the restriction that only & matching pairs
have odd smaller entries (see [20, A185411]). It is easy to verify that

N(n+1,k) =2kN(n,k) + (2n — 2k + 3)N(n,k —1). (22)
Let Ny(z) = Y7_, N(n,k)z*. It follows from ([22)) that

d

_Nn )
7 Vn(2)
with initial values No(x) = 1, Ni(z) = = and No(x) = 22 + 2. Let

H=3 Nu(w)

n>0

Npti1(z) = 2n+ D)aN,(z) + 22(1 — )

It is well known that
1—=x

_xt
N(z,t)=e S —"E

There is a grammatical characterization of the numbers N(n, k) and B(n,k): if
G ={z =y’ y = 2’y}, (24)

then

k k k k
D ZN n kf 2n—2 +1 2 DTL xy ZB n k 2n—2 +1y2 +1
k=0 k=0

which was obtained in [I4], Theorem 10].

As an extension of ([24]), it is natural to consider the grammar
G={z—z+ziy—y+tariyl (25)

From (25)), we have

D(z) =z +ay",
D?(x) = z + 4zy? + zy* + 223y,
D(zy) = 2zy + x> + 23y,
D?(xy) = 4xy + 6xy® + xy® + 623y + 623> + 25y

Define

_ § 2141, 27
- en,i,jw Yy j7

i,5>0

Z Fop ity 2t
n Z

1,7>0
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Since

n+1 o 2i+1_ 29
D" z) =D | Y enua Ty
1720

= Z(Zz + 25 + 1)en7mx2’+1 %4 Z (2i+1)en,j ity 242 Z2jem

4,J 4,J 1,J
we get
ent1ij = (20 + 25 + D)enij + (20 + Denij—1 + 2jeni—1,

for i, j > 0, with the initial conditions epo =1 and eq;; = 0 if (¢,7) # (0,0).

Similarly, since

Dn-i—l(xy 2 :fn,z,]xm—‘rl 27+1
1,7>0

=302+ 2+ 2) g2 Ty T Y (204 1) fr g 2y

i,7 2

S (25 + 1) fag g2 A,
,J

we get
fot1ig = i+ 25 +2) frig + 20+ 1) frij—1+ (27 + 1) faio1
for 4, j > 0, with the initial conditions fo 00 =1 and fo,; = 0if (4,7) # (0,0).
Define
E=E(pq= Y enijpd f,

n,i,7>0

F=F@,pq)= Y. fuid'd —

n,t,5>0

We now present the fifth main result of this paper.

Theorem 14. The generating functions E and F are respectively given by

_ (e =1)/2 p—4
E(.’L’,p, Q) =€ \/peq(er_l) _ qep(e%c_l)

and
(p — q)e(p—q)(ezz—l)/2+2w

e2r—1)

F(z,p,q) =

p— qe(P—Q)(

Moreover, for all n,i,j > 1,

enyi,j = Wa(n, i+ j)N(i + j,J),

o n+1
.= 9on—t—j B(i 7).
f’ﬂﬂ,] {Z+]+1} (Z+j7j)

2i+3, 27
v,

(27)



SOME COMBINATORIAL ARRAYS RELATED TO THE LOTKA-VOLTERRA SYSTEM 13
Proof. By rewriting (20) and (21) in terms of generating functions, we obtain
E,=2p(14+q)E, +2¢(1+p)E;+ (1+q)E, (28)

and
Fp=2p(14+q)F, +2¢(1+p)F,+ (2+p+q)F. (29)

It is routine to check that the generating functions

P B _ prta(e?-1)/2 P4
E E($7p7 q) € \/peq(e2;v_l) o qep((iZz_l)

and

~ (p—a)(e 2 1)/2+2z
p— (&

p— qe(il’ q)(e?*—1)

satisfies (28) and (29)), respectively. Also, this generating functions give F (0,p,q) = E (0,p,q) =
1, E(z,0,q) = F(x,0,q) = a2 =1)/242z E(z,p,0) = ¢ and F(z,p,0) = eP(2*=1)/2422  Hepce,
E=Fand F=F

Now let us prove that the generating function for the sequences e, ;—; ; = Wa(n,i)N (i, j) and

Frizjg = 2"} B(i, j) are given by E(x,p,pq) and F(z,p,pq). By @3) and [20, A039755),

we have

> en,i—j,jgpiquz ZWz(nai)% Ni(q)

n,3,k>0 ’ i>0 \n>i

= E(x,p,pq),
and

n+1 d

T - n+1) (2x)"Fip! '
Z Jnji- “(n—kl)'pq %Z Z{Z+1}m Bi(q)

n,i,k>0 >0 \n>t
A Gt o
217! '
>0

= F(z,p,pq),

which completes the proof. ]

5. CONCLUDING REMARKS

In this paper, we explore some combinatorial structures associated with (2]). In fact, there are
many other extension of ([{l). For example, many authors investigated the following generalized
Lotka-Volterra system (see [17]):

dr dy dz
7 = Oy +2), o =yldeta), =

= z(Bzx +y).
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Consider the grammar
G={r—=z2y+2),y—>ylz+a)z—zx+y)}

Define
D"(x) = Z Gnigay 2T
121,520
By induction, one can easily verify the the following: for all n > 1,7 > 1 and j > 0, we have

. e n . . —_— n . —_— n + 1
9n,i,0 = i yInjin+l—i = i y9n,1,j = i1 .
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