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Abstract

Multizeta values are numbers appearing in many different contexts. Un-
fortunately, their arithmetics remains mostly out of reach.

In this article, we define a functional analogue of the algebra of mul-
tizetas values, namely the algebra of multitangent functions, which are 1-
periodic functions defined by a process formally similar to multizeta values.

We introduce here the fundamental notions of reduction into monotan-
gent functions, projection onto multitangent functions and that of trifactori-
sation, giving a way of writing a multitangent function in terms of Hurwitz
multizeta functions. This explains why the multitangent algebra is a func-
tional analogue of the algebra of multizeta values. We then discuss the
most important algebraic and analytic properties of these functions and
their consequences on multizeta values, as well as their regularization in the
divergent case.

Each property of multitangents has a pendant on the side of multizeta
values. This allows us to propose new conjectures, which have been checked
up to the weight 18.
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1. Introduction

1.1. The Riemann zeta function at positive integers

An interesting problem, but still unsolved and probably out of reach
today, is to determine the polynomial relations over Q between the numbers
ζ(2) , ζ(3) , ζ(4) , · · · , where the Riemann zeta function ζ can be defined
by the convergent series

ζ(s) =
+∞∑

n=1

1

ns

in the domain ℜe s > 1 .
Thanks to Euler, we know the classical formula for all even integers s:

ζ(s) =
(2π)s

2

|Bs|
s!

,

where the Bs’s are the Bernoulli numbers. From this, one can see that
Q[ζ(2), ζ(4), ζ(6), · · · ] = Q[π2] . Now, Lindemann’s theorem on the tran-
scendence of π concludes the discussion for s even, as the last ring is of
transcendence degree 1 .

Euler failed to give such a formula for ζ(3). Actually, the situation is
quite more complicated concerning the values of the Riemann zeta function
at odd integers. Essentially, nothing is known about their arithmetics. One
had to wait the end of the twentieth century to see the first results:

1. In 1979, Roger Apéry proved that ζ(3) 6∈ Q (see [1]) ;

2. In 2000, Tanguy Rivoal proved there are infinitely many numbers in
the list ζ(3) , ζ(5) , ζ(7) , · · · which are irrational numbers (see [35]) ;

3. in 2004, Wadim Zudilin showed that there is at least one number in
the list ζ(5) , · · · , ζ(11) which is irrational (see [47]) .

One conjectures that each number ζ(s) , s ≥ 2, is a transcendental
number. To be more precise, the following conjecture is expected to hold:

Conjecture 1. The numbers π , ζ(3) , ζ(5) , ζ(7) , · · · are algebraically
independent over Q .

1.2. The multizeta values

The notion of multizeta value has been introduced in order to study
questions related to this conjecture. Multizeta values are a multidimen-
sional generalization of the values of the Riemann zeta function ζ at positive
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integers, defined by:

Zes1,··· ,sr =
∑

0<nr<···<n1

1

n1
s1 · · ·nrsr

, (1)

for any r ≥ 1 and (s1, · · · , sr) ∈ (N∗)r with s1 ≥ 2.
The weight of the multizeta values Zes1,··· ,sr is s1 + · · ·+ sr .

Their first introduction dates back to the year 1775 when Euler studied
in his famous article [24] the case of length 2. In this work, he proved
numerous remarkable relations between these numbers, like Ze2,1 = Ze3 or
more generally:

∀p ∈ N∗ ,
p−1∑

k=1

Zep+1−k,k = Zep+1 .

Although they sporadically appeared in the mathematics as well as in
the physics literature, we can say that they were forgotten during the XIXth

century and during most of the XXth century. In the last 70’s, these numbers
have been reintroduced by Jean Ecalle in holomorphic dynamics under the
name “moule zetäıque” (See ). He used them as auxiliary coefficients in
order to construct some geometrical and analytical objects, such as solutions
of differential equations with specific dynamical properties. Mathematicians
have been definitely convinced of the interest of these numbers by their many
apparitions in different contexts during the late 80’s. Finally, these numbers
began to be studied for themselves.

Today, multizeta values arise in many different areas like in:

1. Number theory (search for relations between multizeta values, in or-
der to study the hypothetical algebraic independence of values of Rie-
mann’s zeta function ; arithmetical dimorphy) : see [20], [43], [46] for
example.

2. Quantum groups, knot theory or mathematical physics (with the Drin-
feld associator which has multizeta values as coefficients): see [7], [8],
[30] ou [32].

3. Resurgence theory and analytical invariants (in many cases, these in-
variants are expressed in term of series of multizetas values) : see [4]
and [6].

4. the study of Feynman diagrams : see [7], [8] or [32].

5. the study of P1−{0; 1;∞} (through the Grothendieck-Ihara program):
see [29], [31], [33] for example.
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6. the study of the “absolute Galois group”: see [30] for example.

In regard of Conjecture 1, one of the most important questions is the
understanding of the relations between multizeta numbers. There are nu-
merous relations between these numbers, coming in particular from their
representation as iterated series (1) or as iterated integrals. Indeed, it is
now a well-known fact that multizeta values have a representation as iter-
ated integrals which can be seen in the following way.

If we consider the 1-differential forms

ω0 =
dt

t
and ω1 =

dt

1− t
,

the iterated integral

Waα1,···,αr =

∫

0<t1<···<tr<1

ωα1 · · ·ωαr
(2)

is well defined when (α1; · · · ;αr) ∈ {0; 1}r satisfies α1 = 1 and αr = 0 .
It is easy to see that there is a relation between the “functions” Ze• and

Wa•:
Zes1,···,sr = Wa1,0

[sr−1],···,1,0[s1−1]

,

for all r ≥ 1 and (s1; · · · ; sr) ∈ (N∗)r such that s1 ≥ 2 .
It is clear that the Waα1,··· ,αr ’s span an algebra, while the Zes1,··· ,sr ’s

also span an algebra. Among others, the product of two elements of one
of these two algebras (which are usually called a quadratic relation) is a
particularly important relation. These two types of relations (one for each
algebra) allow us to express a product of two multizeta values as a Q-linear
combination of multizeta values in two different ways. One conjectures that
these two families (up to a regularization process) span all the other relations
between these numbers (see [43] or [46]). This conjecture, out of reach today,
would in particular show the absence of relations between multizeta values
of different weights, and so the transcendence of the numbers ζ(s) , s ≥ 2 .

1.3. On multitangent functions

In this article, we will present an algebra of functions, the algebra of
multitangent functions, which is in a certain sense a good analogue of the
algebra of the multizeta values. Let us first mention two ideas underlying
the definition of multitangent functions.
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First, the essential ideas leading to the explicit computation of ζ(2n) ,
where n ∈ N, is a symmetrization of the set of summation, that is to say a
transformation that allows us to transform a sum over N into a sum over
Z . By the same idea, we are able to compute numerous sums of the form∑

m∈N∗

ωmr

mr
, where ω is a root of unity.

Consequently, it is a natural idea to try to symmetrize the summation
simplex of multizeta values.

Next, some well-known ideas are interesting to stress out. One knows
that working with numbers imposes a certain rigidity, while working with
functions, which will be evaluated afterwards to a particular point, gives
more flexibility. One also knows that working with periodic functions gives
us access to a whole panel of methods.

The simplest suggestion of a functional model of multizeta values is to
consider the Hurwitz multizeta functions:

z 7−→ Hes1,··· ,sr+ (z) =
∑

0<nr<···<n1

1

(n1 + z)s1 · · · (nr + z)sr
,

for any r ≥ 1 and (s1, · · · , sr) ∈ (N∗)r with s1 ≥ 2. The advantage of these
functions is to have a very simple link with the multizetas values:

Hes1,··· ,sr+ (0) = Zes1,··· ,sr ,
where r ≥ 1 and (s1, · · · , sr) ∈ (N∗)r with s1 ≥ 2.

For the sequel of this article, we also define the functions

z 7−→ Hes1,··· ,sr− (z) =
∑

−∞<nr<···<n1<0

1

(n1 + z)s1 · · · (nr + z)sr
,

for any r ≥ 1 and (s1, · · · , sr) ∈ (N∗)r with sr ≥ 2.

Unfortunately, this choice does not seem to be the best one, according to
the previous remarks: these functions are not periodic and the summation
set is not symmetric... So, we are led to modify the model by considering
the functions:

z 7−→ T es1,··· ,sr(z) =
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
, (3)
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for all r ≥ 1 and (s1, · · · , sr) ∈ (N∗)r with s1 ≥ 2 and sr ≥ 2.
Obviously, these are 1-periodic functions and the set of summation is a

symmetric set. Nevertheless, what is gained on one side is obviously lost on
the other one: in spite of similar expressions, the link with multizeta values
is not so clear. However, this link does exist and is actually stronger than
the one with Hurwitz multizeta functions (see §3 and §7.5.4) .

We are going to refer to these functions as “multitangent functions”.
The prefix “multi” characterizes the summation set in more than one vari-
able; the suffix “tangent” comes from the link between Einsenstein series
and the cotangent function. A more representative name would have been
“multiple cotangent functions” or “multicotangent functions”, but we pre-
ferred to simplify it by forgetting the syllable “co”, which does not alter its
quintessence.

To the best of our knowledge, this family of functions had never been
studied from the point of view of special functions, even if it is an interesting
and completely natural mathematical object. There are, actually, three
good reasons to study such a family of functions, in an algebraic as well as
in an analytical way:

1. The multitangent functions seem to have appeared for the first time
in resurgence theory and holomorphic dynamics, in a book of Jean
Ecalle (see [17], vol. 2 as well as [4], or the survey [6]). Consequently,
these functions have some direct applications.

2. The multitangent functions are deeply linked to multizeta values, at
least because of an evident formal similarity. In a naive approach, we
can raise the same questions as for multizeta values, but this time for
multitangent functions.

3. The multitangent functions are a multidimensional generalization of
the Eisenstein series, which have been used by Eisenstein to develop
his theory of trigonometric functions in his famous article of 1847 (see
[23] or [44] for a modern approach). So, interesting facts may emerge
from this generalization.

1.4. Eisenstein series

The series considered by Eisenstein are defined for all z ∈ C− Z by:

εk(z) =
∑

m∈Z

1

(z +m)k
,
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where k ∈ N∗ and the Eisenstein summation process defined as the sum-
mation over N∗ of the terms of index m and −m is used for k = 1 (see
[44]):

ε1(z) =
∑

m∈N∗

(
1

(z +m)k
+

1

(z −m)k

)
=

π

tan(πz)
.

As Eisenstein himself said, “the fundamental properties of these simply-
periodic functions reveal themselves through consideration of a single iden-
tity” (see [23]):

1

p2q2
=

1

(p+ q)2

(
1

p2
+

1

q2

)
+

2

(p+ q)3

(
1

p
+

1

q

)
.

From this, he would obtain some identities, which are non trivial at a
first sight, between these series. About the ingenuity and the virtuosity of
Eisenstein, André Weil compared his work with one of the most difficult
works, even today, of the last period of creation of Beethoven: the Diabelli
variations. It is a work of art based from the most harmless theme which
is and which, during the variations following one another, will generate a
prodigious and extremely rich musical universe which is full of delicacy,
but also at the same time full of pianos and compositional virtuosity. The
parallel to show the beauty of the results obtained by Eisenstein is crystal
clear.

In his “variations”, Eisenstein obtained, in particular, the following re-
lations:

ε2
2(z) = ε4(z) + 4ζ(2)ε2(z) . (4)

ε3(z) = ε1(z)ε2(z) . (5)

3ε4(z) = ε2(z)
2 + 2ε1(z)ε3(z) . (6)

Eisenstein also proved that each of his series is in fact a polynomial
with real coefficients in ε1 . In our study of the algebraic relations between
multitangent functions, we will find another proof of the relations (4) ,
(5) and (6) . These are particular cases of more general relations: the
relation (4) is a mix of what we will call the relations of symmetrelity (see
§2.1 or Appendix A.4) and of the reduction of multitangent function into
monotangent functions (see §3), while relations (5) and (6) are the archetype
of relations of symmetrelity for divergent multitangent functions (see §7).

Let us mention that although Weil preferred in [44] the notation εk in
honour of Eisenstein. From now on, we will systematically use the notation

9



T es coming from multitangent functions. Also, in connection with the name
“multitangent functions”, we shall name them “monotangent functions” in
order to mean that the sequence is of length one.

1.5. Results proved in this article

From the three fundamental reasons evoked before, we have initiated
a complete study of multitangent functions. It uses intensively the mould
notations and mould calculus developped by Jean Ecalle. When it will be
necessary, the reader will be given explanations, otherwise he may referred
himself to Appendix A.

The first definition used in mould calculus is what a sequence is. It is
simply a list of element of a set. For example, seq(N∗) will denote in the
sequel of this article the set of sequences of positive integers:

seq(N∗) = {∅} ∪
⋃

r∈N∗

{(s1; · · · ; sr) ∈ (N∗)r} .

We will also consider three subsets of seq(N∗):

S⋆b = {(s1; · · · ; sr) ∈ seq(N∗) ; s1 ≥ 2} .
S⋆e = {(s1; · · · ; sr) ∈ seq(N∗) ; sr ≥ 2} .
S⋆b,e = {(s1; · · · ; sr) ∈ seq(N∗) ; s1 ≥ 2 and sr ≥ 2} .

The first important properties of multitangent functions (see §2 and §5)
are:

Property 1. 1. The mould T e• of multitangent function is a symmetrel
mould, that is, for all sequences ααα and βββ in S⋆b,e, we have

T eααα(z)T eβββ(z) =
∑

γ∈she(ααα,βββ)

T eγγγ(z) , for all z ∈ C− Z ,

where the set she(ααα,βββ) is a finite subset of S⋆b,e.
2. There are many Q-linear relations between of multitangent functions.

In order to explain the terminology used in this property, let us mention
here that a mould is a function with a variable number of variables, a
symmetral or symmetrel mould is subject to a constraint which give a lot

10



of equations to be satisfied. For example, a symmetral mould Ma• will
satisfy

MaxMay = Max,y +May,x ,

Max,yMay = May,x,y + 2Max,y,y ,

while a symmetrel mould will satisfy

MexMey = Mex,y +Mey,x +Mex+y,

Mex,yMey = Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y .

For instance, Wa• (defined in (2)) is a symmetral mould, while Ze• (defined
in (1)) is a symmetrel one. The reader shall consult Appendix A, especially
sections A.1, A.3 and A.4 for the formal definitions of the notions of mould
and of symmetrality /symmetrelity.

In one word, the first point of the property 1 allows us to find more
than one half of all the known algebraic relations between multizeta values
(the relation of symmetrelity and a few of double-shuffle relations), while
the second point allows us to find conjecturally exactly the other algebraic
relations between multizeta values (the relation of symmetrality and the
other double-shuffle relations).

We will also see that each multitangent function has a simple expres-
sion in terms of multizeta values and monotangent functions. We will also
determine that a sort of converse of this property is true: the algebra of mul-
titangent functions is a module over the algebra of multizeta values. The
first property is called the “reduction into monotangent functions” (see §3),
while the second property is called “projection onto multitangent functions”
(see §4).

Theorem 1. (Reduction into monotangent functions)
For all sequences s = (s1; · · · ; sr) ∈ seq(N∗), there exists an explicit family

(zsk)k∈[[ 0 ;M ]] ∈
(
V ectQ(Zeσ)σ∈S⋆

b

)M+1
, with M = max

i∈[[ 1 ; r ]]
si, such that:

T es(z) = zs0 +

M∑

k=1

zskT ek(z) , where z ∈ C− Z .

Moreover, if s ∈ S⋆b,e, then zs0 = zs1 = 0 .

11



Let us notice that this theorem states that the multitangent T e1,2 for
instance admit an expression but is not yet defined since (1, 2) 6∈ S⋆b,e. This
will be done in §7.

From an algebraic point of view, let us define some algebras more or less
related to the first point of the property 1:

MZVCV = VectQ (Zes)
s∈S⋆

b
and MZVCV,p = VectQ (Zes) s∈S⋆

b
||s||=p

,

HMZFCV,+ = VectQ (Hes+)s∈S⋆
b

and HMZFCV,+,p = VectQ (Hes+) s∈S⋆
b

||s||=p

,

HMZFCV,− = VectQ (Hes−)s∈S⋆e and HMZFCV,−,p = VectQ (Hes−) s∈S⋆e
||s||=p

,

MTGFCV = VectQ (T es)
s∈S⋆

b,e
and MTGFCV,p = VectQ (T es) s∈S⋆

b,e
||s||=p

,

HMZVCV,± = VectQ

(
Hes1+Hes2−

)
s1∈S⋆

b
s2∈S⋆e

,

where p ∈ N, the weight of a sequence s = (s1, · · · , sr) ∈ N⋆ is defined by:

||s|| = s1 + · · ·+ sr .

Using this notation, we can state the following:

Theorem 2. (Projection onto multitangent functions)
The following conjectural statements are equivalent:

1. For all p ≥ 2 , MTGFCV,p =

p⊕

k=2

MZVCV,p−k · T ek .

2. MTGFCV is a MZVCV -module.

3. For all sequences σσσ ∈ S⋆e , ZeσσσT e2 ∈ MTGFCV,||σσσ||+2 .

We will see that the duality reduction/projection is a very important
process (see §5). In one sentence, we can sum up all the study by saying:

“the algebra of multitangent functions is a functional analogue of the
algebra of multizeta values: each result on multizeta values has a

translation in the algebra of multitangent functions, and conversely.”
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We can also sum up this study by the following diagram:

MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization // HMZF±,CV

In this diagram, which will be constructed throughout the article as an
evolutive one, the trifactorization is an explicit expression of each multitan-
gent function in terms of Hurwitz multizeta functions. Using it, we will be
able to regularize divergent multitangent functions (see §7), that is to say
multitangent functions depending on a sequence s ∈ seq(N∗)−S⋆b,e , as T e1,2
for instance. This explains that we allow such sequences in Theorem 1 .

We will also give some analytical properties of the multitangent functions
(see §6), such as their Fourier expansion or their upper bound on the half-
plane, which would be useful for direct applications. Finally, we will perform
some explicit computations (see §8) to obtain:

Property 2. Let n ∈ N∗ and k ∈ N.
Let us also set E the floor function and define for (k;n) ∈ N × N∗ the
functions tk,n by:

∀x ∈ R , tk,n(x) =

{
cos(n−1)(x) , if k is odd.

sin(n−1)(x) , if k is even.

Then, we consider the moulds sg• , e• and s• , with values in C and defined
over the alphabet Ω = {1;−1}:

sgε =

n∏

k=1

εk, sε =

n∑

k=1

εk, eε =

n∑

k=1

εke
(2k−1) iπ

n .

Then, for all z ∈ C− Z , we have:

T en[k]

(z) =
(−1)n−1+E(kn+1

2
)πkn

(kn)!(2 sin(πz))n

∑

ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(s
επz) ,

where n[k] represents the sequence consisting of k repetitions of n.
13
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2. Definition of the multitangent functions and their first proper-
ties

Let us begin with a general lemma which immediately shows, if a certain
condition holds, that a mould defined as an iterated sum of holomorphic
functions is a symmetrel mould with values in the algebra of holomorphic
functions. This will give us the analytical definition of multitangent func-
tions, but this will also be useful to deal with the Hurwitz multizeta func-
tions in the sequel. In the case of multizeta values, it gives the well-known
convergence criterion.

As a consequence of this lemma, we will obtain four elementary, but
fundamental, properties of multitangent functions. First of all, let us explain
in details what a symmetrel mould is.

2.1. Definition of a symmetrel mould

Let (Ω, ·) be an alphabet with a semi-group structure. The stuffle prod-
uct of two words P = p1 · · · pr and Q = q1 · · · qs constructed over the alpha-
bet Ω is denoted by and defined recursively by:

{
P ε = ε P = P ,
P Q = p1

(
p2 · · · pr Q

)
+ q1

(
P q2 · · · qs

)
+ (p1 · q1)

(
p2 · · · pr q2 · · · qs

)
,

where ε is the empty word. As an example, in seq(N), if P = 1 · 2 and
Q = 3, we have: P Q = 1 · 2 · 3 + 1 · 3 · 2 + 3 · 1 · 2 + 1 · 5 + 4 · 2 .

Let us remind that the recursive definition of the stuffle product may
also be:





P ε = ε P = P ,

P Q =
(
p1 · · · pr−1 Q

)
pr +

(
P q1 · · · qs−1

)
qs

+
(
p1 · · ·pr−1 q1 · · · qs−1

)
(pr · qs) ,
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The multiset she(ααα;βββ), where ααα and βββ are sequences in seq(Ω), is de-
fined to be the set of all monomials that appear in the non-commutative
polynomial ααα βββ, counted with their multiplicity.

When Ω is an alphabet, which is also an additive semigroup and A an
algebra, we define a symmetrel mould Me• to be a mould of M•

A(Ω) which

satisfies for all (ααα;βββ) ∈
(
seq(Ω)

)2
:





MeαααMeβββ =
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ .

Me∅ = 1 .

Here, the sum
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ is a shorthand for
∑

γγγ∈seq(Ω)

mult

(
ααα ; βββ

γγγ

)
Meγγγ ,

where mult
(
ααα;βββ
γγγ

)
is the coefficient of the monomial γγγ in the product ααα βββ

and is equal to 〈ααα βββ|γγγ〉 . From now on, we also omit the prime:

MeαααMeβββ =
∑

γγγ∈seq(Ω)

〈ααα βββ|γγγ〉Meγγγ =
∑

γγγ∈she(ααα,βββ)

Meγγγ .

For a mould, being symmetrel imposes a strong rigidity. For example, if
(x; y) ∈ Ω2 and Me• denote a symmetrel mould, then we have necessarily:

MexMey = Mex,y +Mey,x +Mex+y.

Mex,yMey = Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y .

The reader may refer to Appendix A for a summary of mould calculus.

2.2. A lemma on symmetrel moulds

This is a first version of this lemma, for classical sums, that is to say
when the summation index varies from N to +∞, when N ∈ N:

Lemma 1. (Definition of symmetrel moulds, version 1.)
Let U be an connected open subset of C on which a complex logarithm is
well-defined, (fn)n∈N a sequence of non-vanishing holomorphic functions on
U and N ∈ N .
We assume that for all compact subsets K of U ,

||fn||∞,K =
n−→+∞

O
(
1

n

)
.
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Then, for all sequences s ∈ seq(C)− {∅}, of length r, satisfying




ℜe (s1) > 1,
...

ℜe (s1 + · · ·+ sr) > r,

(7)

we have:

1. The function Fe
s

N : U −→ C
z 7−→

∑

N<nr<···<n1<+∞

(fn1(z))
s1 · · · (fnr

(z))sr

is well defined on U .
2. FesN is holomorphic on U and for all z ∈ U :

(FesN)
′
(z) =

∑

N<nr<···<n1<+∞

(
r∏

i=1

(fni
)si

)′
.

Moreover, if we set Fe∅N = 1, then Fe•N is a symmetrel mould defined
on the set of sequences s ∈ seq(C) satisfying (7), with values in H(U) .

Let us also notice that the last set, the set of sequences s ∈ seq(C)
satisfying (7), is stable by stuffling as can easily be seen by an induction,
and

s ∈ she(s1; s2) =⇒
{
l(s) ≤ l(s1) + l(s2) .

||s|| = ||s1||+ ||s2|| .
The interest of this lemma is to give in one result an absolute convergence

criterion for the iterated sum as well as the symmetrel character. So, from
now on, each time we will consider a mould which satisfies the hypothesis
of this lemma and its second version, we will call it a symmetrel mould
without further explanations.

In the following proof, we will just indicate the reason of the conditions
imposed to obtain absolute convergence of the series and the holomorphy
of FesN . Nevertheless, we will prove in detail the symmetrelity of FesN even
if it is also elementary and a direct consequence of a computation made by
Michael Hoffman (see [28], page 485) , since it is not so clear for a lot of
people it is the same one.

Proof. Points 1 and 2 can be proved simultaneously because the series
defining FesN is normally convergent on every compact subset of U . Thus,
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the classical theorem of Weierstrass for limit of sequences of holomorphic
functions concludes the proof. Actually, if K is a compact subset of U ,
there exists MK > 0 such that for all n ∈ N:

||fn||∞,K ≤ MK

n + 1
.

Besides, for z ∈ K, we can write fn(z) = rn(z)e
iθn(z) with rn(z) > 0 and

θn(z) ∈]− π; π] . Thus: |fn(z)i| = e−θn(z) ∈ [0; eπ] .

In particular, for s ∈ C, we obtain: |fn(z)s| ≤
MK

ℜe seπℑms

(n+ 1)ℜe s
. Therefore,

there exists a constant C > 0 satisfying:

∑

N<nr<···<n1

||f s1n1
· · · f srnr

||∞,K ≤
∑

N<nr<···<n1

C

(n1 + 1)ℜe s1 · · · (nr + 1)ℜe sr

≤ CZeℜe s1,··· ,ℜe sr < +∞ .

We will prove the symmetrelity of the mould Fe•N(z) for all N ∈ N by
an induction process. To be precise, we will show the equality

Fes
1

N (z)Fe
s
2

N (z) =
∑

γγγ∈she(s1;s2)

Fe
γ

N(z) ,

with sequences s1 and s2 of seq(C) satisfying (7) . The induction is over the
integer l(s1) + l(s2) .

Before starting1, let us observe that, if s ∈ seq(C) satisfies (7), then, by
definition of Fe•N , we have:

Fe
s

N =
∑

p>N

(fp)
srFes

<r

p , by setting p = nr .

Anchor step: Let (u;v) ∈ (seq(C))2 satisfying (7) and l(u) = l(v) = 1.

1 Let us remind that if s = (s1, · · · , sr), the notation s≤k refers to the sequence
(s1, · · · , sk) of the first k terms of s, while s<k refers to the empty sequence when k = 1
or the sequence of the first (k − 1) terms of s if k ≥ 2 .
For this notation, see the annex on mould calculus.
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Writing u = (u) and v = (v), we successively have, for N ∈ N:

FeuNFe
v

N =

(∑

p>N

(fp)
u

)(∑

q>N

(fq)
v

)

=
∑

p>q>N

(fp)
u(fq)

v +
∑

p=q>N

(fp)
u(fq)

v +
∑

q>p>N

(fp)
u(fq)

v

=
∑

q>N

(fq)
vFeuq (z) + Feu+vN (z) +

∑

p>N

(fp)
uFevp(z)

= Feu,vN + Feu+vN + Fev,uN =
∑

w∈she(u;v)

FewN .

Induction step: Let us suppose that there exists a positive integer N ≥ 2
such that the result is proved for all sequences u and v of seq(C) satisfying
(7) and l(u) + l(v) = N .

In the same way as for length 1 and by the use of the induction hypothesis,
if u and v are of length k and l respectively, we successively have:

FeuNFe
v

N =
∑

p>q>N

(fp)
uk(fq)

vlFeu
≤k−1

p Fev
≤l−1

q +
∑

n=p=q>N

(fn)
uk+vlFeu

≤k−1

n Fev
≤l−1

n

+
∑

q>p>N

(fp)
uk(fq)

vlFeu
≤k−1

p Fev
≤l−1

q

=
∑

q>N

(fq)
vlFev

≤l−1

q Feuq +
∑

n>N

(fn)
uk+vlFeu

≤k−1

n Fev
≤l−1

n

+
∑

p>N

(fp)
ukFeu

≤k−1

p Fevp

=
∑

w∈she(u;v≤l−1)

(∑

q>N

(fq)
vlFewq

)
+

∑

w∈she(u≤k−1;v≤l−1)

(∑

n>N

(fn)
uk+vlFewn

)

+
∑

w∈she(u≤k−1;v)

(∑

p>N

(fp)
ukFewp

)
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=
∑

w∈she(u;v≤l−1)·vl

Fe
w

N +
∑

w∈she(u≤k−1;v≤l−1)·(uk+vl)

Fe
w

N +
∑

w∈she(u≤k−1;v)·uk

Fe
w

N

=
∑

w∈she(u;v)

FewN .

Thus, by induction, for all sequences s1 and s2 of seq(C) satisfying (7),
we have:

Fe
s1

NFe
s2

N =
∑

γγγ∈she(s1;s2)

Fe
γγγ

N where N ∈ N ,

which means that, for all z ∈ U , the mould Fe•N(z) is a symmetrel one.

We obtain, as a corollary, the second version of this lemma, but for sums
over all integers:

Lemma 2. (Definition of symmetrel moulds, version 2.)
Let U be an connected open subset of C on which a complex logarithm is
well-defined, (fn)n∈N a sequence of non-vanishing holomorphic functions on
U .
We assume that for all compact subsets K of U ,

||fn||∞,K =
n−→±∞

O
(

1

|n|

)
.

1. Then, for all sequences s ∈ seq(C)− {∅}, of length r, satisfying

∀k ∈ [[ 1 ; r ]],

{ ℜe (s1 + · · ·+ sk) > k,

ℜe (sr + · · ·+ sr−k+1) > k,
(8)

the function Fes : U −→ C
z 7−→

∑

−∞<nr<···<n1<+∞

(
fn1(z)

)s1 · · ·
(
fnr

(z)
)sr

is well defined on U , holomorphic on U and satisfy:

∀z ∈ U , (Fes)′ (z) =
∑

−∞<nr<···<n1<+∞

(
r∏

i=1

(fni
(z))si

)′
.

2. Moreover, if we set Fe∅ = 1, then Fe• is a symmetrel mould defined
on the set of sequences s ∈ seq(C) satisfying (8), with values in H(U) .
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Proof. This lemma uses a mould factorization, and consequently uses
mould calculus. The reader can refer to Appendix A, §A.1, §A.2 and A.4.

The lemma which gives the definition of symmetrel moulds, version 1,
has several consequences.

First, the mould Fe• can be factorised:

Fe•(z) = Fe•+(z)× Ce•(z)× Fe•−(z) , (9)

where, for all s ∈ seq(C) satisfying (8), of length r the functions Fes+ , Ces

and Fes− are defined on U by:

Fes+(z) =





1 , if r = 0 .
∑

0<nr<···<n1<+∞

r∏

i=1

(fni
(z))si , otherwise.

Ces(z) =





1 , if r = 0 .
(f0(z))

s1 , if r = 1 .
0 , otherwise.

Fes−(z) =





1 , if r = 0 .
∑

−∞<nr<···<n1<0

r∏

i=1

(fni
(z))si , otherwise.

One can notice that Fe•+ = Fe•0 and Fe•− = F̃ e0

←
•
correspond to the

sequence of functions f̃n = f−n and a reverse sequence of positive integers

denoted by
←• .

To prove (9), let us set Fes+0(z) =
∑

0≤nr<···<n1<+∞

l(s)∏

i=k

(fni
(z))si, where z ∈

U and s ∈ seq(C) satisfy (8) . In the definition of Fe•+0(z), we obtain by
isolating the summation index nr when it is equal to 0:

Fes+0(z) =
∑

0=nr<nr−1<···<n1<+∞

l(s)∏

i=k

(fni
(z))si +

∑

0<nr<nr−1<···<n1<+∞

l(s)∏

i=k

(fni
(z))si

= (f0(z))
sr Fes

≤r−1

+ (z) + Fes+(z) =
(
Fe•+(z)× Ce•(z)

)s
.
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In the same way, we show that Fe•(z) = Fe•+0(z) × Fe•−(z), which im-
plies the trifactorisation (9) .

As an example, this trifactorization give us:

Feω1(z) = Feω1
+ (z) + Ceω1(z) + Feω1

− (z) .

F eω1,ω2(z) = Feω1,ω2
+ (z) + Feω1

+ (z)Ceω2(z) + Feω1
+ (z)Feω2

− (z)
+Ceω1(z)Feω2

− (z) + Feω1,ω2
− (z) .

Then, since s ∈ seq(C) satisfies (8), s and
←
s satisfy (7) . The lemma of

definition of symmetrel moulds, version 1, shows us that the functions Fes
≤k

+

and Fe
s≥k

− are well defined and holomorphic on U and that their derivatives
can be computed by a term by term process.

Thus, Fes is well defined and holomorphic on U , with a derivative which
is the summation of the summand derivatives.

Finally, according to the first version of this lemma, Fe•+ and Fe•− are
symmetrel moulds, as well as Ce• . Since the mould product of symmetrel
moulds defines a symmetrel mould, we deduce that Fe• is a symmetrel
mould for all z ∈ U .

2.3. Application: definition of multitangent functions

Let us consider U = C− Z and for n ∈ Z, the functions

fn : U −→ C

z 7−→ 1

n + z
.

It is clear that, for all compact subsets K of C− Z,

||fn||∞,K =
n−→±∞

O
(

1

|n|

)
.

The lemma of definition of symmetrel moulds, version 2, allows us to define
a symmetrel mould, denoted T e•, defined by:

T es : C− Z −→ C

z 7−→
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
.
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This mould, which will be called the mould of multitangent functions, is
defined, a priori, for all sequences

s ∈ S⋆b,e =
{
s ∈ seq(N∗); s1 ≥ 2 and sl(s) ≥ 2

}

and takes its values in the algebra of holomorphic functions defined on
C− Z .

2.4. First properties of multitangent functions

As a consequence of Lemma 2 with a simple change of variables in the
summations, we have:

Property 3. 1. The function T es is well-defined on C − Z for any se-
quence s ∈ S⋆b,e .

2. The function T es is holomorphic on C−Z for any sequence s ∈ S⋆b,e, it
is a uniformly convergent series on every compact subset of C−Z and
satisfies, for all s ∈ S⋆b,e and all z ∈ C− Z:

∂T es
∂z

(z) = −
l(s)∑

i=1

siT es1,··· ,si−1,si+1,si+1,··· ,sl(s)(z) .

3. For any sequence s ∈ S⋆b,e and all z ∈ C− Z we have:

T es(−z) = (−1)||s||T e
←
s (z) .

4. For all z ∈ C − Z , T e•(z) is symmetrel , that is, for any sequence
(ααα;βββ) ∈ (S⋆b,e)2:

T eααα(z)T eβββ(z) =
∑

γγγ∈she(ααα;βββ)

T eγγγ(z) .

We will speak respectively of the differentiation property and the parity
property to refer to the formula of the second point and that of the third
point. Let us also notice that if (ααα;βββ) ∈ (S⋆b,e)2, then she(ααα;βββ) ⊂ S⋆b,e .

3. Reduction into monotangent functions

The aim of this section is to show a non-trivial link between multitan-
gent functions and multizeta values. More precisely, we will show that all
(convergent) multitangent functions can be expressed in terms of multizeta
values and monotangent functions2. In order to do this, we will perform a

22



partial fraction expansion (in the variable z) and sum after a reorganisation
of the terms.

Let us notice that this idea had already been mentioned by Jean Ecalle
(cf [17], p. 429) .

3.1. A partial fraction expansion

Let us fix a positive integer r, a family of positive integers s = (si)1≤i≤r
and a family of complex numbers a = (ai)1≤i≤r, where the ai’s are pairwise
distinct. Let us also consider the rational fraction defined by

Fa,s(z) =
1

(z + a1)s1 · · · (z + ar)sr
.

We know that the partial fraction expansion of Fa,s(z) can be written
in the following way:

Fa,s(z) =
r∑

i=1

si−1∑

k=0

1

k!

(
Fa≤i−1·a≥i+1,s≤i−1·s≥i+1

)(k)
(−ai)

(z + ai)si−k
,

where the sequences a≤i−1 · a≥i+1 and s≤i−1 · s≥i+1 denote respectively
(a1, · · · , ai−1, ai+1, · · · , ar) and (s1, · · · , si−1, si+1, · · · , sr) .

An easy computation shows that, for all k ∈ N, we have:

(−1)k

k!
F (k)
a,s (z) =

∑

k1,··· ,kr≥0
k1+···+kr=k

(
s1+k1−1
s1−1

)
· · ·
(
sr+kr−1
sr−1

)

(z + a1)s1+k1 · · · (z + ar)sr+kr
.

Let us now introduce some notations:

εs,ki = (−1)s1+···+si−1+si+1+···+sr+k1+···+ki−1+ki+1+···+kr ,

iDs

k
(a) =

(
i−1∏

l=1

(ai − al)
sl+kl

)(
r∏

l=i+1

(al − ai)
sl+kl

)
,

iBs

k
=

(
i−1∏

l=1

(−1)kl

)(
r∏

l=i+1

(−1)sl

)


r∏

l=1
l 6=i

(
sl + kl − 1
sl − 1

)

 ,

2 Let us recall that a monotangent function is a multitangent function of length 1 .
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where the sequence k has the same length as a and an ith index which does
not intervene.

So, we finally have the following partial fraction expansion:

Fa,s(z) =

r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

εs,ki
(z + ai)si−k

iBs

k

iDs

k
(a)

. (10)

The notation k̂i in the third summation means that the non negative
integer ki does not appear.

3.2. Expression of a multitangent function in terms of multizeta values and
monotangent functions

Plugging (10) in the definition of a multitangent function, we can ex-
change the multiple summation (from the definition of a multitangent) with
the finite summation (from the partial fraction expansion), because of the
absolute convergence, and then sum by decomposing the multiple summa-
tion into three terms. The following are successively equal to T es(z), if
s ∈ S⋆b,e:
(

r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

∑

−∞<nr<···<n1<+∞

)( ε
s,k
i

(z + ni)si−k

iBs

k

iDs

k
(n)

)

=

(
r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

∑

ni∈Z

∑

(n1;··· ;ni−1)∈Z
i−1

ni<ni−1<···<n1

∑

(ni+1;··· ;nr)∈Zr−i

nr<···<ni+1<ni

)( εs,ki
(z + ni)si−k

iBs

k

iDs

k
(n)

)

=

(
r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

)


iB

s

k

∑

ni∈Z

(
εs,ki

(z + ni)si−k

[ ∑

(ni+1;··· ;nr)∈Zr−i

−∞<nr<···<ni+1<ni

1

iDs≥i

k
≥i(n≥i)

]

[ ∑

(n1;··· ;ni−1)∈Z
i−1

ni<ni−1<···<n1<+∞

1

iDs≤i

k
≤i(n≤i)

])

 .

Since we have:

∑

(ni+1;··· ;nr)∈Zr−i

−∞<nr<···<ni+1<ni

1

iDs≥i

k
≥i(n≥i)

=
∑

(ni+1;··· ;nr)∈Zr−i

−∞<nr<···<ni+1<ni

r∏

l=i+1

1

(nl − ni)sl+kl
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=
∑

−∞<nr<···<ni+1<0

r∏

l=i+1

1

nsl+kll

= (−1)||s
>i||+||k>i||Zesr+kr,··· ,si+1+ki+1 ,

∑

(n1;··· ;ni−1)∈Z
i−1

ni<ni−1<···<n1<+∞

1

iDs≤i

k
≤i(n≤i)

= (−1)||s
<i||+||k<i||Zes1+k1,··· ,si−1+ki−1 ,

where s<i and s>i denote the sequences (s1, · · · , si−1) and (si+1, · · · , sr) and
||s|| = s1 + · · ·+ sr , we can conclude that:

T es(z) =
r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

∑

ni∈Z

iBs

k

Zesr+kr,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1

(z + ni)si−k

=

r∑

i=1

si−1∑

k=0

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

iBs

k
Zesr+kr,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1T esi−k .

Consequently, we have the following relation:

T es(z) =
r∑

i=1

si−1∑

k=0

Zs

i,kT esi−k(z) ,

where

Zs

i,k =
∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

iB
s

k
Zesr+kr ,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1 . (11)

From s1, sr ≥ 2, we can observe that only convergent multizeta values
appear in this computation. Moreover, this gives also an expression of T es
in terms of integer coefficients (since iB

s

k
∈ Z) and multizeta values, since

the product of two multizeta values can be expressed as a linear combina-
tion of multizeta values from the symmetrelity of Ze•.
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The divergent monotangent T e1 : z 7−→ π

tan(πz)
seems to appear in

this relation. Nevertheless, the T e1 coefficient is necessarily null. Indeed, it
is not difficult to see (see §6.3) that all (convergent) multitangent function
tends exponentially to 0 when ℑmz −→ +∞ . Let us notice that this
computation looks like if some divergent sums appear, but it is not the case if
we perform this computation using a multidimensionnal Eisenstein proccess
generalizing the one described in [44] for a simple sum. Consequently, we
obtain:

Theorem 3. (Reduction into monotangent functions, version 1)
For all sequence s ∈ S⋆b,e, we have for all z ∈ C− Z:

T es(z) =
r∑

i=1

si∑

k=2

Zs

i,si−k
T ek(z) =

max(s1,··· ,sr)∑

k=2

( ∑

i∈[[ 1 ; r ]]
si≥k

Zs

i,si−k

)
T ek(z) .

3.3. Tables of convergent multitangent functions

With a suitable computer algebra software, we can easily generate a
table of multitangent functions up to a fixed weight. Different tables can
be computed:

1. those given by the previous theorem ;

2. those obtained from the first ones, as soon as we have downloaded a
table of values of the multizeta values expressed in terms of special
multizeta values (see [36] for this purpose) ;

3. those obtained from the first ones, as soon as we have downloaded a
table of numerical values of the multizeta values (see [3] or [14] for
this purpose) ;

4. those obtained from the first ones, after a linearization of products of
multizeta values (the choice of linearization by symmetrelity is more
natural in this context than using the symmetrality) .

Table 1 of appendix B, contains some examples of such tables. Some
boxes in it are empty, which means the expression is the same as in the
previous column. Let us immediately remark that there are a lot of Q-
linear relations between multitangents and none of them is trivial. Here
are two of them which are easy to state, but the second one is still quite
mysterious:

T e2,1,2 = 0 . (12)
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3T e2,2,2 + 2T e3,3 = 0 . (13)

We will study this in detail in Section 5.3.

3.4. Linear independence of monotangent functions

Now, we will give a fundamental lemma which will be used here and
there repeatedly in this article. It will be a little incursion in the world of
the arithmetic of multitangent functions, a quite obscure world.

Lemma 3. The monotangent functions are C-linearly independent.

We give a proof based on the differentiation property of multitangent
functions. Many different proofs are possible, for instance using the Fourier
coefficients of monotangent functions or by looking at the poles of mono-
tangent functions, etc.

Proof. Let us suppose the familly (T en)n∈N∗ is not C-linearly indepen-
dant.

So, there would exist an integer r ≥ 1, a r-tuple of integers (n1; · · · ;nr)
satisfying 0 < n1 < · · · < nr and (λn1; · · · ;λnr

) ∈ Cr such that:

r∑

k=1

λnk
T enk = 0 .

Using the differentiation property of multitangent functions, we would
obtain:

r∑

k=1

(−1)nk−1λnk

(nk − 2)!

∂nk−1T e1
∂znk−1

= 0 .

So, T e1 would satisfy a linear differential equation with constant coef-
ficients, and therefore could be written as a C-linear combination of expo-
nential polynomials. This would allow us to obtain an analytic continuation
over all C of the cotangent function.

Because such an analytic continuation is impossible, we have proved that
monotangent functions are C-free.

Since we have just seen that are many linear relations between mul-
titangent functions, we know that this lemma can not be extended to
multitangent functions. In fact, since we know the Eisenstein relation
T e2(z)T e1(z) = T e3(z), we can affirm that monotangent functions are not
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algebraically independent, even if we restrict to convergent monotangent
functions:

2
(
T e3

)2
= 3T e2T e4 −

(
T e2

)3
.

3.5. A first approach to algebraic structure of MTGF

Recall that we have denoted byMTGFCV,p the Q-algebra spanned by all
the functions T es , with sequences s ∈ S⋆b,e of weight p ∈ N , and MZVCV,p
the Q-algebra spanned by all the numbers Zes , with sequences s ∈ S⋆b of
weight p .

So, the reduction into monotangent functions, together with the previous
lemma, yields the following corollary3:

Corollary 1. For all p ≥ 2 , MTGFCV,p ⊆
p⊕

k=2

MZVCV,p−k · T ek .

Proof. The reduction process gives:

MTGFCV,p ⊆
p∑

k=2

MZVCV,p−k · T ek .

But, from the previous lemma, it is quite clear that:

p∑

k=2

MZVCV,p−k · T ek =
p⊕

k=2

MZVCV,p−k · T ek .

3.6. Consequences

An easy consequence of the reduction in monotangent functions is that
each property on multitangent functions will have implications on multi-
zeta values. The process will often be like this: we express the property
we are studying in terms of multitangent functions, then we reduce all the
multitangents into monotangent functions and finally use the C-linear inde-
pendence of the monotangent functions to conclude something on multizeta
values.

The following diagram will evolve throughout the article to explain how
the multitangent functions are linked to the multizeta values.

3 The notation E · α denotes the set {e · α; e ∈ E} .
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MZVCV

MTGFCV

reduction

OO

Figure 1: Links between multizeta values and multitangent functions

To illustrate this idea, let us show how a computation on multitangent
functions, which will be done in §8, gives us a computation on multizeta
values. For this purpose, let us consider the following formal power series:

Z2 =
∑

p≥0

Ze2[p]Xp , T2(z) =
∑

p≥0

Te2[p](z)Xp .

Let us remind that in this definition, the sequence 2[p] is defined to be
(2; · · · ; 2︸ ︷︷ ︸

p times

) (See Appendix A , §A.8).

Property 2 will show that, in MTGFCV

[[√
X
]]
, we have:

T2(z) = 1 +
∑

k≥1

22k−1π2k−2

(2k)!
XkTe2(z) = 1 +

ch(2π
√
X)− 1

2π2
Te2(z) . (14)

On the other hand, the reduction into monotangent functions implies

T2(z) = 1 +XZ2
2Te2(z) , (15)

because we have, for all p ∈ N: Te2[p] =
p∑

i=1

Ze2[p−i]Ze2[i−1]Te2(z) .

From the last two equations, we therefore obtain:

Z2 =
sh2(π

√
X)

π
√
X

,

that is:

∀n ∈ N , Ze2[n]

=
π2n

(2n+ 1)!
.
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4. Projection onto multitangent functions

4.1. A second approach to the algebraic structure of MTGF

We have just seen that for all p ≥ 2:

MTGFCV,p ⊆
p⊕

k=2

MZVCV,p−k · T ek .

The table of convergent multitangents that we have established up to weight
18 shows that the inclusion is in fact an equality for p ≤ 18. This is why
we conjecture that the equality holds for all p ∈ N .

Conjecture 2. For all p ≥ 2 , MTGFCV,p =

p⊕

k=2

MZVCV,p−k · T ek .

4.2. A structure of MZV -module

If Conjecture 2 is true, then MZVCV,p · T eq can be seen as a subset of
MTGFCV,p+q for all integers (p; q) ∈ N2 . This leads us to the following
conjecture:

Conjecture 3. 1. For all sequences σσσ ∈ S⋆b and s ∈ S⋆b,e , we have:

ZeσσσT es ∈ MTGFCV,||σσσ||+||s|| .

2. MTGFCV is a MZVCV -module.

Of course, the second point is a direct consequence of the first one, but
it is the one that interests us in theory ; in practice, we will favour the
first one because of the weight homogeneity. What is important is the links
between the conjectures 2 and 3:

Property 4. Conjecture 2 is equivalent to Conjecture 3.

Proof. 1. Let us suppose that Conjecture 2 holds.
Thus, from the reduction into monotangent functions and the sym-

metrelity of the mould Ze•, it follows, for (σσσ; s) ∈ S⋆b × S⋆b,e, that

ZeσσσT es =

max(s1;··· ;sr)∑

k=2

(∑

i

ciZesi,kZeσσσ
)
T ek,where





si,k ∈ S⋆b ,

||si,k||= ||s|| − k ,
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=

max(s1;··· ;sr)∑

k=2

(∑

i

c′iZeσσσi,k

)
T ek,where





σσσi,k ∈ S⋆b .

||σi,k||= ||s||+ ||σ|| − k .

According to Conjecture 2, we are now able to write each term of the
form Zeσσσi,kT ek in MTGFCV,||σσσ||+||s|| that is, ZeσσσT es ∈ MTGFCV,||σσσ||+||s|| .
This concludes that MTGFCV is a MZVCV -module.

2. According to Conjecture 3, for all sequences s ∈ S⋆b and all integer
k ≥ 2, we are able to express ZesT ek in MTGFCV,||s||+k . In other words,
for all p ≥ 2:

p⊕

k=2

MZVCV,p−k · T ek ⊆ MTGFCV,p .

We now conclude to the equality

MTGFCV,p =

p⊕

k=2

MZVCV,p−k · T ek

for all p ≥ 2 from Corollary 1

The first point of Conjecture 3 can be a bit reduced. We will restrict to
the following statement:

Conjecture 4. For all sequences σσσ ∈ S⋆b , ZeσσσT e2 ∈ MTGFCV,||σσσ||+2 .

From the differentiation property, it is easy to see that we have not lost
information.

Property 5. Conjecture 4 is equivalent to Conjectures 2 and 3.

Proof. It is sufficient to show that Conjecture 4 implies the first point of
Conjecture 3.
Let us assume that Conjecture 4 holds. We are able to express each ex-
pression of the type ZeσσσT e2 in MTGFCV,||σσσ||+2 . By differentiation, we
explicitly find an expression of ZeσσσT ek in MTGFCV,||σσσ||+k for all k ≥ 2 .
Using the reduction into monotangent functions, we have proved the first
point of Conjecture 3, which is the desired conclusion.
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4.3. About the projection of a multizeta value onto multitangent functions

For k ≥ 2, an explicit expression of ZeσσσT ek ∈ MTGFCV,||σσσ||+k will be
called a projection of the multizeta Zeσσσ onto the space of multitangent
functions, or a projection onto multitangents to shorten the terminology.

4.3.1. A converse of the reduction into monotangent functions

The relations of projections onto multitangent functions can be consid-
ered as a converse of the reduction into monotangent functions in the fol-
lowing sense: according to Conjecture 3, each property that will be proven
on multizeta values will have implications on multitangent functions.

The process will often be like this: we express the fact under considera-
tion in terms of multizeta functions, then we multiply the different relations
by a monotangent function and finally project all of these onto multitangent
functions to conclude something on multitangent functions.

The diagram on the figure 2 completes the figure 1. An arrow indi-
cates a link between two algebras while an arrow in dotted lines indicates
a hypothetical link.

MZVCV

reduction

��
MTGFCV

projection

OO

Figure 2: Links between multizeta values and multitangent functions

4.3.2. How to find a projection onto multitangents in practice?

The idea is to proceed by induction on the weight of σσσ. Let us suppose
that we know how to express ZesT e2 in MTGFCV,p+2 for all sequences s of
weight p < ||σσσ|| . According to the differentiation property, we know how
to express ZesT e||σσσ||−||s||+2 in MTGFCV,||σσσ||+2 .
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We write the reduction into monotangent functions of T es , for all se-
quences s ∈ S⋆b,e of weight ||σσσ||+ 2, as:

( ∑

i∈E(s)

Zesi
)
T e2 + · · · .

Here, the set E(s) is finite and has only sequences of S⋆b of weight ||σσσ|| ;
the dotted stand for some elements of MTGFCV,||σσσ||+2 . In order to express
ZeσσσT e2 in MTGFCV,||σσσ||+2 , the idea is to find out a linear relation with

rational coefficients between
∑

i∈E(s)

Zesi which is equal to Zeσσσ .

4.3.3. Some examples

Just before giving some examples, let us introduce some notations. We
denote byMTGF2 = V ectQ(T es)s∈seq(N2), the vector space spanned by mul-
titangents with valuation at least 2 (in general, the valuation of a sequence
is the smallest integer composing this sequence ; here this means that all
the si’s are greater or equal to 2) and by MTGF2,p = V ectQ(T es) s∈seq(N2)

||s||=p

the subspace of convergent multitangent functions with valuation at least 2
and weight p, where N2 = {n ∈ N , n ≥ 2} .

As an example of what we have explained in the previous section, let us
express ZesT e2 in MTGF2,||s||+2, for all sequences satisfying ||s|| ≤ 5:

The table 1 gives us Ze2T e2 = 1

2
T e2,2 .

Moreover, we know that all multizeta values of weight 3 and 4 can be
respectively expressed in terms of Ze3 and (Ze2)2. Hence, we only have to
consider the quantities Ze3T e2 and (Ze2)2T e2 .

The table 1 gives us the reduction into monotangent functions of weight
5 and 6. We can, for example, choose the expressions:

Ze3T e2 =
1

6
T e3,2 − 1

6
T e2,3.

(Ze2)2T e2 = − 5

12
T e3,3.

The case ||s|| = 5 is a bit more complicated. Indeed, a classical conjec-
ture is that the Q-vector space spanned by multizeta values of weight 5 is a
2-dimensional vector space and one of its bases is (Ze5;Ze2Ze3). What is
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certain, is that its dimension is bounded by 2 . Therefore, it is sufficient to
express Ze5T e2 and Ze2Ze3T e2 in MTGF2,7 . An easy computation based
on reduction into monotangent functions gives us the following projections:

Ze5T e2 =
1

30

(
T e2,5 + 2T e3,4 − 2T e4,3 − T e5,2

)
.

Ze2Ze3T e2 =
1

12
T e3,2,2 − 1

12
T e2,2,3

+
1

24
T e2,5 + 1

12
T e3,4 − 1

12
T e4,3 − 1

24
T e5,2 .

To complete our computation, we only have to use the exact expressions
of multizeta values in terms of those just considered (see for instance [36]) .
Table 2 gives us the complete table of projections onto multitangents of all
the multizeta values of weight at most 5 .

4.3.4. An abstract formalization of the method

Recall that all multizeta values of weight n can be expressed as Q-linear
combinations of a finite number of them, which are called the irreducible
multizeta values. Let us denote by cn the number of irreducibles of weight n.

A theorem proved by Goncharov and Terasoma shows that if (dn)n∈N is
the sequence defined by





d1 = 0 ,

d2 = d3 = 1 ,

∀n ∈ N∗, dn+3 = dn+1 + dn ,

then we have: cn ≤ dn for all n ∈ N . A conjecture due to Zagier4 asserts
that (cn)n∈N satisfies the same recurrence relation as (dn)n∈N, that is, cn = dn
for all n ∈ N .

4 Concerning this well-known conjecture, we refer the reader to the works of P. Deligne
and A. B. Goncharov (see [16]), of T. Terasoma (see [42]) as well as the recent works of
F. Brown (see [9] and [10]) . [10]) .
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Let σσσ ∈ S⋆b be of weight p. Our objective is to express ZeσσσT e2 in
MTGFCV,p+2 .

For this, first begin to write all the reductions into monotangents of
weight p + 2. Then, isolate from the same side of the sign = the compo-
nents T e2 . Now, in all these expressions, we can express each multizeta
value in terms of the cp corresponding irreducibles. Since each term ZeσσσT ek,
k ≥ 3, which appears in a reduction into monotangents can be expressed
by induction in MTGFCV,p+2 according to the differentiation property, we
will have written some Q-linear equations with a left-hand side composed of
terms of the form ZeσσσT e2 and a right-hand side expressed inMTGFCV,p+2 .
We will see in the next section that only a subsystem of this one may be
useful: it will be the system with equations coming from the reduction into
monotangents of multitangent functions with valuation at least 2.

As an example, let us do it for weight 4. Each multizeta value of weight
4 can be written in term of Ze4, so we obtain the system:

4Ze4T e2 = T e2,4 + 2Ze3T e3 −Ze2T e4.

−6Ze4T e2 = T e3,3.

4Ze4T e2 = T e4,2 − 2Ze3T e3 − Ze2T e4.

4Ze4T e2 = T e2,4 + 2Ze3T e3 −Ze2T e4.

−Ze4T e2 = T e2,1,3 −Ze3T e3.

4Ze4T e2 = T e2,2,2.

−Ze4T e2 = T e3,1,2 + Ze3T e3.

2Ze4T e2 = T e2,1,1,2.

If we see the quantity Ze4T e2 as a formal variable, this system is con-
nected to the column matrix t(4;−6; 4; 4;−1; 4;−1; 2), which has rank 1 .
Of course, the second equation in the above system can be chosen to pro-
duce the simplest relations when we will have to derive it.
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The first difficulty is to find out the dimension of the matrix we have to
deal with. This is exactly the question of the number of irreducible multizeta
values of weight n, which is hypothetically solved by the conjecture of Zagier.
Of course, we can bypass this difficulty by treating all the possible values
of cn, i.e. 1, · · · , dn , but this is not really satisfying. Nevertheless, we
know that, if A ∈ Mp,q(Q) has rank q and if its column are denoted by
a1, · · · , aq, then the matrix with columns a1 − αa2, a3, · · · , ar , α ∈ Q, has
rank q − 1 . Applying this principle to our matrix (eventually more than
once), it is sufficient to consider the case where cn = dn, i.e. to suppose
that Zagier’s conjecture holds.

If we suppose that Zagier’s Conjecture holds, the second difficulty is now
to evaluate the rank of the matrix... We expect to obtain a maximal rank,
which will therefore be cn.

Table 3 shows us the submatrices obtained, using the values of multizeta
values given by [36], for the weight 4, 5, 6 and 7. Their rank are respectively
1 = c4 , 2 = c5 , 2 = c6 , 3 = c7 . Our table of multitangents up to weight 18
shows easily that the rank of this matrix is cn up to n = 16 . Consequently,
Conjecture 4, and then Conjectures 2 and 3 , hold up to weight 18 .

4.4. About unit cleansing of multitangent functions

Remind we have called valuation of a sequence of positive integers, the
smallest integer composing this sequence. Following [22], we know that
every multizeta value, even if it is a divergent one, can be expressed as a
Q-linear combination of multizeta values with a valuation at least 2 , the
same weight and a length which might be lesser. Moreover, this expression
is unique up to the relations of symmetrelity . The most famous example
of such a relation is due to Euler: Ze2,1 = Ze3.

Such an expression can be called a “unit cleansing of multizeta values”.

4.4.1. A conjecture about cleansing of multitangent functions

Let us remind we have denoted MTGF2 = V ectQ(T es)s∈seq(N2), the vec-
tor space spanned by multitangents with valuation at least 2, and
MTGF2,p = V ectQ(T es) s∈seq(N2)

||s||=p

, the subspace of convergent multitangent

functions with valuation at least 2 and weight p.
We conjecture a similar result relatively to multitangent functions that

one can call “unit cleansing of multitangent functions”. This can be written
by the following
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Conjecture 5. For all sequences s ∈ S⋆b,e, T es ∈ MTGF2,||s|| .

For example, the simplest convergent multitangent, which is not cleaned
and not the null function, is T e2,1,3, since T e3,1,2(z) = T e2,1,3(−z) and
T e2,1,2 = 0 . Its unit cleansing is given by the following relations, which can
be proved by using relations between multizeta values:

T e2,1,3 =
1

4
T e4,2 − 1

4
T e2,4 + 1

6
T e3,3

= T e4,2 − 1

4
T e2,4 − 1

4
T e2,2,2

= T e4,2 − 1

4
T e2,4 + 1

15
T e3,3 − 3

20
T e2,2,2 .

As this example shows us, there is no uniqueness of such a cleansing.
This is, of course, due to the many relations between multitangent func-
tions. Here, the responsible relation is 3T e2,2,2 + 2T e3,3 = 0, which is
the prototype of a more general relation between multitangent functions:
∀k ∈ N∗ , 3T e2[3k] + (−1)k2T e3[2k] = 0. This relation is immediately ob-
tained from the reduction into monotangent functions, or by the evaluation
of T en[p]

that will be given in section 8.
Table 4 gives us more examples of unit cleansing for multitangent func-

tions.

4.4.2. On projection onto unit-free multitangent functions

By analogy with Conjecture 4, it is quite natural to consider the follow-
ing conjecture:

Conjecture 6. For all sequences σσσ ∈ S⋆b , ZeσσσT e2 ∈ MTGF2,||σσσ||+2 .

Conjectures 4 and 6 are probably equivalent but it is sufficient for us to
know that Conjecture 6 implies Conjecture 4.

Of course, what we have said on the abstract formalization of the method
is also valid in this case. The only modification is to consider multitangent
functions of MTGF2,||σσσ||+2 instead of MTGFCV,||σσσ||+2 . So, we will obtain
a linear system with fn+1 − 1 equations5 and cn unknown ; the matrix we
will obtain has size (fn+1 − 1) × cn . Let us mention that the number of
equations is fn+1 − 1 since it is, by definition, equals to the numbers of

37



sequences in seq(N2) with weight n and length r ≥ 2.

Table 3 shows us the obtained matrices6, using the values of multizeta
values given by [36], for the weight 4, 5, 6 and 7, whose ranks are respectively
1 = c4 , 2 = c5 , 2 = c6 and 3 = c7 . Again, the table of multitangents up to
weight 18 shows easily that the obtained system has a maximal rank, that
is cn, up to n = 16 . Consequently, Conjecture 6 holds up to the weight 18 .

It leads to think that:

Conjecture 7. Let (cn)n∈N be the sequence defined by:




c1 = 0, c2 = c3 = 1.

∀n ∈ N, cn+3 = cn+1 + cn.

If p ≥ 2, the (fp+1 − 1) × cp matrix obtained by the previous process from
all the sequences of seq(N2) of weight p has rank cp .

This new conjecture is equivalent to Conjecture 6 and hence implies
Conjecture 5 as well as Conjectures 2 and 3 .

Here is a quantitative argument to support this last conjecture, and
consequently all of the other conjectures of this section.

The first matrices we have obtained contain lots of 0’s. This allows us
to say they have “highly” rank cn ; we are hinting that if this matrix has
rank cn, this is not by chance. It results from the large number of equations
and from the small number of unknowns (in comparison to the other one) ,
but also from the repartition of the large number of zeros which forced the
column vectors to be linearly independent.

Moreover, we know that:

fp+1 ≈ 0.45× 1, 62p , cp ≈ 0, 41× 1, 32p .

Thus, the more p will be tall, the more there will be “chances” to find
some linearly independent rows. Therefore, the conjecture will be probably
more true.

5 Here, (fn)n∈N denote the classical Fibonacci sequence defined by f0 = 0, f1 = 1 and
the recurence fn+2 = fn+1 + fn for all non negative integer n.

6 That’s why, in section 4.3.4, we refer oursef to the same table as submatrix of these
we must have. It was the submatrix obtained by considering only multitangent functions
of MTGF2,||σσσ||+2 .
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4.4.3. Unit cleansing of divergent multitangent functions

Let us finish this section by a little anticipation on a later section. We
will see in Section 7 that there exists a regularization process allowing us to
define multitangent functions for sequences s ∈ seq(N∗) which begin or end
by a 1. These functions will be expressed by the reduction into monotangent
functions, with a small non-zero correction which will be a power of π in
a few cases. So, according to Conjecture 4, each divergent multitangent
function can be expressed as a Q-linear combination of unit-free convergent
multitangent functions.

Therefore, Conjecture 5 can be generalised to:

Conjecture 8. For all sequences s ∈ seq(N∗) , T es ∈ MTGF2,||s|| .

5. Algebraic properties

5.1. Is MTGFCV a graded algebra ?

Many conjectures have been stated about multizeta values. These are
deep ones, but seem to be completely out of reach nowadays. We will see
a first application of the dual process of reduction and projection. Thanks
to it, we will state a new conjecture, which is related to a hypothetical
structure of graded algebra. Then, we will see two simple examples where
it is impossible to have non-trivial Q-linear relations between multitangent
functions of different weights.

5.1.1. Hypothetical absence of Q-linear relations between different weight

Let us remind the following well-known conjecture on multizeta values:

Conjecture 9. There is no non-trivial Q-linear relation between multizeta
values of different weights:

MZVCV =
⊕

p∈N

MZVCV,p .

In other words, MZVCV is a graded Q-algebra.

Let us remark that this conjecture implies in particular the transcen-
dence of all the numbers Zes, where s ≥ 2. According to the reduc-
tion/projection process, we can state the analogue conjecture for the mul-
titangent functions:
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Conjecture 10. There is no non-trivial Q-linear relation between multi-
tangent functions of different weights:

MTGFCV =
⊕

p∈N

MTGFCV,p+2 .

In other words, MTGFCV is a graded Q-algebra.

In Section 4, we have conjectured that for all sequences σσσ ∈ S⋆b , we have
ZeσσσT e2 ∈ MTGFCV,||σσσ||+2 . The following property explains how these two
conjectures are related.

Property 6. 1. Conjecture 9 implies Conjecture 10.
2. Conjectures 3 and 10 imply Conjecture 9.

Proof. 1. Suppose that there exists a Q-linear relation between multitan-
gent functions of different weights. So, there exists a family of non zero

Q-linear combination of multitangent functions (ti)i∈I ∈
∏

i∈I

MTGFCV,i

such that ∑

i∈I

ti = 0 ,

where I is a finite subset of N.
Each ti is a Q-linear combination of convergent multitangents of weight

i that we can suppose to be nonzero. By reduction into monotangent func-
tions, for all terms ti, there exists a familly (zi,j)j∈[[ 1 ; i ]] of multizeta values,
zi,j being of weight j, such that:

ti =

i∑

k=2

zi,i−kT ek.

Let us remark that, for a fixed i in I, there exists zi,j 6= 0 (otherwise, we
would have ti = 0) . Thus, denoting by M the greatest element of I, we
can write:

0 =
∑

i∈I

ti =
∑

i∈I

i∑

k=2

zi,i−kT ek =
M∑

k=2

(∑

i∈I
i≥k

zi,i−k

)
T ek.
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Consequently, the linear independence of the monotangent functions implies
that for all k ∈ [[ 2 ; M ]]: ∑

i∈I
i≥k

zi,i−k = 0 .

We have obtained a non trivial Q-linear relation between multizeta values

of different weights. Thus: MZVCV 6=
⊕

k∈N∗

MZVCV,k .

We have therefore shown that:

MTGFCV 6=
⊕

k∈N∗

MTGFCV,k =⇒ MZVCV 6=
⊕

k∈N∗

MZVCV,k .

2. Suppose now that there exists some non trivial Q-linear relation between
multizeta values of different weights. So, there exist two famillies, one of
sequences s1, · · · , sn in S⋆b and the second of non-zero rational numbers
c1, · · · , cn such that

n∑

i=1

ciZes
i

= 0 ,

where the map i 7−→ ||si|| is supposed non constant.
Thus:

n∑

i=1

ciZes
iT e2(z) = 0 , for all z ∈ C− Z .

According to Conjecture 3, the term ciZesiT e2(z) can be expressed as
a Q-linear combination of multitangent functions

ciZes
iT e2 =

ni∑

j=1

ci,jT es
i,j

,

where ||si,j|| = ||si|| + 2 and for each index i, there exists an index j such
that ci,j 6= 0 (otherwise, ci would be 0) .

Therefore, we obtain a non-trivial Q-linear relation between multitan-
gent functions not all of the same weight:

n∑

i=1

ni∑

j=1

ci,jT es
i,j

= 0 .

This is a contradiction with the absence of Q-linear relation between mul-
titangent functions of different weights. Therefore, we have shown:
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



MTGFCV =
⊕

k∈N∗

MTGFCV,k

∀σσσ ∈ S⋆b ,ZeσσσT e2 ∈ T||σσσ||+2

=⇒ MZVCV =
⊕

k∈N∗

MZVCV,k .

5.1.2. Transcendence of multitangent functions which are not identically
zero

As an example of the absence of the existence of Q-linear combinations
between multitangent of different weight, we can of course think about the
linear independence of monotangent functions given in Lemma 3. Another
example concerns a transcendence property.

In order to use a transcendence method, it may be useful to know if a
function is transcendent or not. Here, a transcendent function means a func-
tion which is transcendant over C[X ]. If we found a nonzero multitangent
function which is not transcendent, then we would have a Q-linear relation
between multitangents of different weights, which would be a contradiction
to the property 6. Fortunately for Conjecture 10, we can state that:

Lemma 4. Any nonzero multitangent function is transcendent.

Let us remark that if we want to be able to use this lemma in a transcen-
dence argument, it will be necessary to characterize the null multitangent
functions. This will be hypothetically done in a forthcoming section (see
Section 8.3).

Proof. Let us consider s ∈ S⋆b,e such that T es 6≡ 0 .
If we suppose that T es is an algebraic function, there exists a polyno-

mial P ∈ C[X ; Y ] such that P
(
z; T es(z)

)
≡ 0. Let us consider the smallest

possible degree in Y of such a polynomial, which will be denoted by d . Writ-
ing P in an expanded form, there exists a non-trivial familly of polynomials
(Pi)i∈[[ 0 ; d ]] such that we would have:

d∑

i=0

Pi(z) (T es(z))i = 0 , for all z ∈ C− Z .

Thanks to the exponentially flat character of convergent multitangent func-
tions (see §6.3) when ℑmz goes to the infinity, we have for all polynomial
P and sequence s ∈ S⋆b,e:

P (z)T es(z) −→ 0 .
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Thus:
d∑

i=1

Pi(z) (T es(z))i −→ 0 .

Because the function
d∑

i=0

Pi (T es)i is supposed to be null, this shows that

P0(z) −→ 0, which means that P0 is null. From the hypothesis, T es is not
the null function. So:

d∑

i=1

Pi(z) (T es(z))i−1 =
d−1∑

i=0

Pi+1(z) (T es(z))i ≡ 0 .

This contradicts the fact that d is the smallest possible degree in Y for
such a polynomial P . Consequently, we have shown that every nonzero
multitangent function is transcendent.

5.2. On a hypothetical basis of MTGFCV,p

In this paragraph, we will study the analogue of Zagier’s conjecture on
the dimension of MZVCV,p . For this, we will use the reduction/projection
process to translate it in MTGFCV . Recall that the Zagier conjecture
states that (dim MZVCV,n)n∈N satisfies the recurrence relation:





c0 = 1 , c1 = 0 , c2 = 1 .

cn+3 = cn+1 + cn , for all n ∈ N .

The analogue for MTGFCV is:

Conjecture 11. (dim MTGFCV,n+2)n∈N satisfies the recurrence relation:





d0 = d1 = 1 , d2 = 2 , d3 = 3 .

dn+4 = dn+3 + dn+2 − dn , where n ∈ N .

Of course, this conjecture is related to that of Zagier:

Property 7. Let us suppose that Conjecture 3 holds, i.e. that MTGFCV
is a MZVCV -module.
Then, Conjecture 11 is equivalent to the Zagier’s conjecture.
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The proof is based on Property 8 stated below. We have the follow-
ing formal power series which are respectively the hypothetically Hilbert-
Poincaré series of the hypothetically gradedQ-algebrasMZVCV andMTGFCV :

HMZVCV
=

∑

p∈N

dim MZVCV,pX
p ?

=
1

1−X2 −X3
.

HMTGFCV
=

∑

p∈N

dim MTGFCV,p+2X
p ?

=
1

(1−X2 −X3)(1−X)
.

So, it shall be sufficient to prove that (1−X)HMTGFCV
= HMZVCV

, which
is done in the following:

Property 8. Let us suppose that Conjecture 3 holds, i.e. that MTGFCV
is a MZVCV -module.

1. If
(
Zeskp

)
k=1,··· ,dimMZVCV,p

denotes a basis of MV ZCV,p for all p ∈ N ,

then
(
ZeskuT ev

)
k=1,··· ,dim MZVu

u+v=p+2
v≥2

is a basis of MTGFCV,p+2 for all p ∈ N .

2. We have: ∀p ∈ N , dim MTGFCV,p+2 =

p∑

k=0

dim MZVCV,k .

Proof. Since the second point follows directly from the first one, we will
only prove that a basis of MTGFCV,p+2 is given by the family:

(
ZeskuT ev

)
k=1,··· ,dimMZVu

u+v=p+2
v≥2

.

Step 0:

Because we have supposed that MTGFCV is a MZVCV -module, each term
of the hypothetical basis is indeed an element of MTGFCV,p+2 .

Step 1: the linear independence property.

If we suppose the existence of scalars (λv,k) such that:

p+2∑

v=2

dimMZVCV,p+2−v∑

k=1

λv,kZes
k
uT ev = 0 ,
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by the linear independence of monotangent functions, we obtain:

∀v ∈ [[ 2 ; p+ 2 ]] ,

dimMZVCV,p+2−v∑

k=1

λv,kZes
k
u = 0 .

Consequently, from the linear independence of the
(
Zesku

)
k=1,··· ,dimMZVu

,

we conclude that all the scalars λv,k are null, which concludes this step.

Step 2: the spanning property.

By the reduction into monotangent functions, one writes each multitangent
function in terms of Zes1Zes2T en. Consequently, using the symmetrelity of
the mould Ze•, we now only have to express each multizeta value of weight
k which appears in such a relation in terms of the basis of MZVCV,k .

By this process, we would have expressed each convergent multitangent
function in terms of ZeskuT ev , where k ∈ [[ 1 ; dim MZVu ]] , u+ v = p+ 2
and v ≥ 2 because the reduction into monotangent functions, as well as the
symmetrelity , preserves the weight.

To conclude this paragraph, we give in the following figure the first
hypothetical dimensions of the space of multitangent functions of weight
p + 2 . We can recognize the sequences A000931 and A023434 from the
On-Line Encyclopedia of Integer Sequences (see [40])

p 0 1 2 3 4 5 6 7 8 9 10 11 12

dim MZVCV,p 1 0 1 1 1 2 2 3 4 5 7 9 12

dim MTGFCV,p+2 1 1 2 3 4 6 8 11 15 20 27 36 48

Figure 3: The first hypothetical dimensions of the space of
multitangent functions of weight p+ 2.

5.3. The Q-linear relations between multitangent functions

We know that multizeta values have two encodings. The first one is
the one we have used since the beginning of this article, resulting from
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the specialization xn = n−1 (up to a convention of choosing the summation
sequence to be an increasing or a decreasing sequence) of the monomial basis
of quasi-symmetric functions: it is exactly the symmetrel mould Ze• . The
reader is invited to consult [25] for the first appearance of quasi-symmetric
functions in literature, as well as [2], [26], [27], or [41] for other presentations.
The second encoding of multizeta values comes from an iterated integral
representation (which has been mentioned in the introduction, see §1.2): it
is the symmetral mould Wa• .

Because of the dual process reduction/projection, we can imagine that
the symmetral encoding has a translation in the algebra MTGF . One can
think that a quadratic relation in MZV will be translated in MTGF into
another quadratic relation, but this does not provide to be true (essentially
because Hurwitz multizeta functions have one and only one encoding, see
[5]) . In fact, there are lots of null Q-linear relations between multitangent
functions; that correspond to the symmetrality relations. Of course, the
existence of such relations is a natural fact, but, as we will see, they all
have an odd look. The situation is not yet completely understood.

We will see in the following that sometimes, it is possible to prove easily a
relation using multitangent properties (because it is the derivative of a well-
know relation between multitangent function or using a parity argument).
Most of the time, these relations remain completely mysterious.

Now, let us explain what happens for small weights.

Up to weight 5. The only Q-linear relation up to weight 5 is the surprising
existence of a null multitangent function, T e2,1,2 . Although it is an inter-
esting fact, we postpone the study of null multitangent functions to §8.3 .
Let us just mention that many multitangent functions are the null function
and that we have a conjectural characterization of those.

Weight 6. Since dim MZVCV,2 = dim MZVCV,3 = dim MZVCV,4 = 1,
we deduce7 from Conjecture 2 that dim MTGFCV,6 = 4 . Consequently,
there exists exactly four independent Q-linear relations between the eight
convergent multitangent functions of weight 6. Actually, it is not difficult
to find them, using the known values of multizeta values of weight 4 .

These four independent relations are given in Table 5.

7 Because Conjecture 4 is true for the global weight 6, as we have seen with the
table 2 .
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Weight 7. Concerning the weight 7, we obtain Table 6. As it is conjectured
that dim MTGF7 = 6 and as MTGF7 is spanned by sixteen functions, one
could find exactly ten independent relations. That is what we obtain, but
the remaining question is “are there any other relations between multitan-
gent functions of weight 7?” Consequently, this is the first weight where we
can only speak hypothetically.

5.4. On the possibility of finding relations between multizeta values from the
multitangent functions

5.4.1. Two different process for multiplying two multitangent functions.

It is clear that we have two possibilities to compute a product of two mul-
titangent functions, according either to the symmetrelity of T e• or to the
relations of reduction into monotangent functions. This is summed up in the
following diagram, where “reduction” (resp. “symmetrel multiplication”)
indicates the linear extension to MTGFCV (resp. MTGFCV ⊗MTGFCV )
of the reduction process (resp. the multiplication by the symmetrelity of
T e•):

MTGF ⊗MTGF
symmetrel

multiplication
//

reduction⊗reduction
��

MTGF

reduction

��

MTGF ⊗MTGF

symmetrel multiplication
��

MTGF
reduction // MTGF

Obviously, these two processes give the same result in MTGFCV , but
the expressions are different. This gives us the opportunity to find out some
relations between multizeta values.

First, we see that the previous commutative diagram gives us a way
to find out all the relations of symmetrelity . Let us emphasize that the
following property is not the best way to prove the symmetrelity of Ze•, but
its aim is just to begin to describe the relations between multizeta values
obtained from relations between multitangent functions.

Property 9. 1. The relations of symmetrelity of T e• and the previous
commutative diagram imply all the relations of symmetrelity of Ze•.

2. The previous commutative diagram gives us more relations than those
of symmetrelity .
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Proof. 1. First of all, let us explain how we can extract the leading term
in the reduction in monotangent functions of the multitangent T es, where
s ∈ S∗b,e, if max (s1, · · · , sr) is reached one and only one time at the index
i. According to the expression (11) and Theorem 3, this coefficient is:

Zs

i,0 =
iB

s

0,··· ,0̂,··· ,0
Zesr,··· ,si+1Zes1,··· ,si−1 = (−1)si+1+···+srZesr ,··· ,si+1Zes1,··· ,si−1.

Therefore, if i = r, we have: Zs

r,0 = Zes1,··· ,sr−1.

Now, let us consider two sequences s1 and s2 in S⋆b,e and denote by M0,
the largest integer which appears in these two sequences, and finally set
M =M0 + 1.

Using the symmetrelity of T e• and then from the recursive definition of
the set she, we obtain:

T es1·MT es2·M =
∑

s∈she(s1;s2·M)∪she(s1·M ;s2)

T es·M +
∑

s∈she(s1;s2)

T es·2M .

Thus, the coefficient of T e2M in the product T es1·MT es2·M , obtained first
by the symmetrel multiplication and then by reduction into monotangent
functions, is: ∑

s∈she(s1;s2)

Zes .

On another hand, in the reduction into monotangent functions of T es1·M
and T es2·M , the only monotangents which may contribute to T e2M are the
terms T eM coming from the reduction into monotangent functions of T es1·M
and T es2·M . These are respectively equal to Zes1T eM and Zes2T eM . Con-
sequently, the coefficient of T e2M in the product T es1·MT es1·M , obtained
first by reduction into monotangent functions, then by the symmetrel mul-
tiplication and finally by reduction one more time is: Zes1Zes2 .

As a consequence, we obtain the relation we are looking for:

Zes1Zes2 =
∑

s∈she(s1;s2)

Zes .

2. We make the computation in the simplest case where the diagram
gives a result:
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1. T e2 · T e2,2 = 2Ze2
(
T e2

)2
= 4Ze2T e2,2 + 2Ze2T e4

= 8
(
Ze2

)2T e2 + 2Ze2T e4 .

2. T e2 · T e2,2 = 3T e2,2,2 + T e4,2 + T e2,4

=
(
3
(
Ze2

)2
+ 6Ze2,2 + 8Ze4

)
T e2 + 2Ze2T e4 .

Thus, by the linear independence of monotangent functions, we obtain:

6Ze2,2 + 8Ze4 = 5
(
Ze2

)2
. (16)

Using the symmetrelity of multizeta values, (16) can be written:

3Ze4 = 4Ze2,2 . (17)

But, the only relation of symmetrelity of weight 4 is:
(
Ze2

)2
= 2Ze2,2 + Ze4 . (18)

If (17) could be proven from (18), using only the symmetrelity of Ze•,

we would know the following values





Ze4 =
2

5

(
Ze2

)2
.

Ze2,2 =
3

10

(
Ze2

)2
.

To prove these relations, we actually need the following three equations
coming from the three types of relations which are known to conjecturally
describe all the relation between multizeta values, that is the relations of
symmetrality/symmetrelity and the double shuffle relations:

(
Ze2

)2
= 2Ze2,2 + Ze4 .

(
Ze2

)2
= 2Ze2,2 + 4Ze3,1 .

Ze4 = Ze2,2 + Ze3,1 .

This proves that the diagram gives us more relations than those of sym-
metrelity .

Let us also notice that we can write another commutative diagram for
the derivative of a multitangent function, but this does not provide a way
to find new relations between multizeta values.
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5.5. Back to the absence of the monotangent T e1 in the relations of reduc-
tion

We will see that the convergent multitangent functions are exponentially
flat, near infinity (see §6.3). This implies the absence of the monotangent
T e1 in the relations of reduction. From this, we can deduce some relations
between multizeta values. For all sequences s ∈ S⋆b,e of length r, we have:

r∑

i=1

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iB
s

k
Zes1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1 = 0 .

For instance, with s = (2, 1, 2), we obtain: (Ze2)2 = 2Ze2,2 + 4Ze3,1 ,
which is a symmetrality relation.

On the other hand, we can prove these relations between multizeta val-
ues in an independent way. Consequently, this will immediately show the
exponentially flat character as a corollary and also will answer the question
“Are these relations consequences of the quadratic relations?”

Indeed, these relations are consequences of symmetrality relations of
multizetas values. For all sequences s ∈ S⋆b,e of length r, let us denote:

S(r) =
r∑

i=1

∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iBs

k
Zes1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1 .

We will show that S(r) = 0 for all sequences s ∈ S⋆b,e, by linearization of
the product of multizeta values coming from the relations of symmetrality.
Let us explain this in detail.

Each multizeta value can be written as an iterated integral. Writting
the equality (81) of [12] like an iterated integral, we obtain for all sequences
s ∈ S⋆b :

Zes =

∫

0<u1<···<ur<+∞

u1
s1−1(u2 − u1)

s2−1 · · · (ur − ur−1)
sr−1

(eu1 − 1) · · · (eur − 1)

du1 · · · dur
r∏

i=1

(si − 1)!

.

Thus, for all sequences s ∈ S⋆b,e of length r and all i ∈ [[ 1 ; r ]], we have
if we set u0 = 0 and ur+1 = 0:
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∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iB
s

k
Zes1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1

=
∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

(−1)si+1+···+sr

r∏

p=1

(sp − 1)!

· (si − 1)!

k1! · · · k̂i! · · ·kr!

(∫

0<u1<···<ui−1<+∞

i−2∏

p=0

(up+1 − up)
sp+1+kp+1−1

eup+1 − 1
du1 · · ·dui−1

)

(∫

0<ur<···<ui+1<+∞

r∏

p=i+1

(up − up+1)
sp+kp−1

eup − 1
dui+1 · · · dur

)
,

=
(−1)si+1+···+sr

r∏

p=1

(sp − 1)!

∫

{0<u1<···<ui−1<+∞}×{0<ur<···<ui+1<+∞}

gi(u1; · · · ; ur)du1 · · · d̂ui . . . dur ,

where gi(u1; · · · ; ur) =


 ∏

p∈[[ 1 ; r ]]−{i}

(up − up−1)
sp−1

eup − 1


 (ui+1 − ui−1)

si−1, al-

ways with u0 = 0 and ur+1 = 0 .

To conclude that S(r) = 0, we have to compute the last integral. An
integral over a cartesian product like this integral is given by the sum of
all the integrals over the domain {0 < uσ(1) < · · · < uσ(r) < +∞}, where
σ is a permutation of [[ 1 ; r ]] satisfying σ−1(1) < · · · < σ−1(i − 1) and
σ−1(r) < · · · < σ−1(i + 1). This set is exactly encoding by the shuffle
product

u1 · · ·ui−1� ur · · ·ui+1 .

The shuffle product is defined in Appendix A, §A.3, from the syntatic point
of view.

In order to compute S(r), let us introduce a few notations. We now
consider the alphabet Ωr = {u1; · · · ; ur}, the non-commutative polynomial

er =
r∑

i=1

(u1 · · ·ui−1)� (ur · · ·ui+1) and the set Er of words of seq(Ωr) which

appears in er, that is to say in the linearization of the multizeta values we
have to take in account:

Er = {ω ∈ seq(Ωr) ; 〈er|ω〉 6= 0}
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Finally, to each word ω = ui1 · · ·uir of seq(Ωr) which contains exactly one
time all the letters of seq(Ωr) except one which will be denoted ui, we
associate an integral I(ω) defined by:

I(ω) = (−1)si+1+···+sr

∫

0<ui1<···<uir<+∞

gi(u1; · · · ; ur)du1 · · · d̂ui · · · dur .

Thus:

S(r) =
1

r∏

p=1

(sp − 1)!

(∑

ω∈Er

I(ω)

)
.

We will evaluate the sum, in the right-hand side, by grouping pairwise
the elements of Er . Er will then be decomposed into a family of pairs of
words we will call associated words.

Definition 1. Let us consider, for all (k; l) ∈ [[ 1 ; r ]]2, the morphism ϕk,l
from seq(Ωr) (for the word concatenation) defined by:

ϕk,l : Ωr −→ Ωr

ui 7−→





ui , if i 6= l .

uk , if i = l .

We will say that two words ω1 and ω2 of seq(Ωr) are associated when:

∃i ∈ [[ 1 ; r ]], ω2 = ϕi,i+1(ω
1) or ω1 = ϕi,i+1(ω

2) .

We then write: ω1 ≬ ω2 .

Let ˜seq(Ωr) be the set of words of seq(Ωr) which contain exactly one
time all the letters of Ωr, except one. One can notice that two words of
˜seq(Ωr) can of course have a different missing letter. Finally, we associate a

permutation σω of [[ 1 ; r ]]−{i} with each word ω = us1 · · ·usr−1 of
˜seq(Ωr),

where i is the index of the absent letter of ω, defined by:

σω =




1 · · · i− 1 i+ 1 · · · r

s1 · · · si−1 si · · · sr−1


 .

We have then:
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Lemma 5. 1. For all ω ∈ Er and all integer i ∈ [[ 1 ; r − 1 ]] , we have:

σϕi,i+1(ω) = ρi,i+1 ◦ σω ◦ ρi,i+1
−1 ,

with ρi,i+1 : [[ 1 ; r ]]− {i} −→ [[ 1 ; r ]]− {i+ 1}

k 7−→





k , if k 6= i+ 1 .

i , if k = i+ 1 .

2. For all ω ∈ Er , there exists a unique ω′ ∈ Er−{ω} such that: ω ≬ ω′ .

3. For all (ω1;ω2) ∈ Er
2 , we have : ω1 ≬ ω2 =⇒ I(ω1) = −I(ω2) .

Proof. 1. Let ω ∈ Er and i the index of the missing letter in ω.

We will distinguish two different cases, depending on whether σω(i + 1)
equals i+ 1 or not.

First case: σω(i+ 1) = i+ 1.

The word ϕi,i+1(ω) can be written: ϕi,i+1(ω) = ω<i−1uiω
>i+1. Remind

that the notations ω<i−1 and ω>i+1 denote respectively the first and the
last terms in the sequence ω (see appendix A, §A.8). Thus:

σϕi,i+1(ω) =




1 · · · i− 1 i i+ 2 · · · r

σω(1) · · · σω(i− 1) i σω(i+ 2) · · · σω(r)


 .

We only have to compute ρi,i+1 ◦ σω ◦ ρi,i+1
−1 to conclude that:





ρi,i+1 ◦ σω ◦ ρi,i+1
−1(k) = ρi,i+1 ◦ σω(k) = σω(k) , if k ∈ [[ 1 ; r ]]− {i, i+ 1} .

ρi,i+1 ◦ σω ◦ ρi,i+1
−1(i) = i .

Indeed, with k ∈ [[ 1 ; r ]]− {i ; i+ 1} , σω(k) 6= i+ 1 .

Second case: σω(i+ 1) 6= i+ 1.
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This case is something like the first one if we denote j = σ−1ω (i + 1) . Let
us write ϕi,i+1(ω) = ω<i ·ωi≤·<j ·ui ·ω>j or ϕi,i+1(ω) = ω<j ·ui ·ωj<·<i ·ω≥i,
depending if i+ 1 < j or i+ 1 > j.

Thus, we have: σϕi,i+1(ω) = ρi,i+1 ◦ σω ◦ ρi,i+1
−1.

2. Let ω ∈ Er and i the index of the missing letter in the word ω.
Since no letters appears twice in ω, the associated words to ω in Er can
only be ω′ = ϕi,i+1(ω) or ω

′′ = ϕi−1,i(ω).

If i = 1, ω′ is the only well-defined candidate. More precisely, we have
ω = ur · · ·u2 and ω′ = ur · · ·u3u1. Thus, ω′ is a shuffle of u1 and ur · · ·u3 ;
consequently, it is an element of Er .

If i ∈ [[ 2 ; r− 1 ]], since ω is a shuffle of u1 · · ·ui−1 and ur · · ·ui+1, according
to the definition of a shuffle of two sequences, we have:

σ−1ω (1) < · · · < σ−1ω (i− 1) and σ−1ω (r) < · · · < σ−1ω (i+ 1) .

Moreover σϕi,i+1(ω) = ρi,i+1 ◦σω ◦ρi,i+1
−1 and σϕi,i−1(ω) = ρi,i−1 ◦σω ◦ρi,i−1−1.

So, we obtain that:




σ−1ω′ (1) < · · · < σ−1ω′ (i− 1)

σ−1ω′ (r) < · · · < σ−1ω′ (i+ 2) < σ−1ω′ (i)

and 



σ−1ω′′ (1) < · · · < σ−1ω′′ (i− 2) < σ−1ω′′ (i) .

σ−1ω′′ (r) < · · · < σ−1ω′′ (i+ 1) .

Consequently:




ω′ ∈ Er ⇐⇒ σ−1ω′ (i− 1) < σ−1ω′ (i) ⇐⇒ σ−1ω (i− 1) < σ−1ω (i+ 1) .

ω′′ ∈ Er ⇐⇒ σ−1ω′′ (i+ 1) < σ−1ω′′ (i) ⇐⇒ σ−1ω (i+ 1) < σ−1ω (i− 1) .

Therefore, ω has one, and only one, associated word in Er.
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Finally, if i = r, like in the first case, ω′′ is the only well-defined candi-
date: ω′′ = u1 · · ·ur−2ur ∈ Er . Since ω = u1 · · ·ur−1, we have ω ≬ ω′′ .

3. Let ω1 = uk1 · · ·ukr−1 and ω
2 = u′k1 · · ·u′kr−1

two associated words in Er .

Let us denote by i the index of the missing letter of ω1 and j = σ−1ω1 (i+ 1).

Thus, ω2 = ω1<juiω
1>j . Let us also denote





D(ω1) = {0 < uk1 < · · · < ukj−1
< ui+1 < ukj+1

< ukr−1 < +∞} .

D(ω2) = {0 < uk1 < · · · < ukj−1
< ui < ukj+1

< ukr−1 < +∞} .

Performing the change of variable’s names ui+1 ↔ ui in the integral I(ω1),
we obtain:

I(ω1) =
(−1)si+1+···+sr

r∏

p=1

(si − 1)!

∫

D(ω1)

gi(u1; · · · ; ur) du1 · · · d̂ui . . . dur

=
(−1)si+1+···+sr

r∏

p=1

(si − 1)!

∫

D(ω2)

(−1)si+1−1gi+1(u1; · · · ; ur) du1 · · · d̂ui+1 . . . dur

= −I(ω2) .

Since Er has 2
r−1 elements counted with their multiplicity in Er, we can

conclude, from the second statement of the previous lemma that Er can be
cut into 2r−2 pairs of associated words in Er.

Thus, according to the third statement of the lemma, we finally deduce
that S(r) = 0. This can be written as:

Property 10. 1. The exponentially flat character of multitangent func-
tions implies some relations between multizeta values which are coming
from the symmetrality relations of the multizeta values.

2. The symmetrality relations of the multizeta values impose the absence
of the monotangent T e1 in the relation of reduction into monotangent
functions, and thus force the multitangent functions to be exponentially
flat.
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Consequently, one can ask the following question:
“ Using to the exponentially flat character of convergent multitangent func-
tions, are we able to find all the symmetrality relations between multizeta
values? If the answer is negative, which relations do we obtain? ”

The answer is simple and comes from a rapid exploration of the table of
multitangent functions. We immediately see that, in weight 5, we find all
the symmetrality relations of multizeta values of weight 4, but this situation
is really exceptional. For instance, in weight 6, one symmetrality relation
is not obtained:

3Ze2,2,1 + 6Ze3,1,1 + Ze2,1,2 = Ze2,1Ze2. (19)

Nevertheless, considering all Q-linear relations between multitangent
functions, we are able to find all the symmetrality relations. To illustrate
this, one can find (19) from

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 , (20)

using the reduction into monotangent as well as the values of the multizeta
values given for instance from [36].

6. Analytic properties

As announced in Section 3.2, we now will see that each multitangent
function tends to 0 when ℑmz goes to infinity at least as an exponential
function. This is the so-called exponentially flat character of convergent
multitangent functions. In order to study the convergence of series involving
multitangent functions, we look for an upper bound depending on the weight
of the sequence s and which also shows us the exponentially flat character.

To obtain such an upper bound, we will have to avoid the use of the
triangular inequality, which is not so precise. Consequently, we want to use
directly an upper bound on the sum. First, we will focus on Fourier coef-
ficients of multitangents ; then, we will deal with geometric upper bounds
of multitangent functions in order to obtain upper bound of the Fourier
coefficients. Finally, using this, we obtain an upper bound as required.

6.1. Fourier expansion of convergent multitangent functions

Since multitangent functions are 1-periodic on C − Z, we are naturally
interested in their Fourier expansions. The result proved here is central
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for the explicit computation of analytical invariants of tangent-to-identity
diffeomorphisms (see [4])

Let us first remind the Fourier expansion of T e1 (see [39]) :

T e1(z) = π

tan(πz)
=





iπ + 2iπ
∑

n<0

e2inπz , if ℑmz < 0 .

−iπ − 2iπ
∑

n>0

e2inπz , if ℑmz > 0 .

(21)

Since the convergence of the right hand side is normal on the set
{ζ ∈ C;ℑmζ < −c} and {ζ ∈ C;ℑmζ > c}, for all c > 0 the expres-
sion (21) is the Fourier expansion of T e1 . The differentiation property
gives us for all σ ∈ N− {0; 1} and all z ∈ C− Z:

T eσ(z) =





2iπ
∑

n<0

(−2inπ)σ−1

(σ − 1)!
e2inπz , if ℑmz < 0 .

−2iπ
∑

n>0

(−2inπ)σ−1

(σ − 1)!
e2inπz , if ℑmz > 0 .

Plugging this Fourier expansion in the expression for the reduction into
monotangents (see §3) when s ∈ S⋆ , we obtain:

T es(z) =
r∑

j=1

sj∑

k=2

Zs

j,sj−k
T ek(z)

=





2iπ
∑

n<0

r∑

j=1

(
sj∑

k=2

(−2inπ)k−1

(k − 1)!
Zs

j,sj−k

)
e2inπz , if ℑmz < 0 .

−2iπ
∑

n>0

r∑

j=1

(
sj∑

k=2

(−2inπ)k−1

(k − 1)!
Zs

j,sj−k

)
e2inπz , if ℑmz > 0 .

Since the convergence of this series is normal on {ζ ∈ C;ℑmζ < −c}
and {ζ ∈ C;ℑmζ > c}, for all c > 0 we obtain the Fourier expansion of the
multitangent functions:

Lemma 6. Let us set8, for all n ∈ Z and all s ∈ S⋆b,e :

T̂ s

n = 2iπ

l(s)∑

j=1

(
sj∑

k=2

(−2inπ)k−1

(k − 1)!
Zs

j,sj−k

)
.
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Then, for all sequences s ∈ S⋆b,e and all z ∈ C− Z, we have:

T es(z) =





∑

n<0

T̂ s

n q
n , if ℑmz < 0 ,

−
∑

n>0

T̂ s

n q
n , if ℑmz > 0 ,

where q = e2πiz .

6.2. An upper bound for multitangent functions

In this paragraph, we will prove two geometric upper bounds (or nearly
geometric ones), where the exponent will be the weight of the multitan-
gent and then give two hypothetical upper bounds. For this, we will use
elementary methods.

We begin, for a convergent multitangent function, by proving the fol-
lowing upper bound:

Lemma 7. For all sequences s ∈ S⋆b,e and all z ∈ C− R, we have :

|T es(z)| ≤ 4l(s)

|ℑmz|||s||−l(s)−1 .

Proof. Let s ∈ S⋆b,e and z ∈ C− R .
We will denote by fes the function defined on R× R∗+ by:

fes(x; y) =
∑

−∞<nr<···<n1<+∞

1
(
(n1 + x)2 + y2

) s1
2 · · ·

(
(nr + x)2 + y2

) sr
2

.

We hence have: |T es(z)| ≤ fes(ℜe z; |ℑmz|). Moreover, using an argument
we will develop in a forthcoming section (see Section 11), we obtain the
following trifactorisation:

fe•(x; y) = fe•+(x; y)× Ie•(x; y)× fe•−(x; y) ,

8 Let us remark that the mould T̂ •
n can not be a symmetrel one. For example, we

have: 



2T̂ 2,2
1 + T̂ 4

1 = 2× 4

3
π4 − 8

3
π4 = 0 .

(
T̂ 2
1

)2
= 16π4.

This explains the absence of the letter e in its name.
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where the functions fe•+ , fe•− and Ie• are defined on R× R∗+ by:

fe
s

+(x; y) =
∑

−E(x)<nr<···<n1<+∞

1

((n1 + x)2 + y2)
s1
2 · · · ((nr + x)2 + y2)

sr
2

.

fe
s

−(x; y) =
∑

−∞<nr<···<n1<−E(x)

1

((n1 + x)2 + y2)
s1
2 · · · ((nr + x)2 + y2)

sr
2

.

Ies(x; y) =





0 , if l(s) 6= 1 .

((x− E(x))2 + y2)
− s

2 , if l(s) = 1 .

Thus, we successively have:

fes+(x; y)=
∑

0<nr<···<n1<+∞

1

((n1 + x−E(x))2 + y2)
s1
2 · · · ((nr + x−E(x))2 + y2)

sr
2

≤ 1

(y2)
s1−2

2 (y2)
s2−1

2 · · · (y2) sr−1
2

fe2,1,··· ,1+ (x− E(x); 0)

≤ 1

ys1−2ys2−1 · · · ysr−1
∑

0<nr<···<n1<+∞

1

n1
2n2 · · ·nr

=
Ze2,1,··· ,1
y||s||−l(s)−1

≤ 2

y||s||−l(s)−1
.

On the same way, we have: fe
s

−(x; y) ≤
2

y||s||−l(s)−1
. Hence:

|T es(z)| ≤
l(s)∑

k=1

fe
s<k

+ (ℜe z; |ℑmz|)Iesk(ℜe z; |ℑmz|)fes>k

− (ℜe z; |ℑmz|)

≤
l(s)∑

k=1

2

|ℑmz|||s<k||−(k−1)−1
× 1

|ℑmz|sk × 2

|ℑmz|||s>k||−(l(s)−k)−1

=

l(s)∑

k=1

4

|ℑmz|||s||−l(s)−1 =
4l(s)

|ℑmz|||s||−l(s)−1 .
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Next, we present the second upper bound. It is an improvement of the
first one when we restrict to nonempty sequences of seq(N2) . The proof
uses the same notations and also the same ideas as for the first upper bound.

Lemma 8. For all s ∈ seq(N2)− {∅} and all z ∈ C− R satisfying |z| ≥ 1,

we have: |T es(z)| ≤ 1

l(s)!

(
2√

|ℑmz|

)||s||
.

Proof. Let s ∈ seq(N2) be a sequence of length r and z ∈ C−R satisfying
|z| ≥ 1 . Let us also consider, as in the previous proof, the notations fes ,
fes+ , fes− and Ies .

When s ∈ seq(N2) ⊂ S⋆b,e , we will improve the upper bounds which have
just been found in the proof of the first upper bound by using an integral
test for convergence:

fe
s

+(x; y) =
∑

0<nr<···<n1<+∞

r∏

i=1

(
1

((ni + x−E(x))2 + y2)
si
2

)

=
1

r!

∑

(n1;··· ;nr)∈(N∗)r

i6=j=⇒ni 6=nj

r∏

i=1

(
1

((ni + x− E(x))2 + y2)
si
2

)

≤ 1

r!

r∏

i=1

(∑

n∈N∗

1

((n+ x−E(x))2 + y2)
si
2

)

≤ 1

r!

r∏

i=1

(∫ +∞

0

dt

((t+ x− E(x))2 + y2)
si
2

)

≤ 1

r!

1

y||s||−2r

(∫ +∞

0

du

u2 + y2

)r
≤ 1

r!

(
π
2

)r

y||s||−r
.

On the same way, we have: fes−(x; y) ≤
1

r!

(
π
2

)r

y||s||−r
. Hence:

|T es(z)| ≤
r∑

k=1

fes
<k

+ (ℜe z; |ℑmz|)Iesk(ℜe z; |ℑmz|)fes>k

− (ℜe z; |ℑmz|)

≤
r∑

k=1

1

(k − 1)!

(π
2

)k−1

|ℑmz|||s<k||−(k−1)
× 1

|ℑmz|sk−1×

1

(r − k)!

(π
2

)r−k

|ℑmz|||s>k||−(r−k)60



≤
(
π
2

)r−1

|ℑmz|||s||−r
r∑

k=1

1

(k − 1)!

1

(r − k)!
≤ 2r−1

(r − 1)!

(
π
2

)r−1

|ℑmz|||s||−r

≤ πr−1

(r − 1)!

1

|ℑmz|||s||−r ≤ 4r

r!

1

|ℑmz|||s||−r .

To conclude, we only have to notice that, for s ∈ seq(N2) , we have
||s|| ≥ 2l(s) . Consequently, we deduce the sought upper bound:

|T es(z)| ≤ 1

r!

(
2√

|ℑmz|

)||s||
.

6.3. About the exponentially flat character

The exponentially flat character of convergent multitangent functions
is a consequence of Schwarz’s lemma. To enlighten this, let us give the
following statement:

Lemma 9. Suppose that a function f is 1-periodic, holomorphic on the
half-plane {ζ ∈ C ;ℑmζ > 0} and satisfies lim

t−→+∞
f(it) = 0 .

Then, for every c > 0, we have:

ℑmz > c =⇒ |f(z)| ≤M(c)e−2πℑmz ,

where M(c) = e2πc sup
z∈R+ic

|f(z)| .

Proof. Let us fix c > 0.
Writing f(z) = F (e2iπz), where F is a holomorphic function defined over
{ζ ∈ C ; |ζ | < 1} and F (0) = 0, we can consider

ϕ(z) =
F (e−2πcz)

M
,

where M = sup
z∈R+ic

|f(z)| = sup
z∈{ζ∈C ;|ζ|<e−2πc}

|F (z)| .

Since ϕ satisfies the Schwarz’s lemma hypothesis, we can conclude that:

|ϕ(z)| ≤ |z| , for all z ∈ C such that |z| < e−2πc .

Consequently, we have proved:

|F (z)| ≤Me2πc|z| , for all z ∈ C such that |z| < e−2πc ,

which conclude the proof.
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From Lemma 7 and 8, we have:

sup
z∈R+ic

|T es(z)| ≤





4l(s)

c||s||−l(s)−1
, if s ∈ S⋆b,e .

1

l(s)!

(
2√
c

)||s||
, if s ∈ seq(N2) .

Moreover, we have e−2x ≤ 1

e2x − 1
≤ 4

sh2(x)
, provided x > 0 .

For a given z ∈ C− R, setting c =
|ℑmz|

2
, we deduce from Lemma 9:

Property 11. 1. For all sequences s ∈ S⋆b,e and z ∈ C− R, we have:

|T es(z)| ≤
(

2

|ℑmz|

)||s||−l(s)−1
16πl(s)

sh2
(
π|ℑmz|

2

) .

2. For all sequences s ∈ seq(N2) and z ∈ C− R, we have:

|T es(z)| ≤ 1

l(s)!

(
2
√
2√

|ℑmz|

)||s||
4π

sh2
(
π|ℑmz|

2

) .

7. Study of a symmetrel extension of multitangent functions to
seq(N∗)

In this section, our aim is to provide a regularization of T es when the
series (3) is a divergent one, which is when s ∈ seq(N∗) − S⋆b,e, i.e. when
s1 = 1 or sr = 1, as well as when s1 = sr = 1...

Moreover, we want the extension to satisfy the same properties as the
convergent multitangent functions (see Property 3 and Theorem 3). So, we
must preserve:

1. The symmetrel character.

2. The differentiation property.

3. The parity property.

4. The property of reduction into monotangent functions.

Note that we have anticipated this section in §4.4.3 when we have studied
the unit cleansing of multitangent functions.
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7.1. A generic method to extend the definition of a symmetrel mould

In this section, we consider a symmetrel mould Se• over the alphabet
Ω = N∗, with values in an algebra A, which is well-defined for sequences in
S⋆b = {s ∈ seq(N∗) ; s1 ≥ 2} . We want to define an extension of Se• for all
sequences of seq(N∗) such that the ‘new’ mould Se• is again a symmetrel
one.

The following lemma is due to Jean Ecalle. The first part is now well-
known while the second was not published. To be exhaustive, we shall prove
both points.

Lemma 10. 1. For all θ ∈ A , there exists a unique symmetrel extension
of Se• to seq(N∗), denoted by Se•θ , such that Se1θ = θ .

2. For all γ ∈ A , let N e•γ be the symmetrel mould defined on sequences

of seq(N∗) by: N esγ =





γr

r!
, if s = 1[r] .

0 , otherwise.

Then, for all (θ1 ; θ2) ∈ A2 , we have:

Se•θ1 = N e•θ1−θ2 × Se•θ2 .

Proof. 1. If such an extension Se• exists, it must satisfy the shift to
the right of the ones begining an evaluation sequence. In other words, the
following identities must be valid for all k ∈ N and all sequences s ∈ S⋆b :

(k + 1)Se1[k+1]·s = Se1Se1[k]·s −
∑

u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seu . (22)

By induction on the number of ones that begin such sequences, these iden-
tities implies the uniqueness of the extension Se• to seq(N∗) .

To prove the existence of such an extension of Se•, we define Se1[k]·sθ

recursively by:

(k + 1)Se1[k+1]·s
θ = θSe1[k]·sθ −

∑

u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seuθ , where k ∈ N .

The only point to check is the symmetrelity of Se•θ . This may be done
by induction on k + l, where k and l denote the number of ones beginning
the first and second sequences in the product:
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(k + 1)Se1[k+1]·s1

θ Se1[l]·s2θ

= θSe1[k]·s1θ Se1[l]·s2θ −
∑

u∈she (1 ; 1[k]·s1)−{1[k+1]·s1}

SeuθSe1
[l]·s2

θ

= θ
∑

u∈she (1[k]·s1,1[l]·s2)

Seuθ −
∑

u∈she (1 ; 1[k]·s1)−{1[k+1]·s1}

∑

u′∈she (u;1[l]·s2)

Seu′θ

=
∑

u∈she (1[k]·s1;1[l]·s2)

∑

u′∈she (u;1)

Seu′θ −
∑

u∈she (1 ; 1[k]·s1)

∑

u′∈she (u;1[l]·s2)

Seu′θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu′θ

=
∑

u∈she (1[k]·s1;1[l]·s2;1)

Seuθ −
∑

u∈she (1 ; 1[k]·s1)

∑

u′∈she (u;1[l]·s2)

Seu′θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu′θ

=
∑

u∈she (1[k]·s1;1[l]·s2;1)

Seuθ −
∑

u∈she (1 ; 1[k]·s1;1[l]·s2)

Seu′θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu′θ

= (k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu′θ ,

where we have used the recursive definition of Se•θ in the first and third
equality, the inductive step in the second one and finally the associativity
and commutativity of the stuffle product9 in the last three equalities.

9 Let us remind that the stuffle product is the product recursively defined on words
constructed over the alphabet Ω having a semi-group structure. For two words P =
p1 · · · pr and Q = q1 · · · qs constructed over the alphabet Ω, we have:





P ⋆ ε = ε ⋆ P = P .

P ⋆ Q = p1
(
p2 · · · pr ⋆ Q

)
+ q1

(
P ⋆ q2 · · · qs

)
+ (p1 · q1)

(
p2 · · · pr ⋆ q2 · · · qs

)
.
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This concludes the proof of the first point and allows us to consider Se•θ
for all θ ∈ C .

2. It is clear that for all θ ∈ C, N eθ is a symmetrel mould. Moreover,
by construction, Se•θ1 and Se•θ2 are also symmetrel . Consequently, the two
moulds N e•θ2−θ1 × Se•θ1 and Se•θ2 are defined over seq(N∗), symmetrel and
their evaluation on the sequence 1 are equal to θ2. According to the first
point, we therefore have Se•θ1 = N e•θ2−θ1 × Se•θ1 , which ends the proof of
the lemma.

As a direct application, there exists a unique symmetrel extension of
Ze• to seq(N∗) such that Ze1 = 0 . From now on to the end of this section,
Ze• will denote this extension, especially in §7.3.

7.2. Trifactorization of T e• and consequences

The extension of multitangent functions to the divergent case is more
complicated than the case exposed in the previous section. Actually, even
if we fix T e1, one cannot apply the shift to the right of the ones beginning
an evaluation sequence because the ones beginning or ending the sequences
will be sent respectively at the end or the beginning of the sequences. To
illustrate this, we have:

T e1,2(z) = T e1(z)︸ ︷︷ ︸
known by
hypothesis

· T e2(z)︸ ︷︷ ︸
convergent

multitangent
function

−T e2,1(z)︸ ︷︷ ︸
problem

= unknown

− T e3(z)︸ ︷︷ ︸
convergent

multitangent
function

.

The difficulty here comes from the joint management of the two sources
of divergence created at −∞ and +∞ . To overcome it, we will separate
the divergence at −∞ from that at +∞ . To this end, we will use a mould
factorization in which each term has only one source of divergence. Let us
remind that we have already used and proved such a factorization when we
have proved the convergence rule for the multitangent functions (see p. 19) ,
but we give here a separate statement because of its importance:

Lemma 11. Let us consider the symmetrel moulds He•+, He•− and Ce•,
with values in holomorphic functions over C− Z, defined by:

See the appendix A about mould calculus.
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Hes+(z) =
∑

0<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
and He∅+(z) = 1 , s ∈ S⋆b .

Hes−(z) =
∑

−∞<nr<···<n1<0

1

(n1 + z)s1 · · · (nr + z)sr
and He∅−(z) = 1 , s ∈ S⋆e .

Ces(z) =





1 if s = ∅
1

zs
if l(s) = 1

0 if l(s) > 1

, s ∈ seq(N∗) .

Then
T e• = He•+ × Ce• ×He•− .

The moulds He•+ and He•+ are called Hurwitz multizeta functions; Ce•
is going to play the role of a correction because it only appears for null
summation indexes in the expression of T e• . Let us remark that it is clear
from Lemma 1 and their definition that these three moulds are symmetrel
, which justifies the letter e in their names.

First of all, we mention that this trifactorization acts as we wanted: it
separates the divergence sources. Secondly, it is now clear that it is sufficient
to extend (with the symmetrelity property) the definition of the two moulds
of Hurwitz multizeta functions to seq(N∗) in order to obtain an extension of
T e• to seq(N∗) which is also symmetrel . For this purpose, Lemma 10 can
be applied: given (Φ+; Φ−) ∈ H(C− Z)2, the moulds He•+ and He•− admit
a unique extension to seq(N∗) such that He1+ = Φ+ and He1− = Φ− .

We complete Figure 2 with the following diagram, in which we define

HMZVCV,± = VectMZVCV

(
Hes1+Hes2−

)
s1∈S⋆

b
s2∈S⋆e

.

From the trifactorisation, we see thatMTGFCV can be embedded inHMZVCV,±,
which will be indicated by a curly arrow in the diagram. Recall that an ar-
row indicates a link between two algebras, while an arrow in dotted lines
indicates a hypothetical link.

As a consequence, we obtain
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MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization // HMZF±,CV

Figure 4: Links between multizeta values and multitangent functions

Corollary 2. Let Φ+ and Φ− be two holomorphic functions over C− Z .
The mould T e• admits a symmetrel extension to seq(N∗) such that:





∀z ∈ C− Z , T e1(z) = Φ+(z) +
1

z
+ Φ−(z) .

∀s ∈ seq(N∗) , T es = (He•+ × Ce• ×He•−)s .

7.3. Formal Hurwitz multizeta functions and formal multitangent functions
In order to simplify the following proof, we will work in the ring of

formal power series by introducing the notion of formal Hurwitz multizeta
functions and formal multitangent functions. To distinguish whether we are
working analytically or formally without specifying it, we use two different
notations. The formal character will be denoted by a straight capital letter
while the analytic character will be denoted by a cursive capital letter (as
we have always done from the beginning) .

7.3.1. The mould He•+(X)

Since the Hurwitz multizeta functions Hes+ are regular near 0, we have:

Lemma 12. The Taylor series of Hes, for all s ∈ S⋆b,e, is given by:

He
s

+(X) =
∑

k≥0

∑

k1,··· ,kr≥0
k1+···+kr=k

r∏

i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr(−X)k .

We now define formal Hurwitz multizeta functions by their Taylor ex-
pansions near 0 and He∅+(X) = 1:

Hes+(X) =
∑

k1,··· ,kr≥0

r∏

i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr(−X)k1+···+kr .
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Thus, He•+(X) is a symmetrel mould defined over S⋆b , with values in
C[[X ]] . According to Lemma 10, for all S ∈ C[[X ]] , He• has a unique
symmetrel extension to seq(N∗) such that He1+(X) = S(X) . We have
now to define in a suitable manner He1+(X) . Since we extended Ze• with
Ze1 = 0, we can set:

He1+(X) =
+∞∑

k=1

Zek+1(−X)k . (23)

This definition is natural because we want the differentiation property
to be satisfied by the extension of He•+, as well as its formal analogue.
Consequently, the analytic analogue of He1+ is

He1+(z) =
∑

n≥1

(
1

n+ z
− 1

n

)
.

Let us remind that Ze• is the unique extension of the mould Ze• to
seq(N∗) satisfying Ze1 = 0 . So we obtain:

Property 12. The unique symmetrel extension of He•+(X) to seq(N∗) sat-
isfying (23) is given by:

He
s

+(X) =
∑

k1,··· ,kr≥0

r∏

i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr(−X)k1+···+kr .

Proof. By uniqueness of the moulds satisfying these properties, it is suf-

ficient to prove that the mould H̃e
s

+(X) defined by the right hand-side
satisfies:

1. H̃e
s

+(X) extends the definition of Hes+(X) to seq(N∗) .

2. H̃e
1

+(X) = He1+(X) .

3. H̃e
•

+(X) is a symmetrel mould.

The third point is the only one requiring some explanations. Let us

denote by M•k the coefficient of Xk of H̃e
s

+(X). In order to prove the

symmetrelity of H̃e
s

+(X), we will show that:

∀(s1; s2) ∈
(
seq(N∗)

)2
, ∀p ∈ N,

p∑

k=0

M s1

k M
s2

p−k =
∑

γ∈she(s1;s2)

M
γ
p .
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For (s1; s2) ∈
(
seq(N∗)

)2
and p ∈ N, we have, if we define r = l(s1) and

r′ = l(s2):
p∑

k=0

M s1

k M
s2

p−k=
∑

k1+···+kr+r′=k

(
r∏

i=1

(
s1i + ki − 1

ki

))( r′∏

i=1

(
s2i + ki+r − 1

ki+r

))

×Zes11+k1,··· ,s1r+krZes21+kr+1,··· ,s2r′+kr′

=
∑

k1+···+kr+r′=k

(
r∏

i=1

(
s1i + ki − 1

ki

))( r′∏

i=1

(
s2i + ki+r − 1

ki+r

))

×
( ∑

γγγ∈she(s1+k≤r ;s2+k>r)

Zeγγγ
)
,

where s1 + k≤r and s2 + k>r respectively denote (s11 + k1; · · · ; s1r + kr) and
(s21 + kr+1; · · · ; s2r′ + kr+r′) . Two cases are possible:

1. γγγ is a shuffle of s1 + k≤r and s2 + k>r:

Then, we can reorder if necessary the ki’s such that the resulting term

is M
γ̃γγ
p , where γ̃γγ is deduced from γγγ by setting ki = 0 for all i.

2. γγγ contains one or more contractions of s1 + k≤r and s2 + k>r:

We can separate indexes which do not act on contractions from the
other ones. Let us denote these by s1i and s2j . We then obtain some
sums of binomial coefficients:

∑

ki+kj=K

(
s1i + ki − 1

ki

)(
s1j + kj − 1

kj

)
=

(
s1i + s2j +K − 1

K

)
,

which is exactly the expected binomial coefficient.

Thus, the term expected is again M
γ̃γγ
p , where γ̃γγ is deduced from γγγ by

cancelling all the ki’s.

Let us remark that γ̃γγ runs over the set she(s1; s2) when γγγ runs over the
set she(s1 + k≤r; s2 + k>r) . We deduce from this that:

p∑

k=0

M s1

k M
s2

p−k =
∑

γγγ∈she(s1;s2)

M
γγγ
p .

Consequently, H̃e
s

+(X) is a symmetrel mould and is equal to He•+(X) .
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7.3.2. The mould He•−(X)

Property 12 can be adapted to He•−(X). Thus, we can extend this mould
to seq(N∗) for all sequences s ∈ seq(N∗) by:

Hes−(X) = (−1)||s||He
←
s
+(−X)

=
∑

k1,··· ,kr≥0

r∏

i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr− (−X)k1+···+kr ,

where Ze•− is defined from Ze• by a pseudo-parity relation:

Zes1,··· ,sr− = (−1)||s||Zesr ,··· ,s1 =
∑

0<n1<···<nr

(−1)||s||

n1
s1 · · ·nrsr

=
∑

pr<···<p1<0

1

prs1 · · ·p1sr
.

Implicitly, this relation forces:

He1−(z) =
∑

n<0

(
1

n+ z
− 1

n

)
.

7.3.3. The mould Te•(X)

We have seen in Corollary 2 that for Φ+ and Φ− two holomorphic func-
tion over C − Z, there exists a symmetrel extension of T e• to seq(N∗),

defined by T e• = He•+×Ce•×He•−, such that T e1(z) = Φ+(z)+
1

z
+Φ−(z)

for all z ∈ C− Z .
With the definition of the formal Hurwitz multizeta functions, the formal

analogue Te•(X) should be defined by:

Te•(X) = He•+(X)× Ce•(X)×He•−(X) ,

where Ces(X) =





1 , if l(s) = 0

X−s , if l(s) = 1 ,

0 , if l(s) ≥ 2

and is a symmetrel mould defined

on seq(N∗) and with values in C((X)) .
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7.4. Properties of the extension of the mould T e• to seq(N∗)
The convergent Hurwitz multizeta functions satisfies the differentiation

and parity properties, as the convergent multitangent functions. We want
their extensions to seq(N∗) to satisfy the same properties. These depend on
the choice of the functions He1+ and He1− . From now on, we always define
these functions by:

He1+(z) =
∑

n>0

(
1

n+ z
− 1

n

)
, He1−(z) =

∑

n<0

(
1

n+ z
− 1

n

)
.

With these definitions, the corresponding symmetrel extensions satisfy:

Lemma 13. For all sequences s ∈ seq(N∗), we have:

1.
∂Hes±
∂z

= −
l(s)∑

i=1

siHes+ei± .

2. Hes+(−z) = (−1)||s||He
←
s
−(z) , where z ∈ C− Z .

Proof. 1. Let us begin by proving this for formal Hurwitz multizeta func-
tions.

We just have to prove the first point because the second one is the def-
inition of Hes−(X) . For positive integers s and k, the key point of the
following computation is:

k

(
s+ k − 1

k

)
= s

(
s + k − 1

k − 1

)
.

Thus, for all s ∈ seq(N∗), if the derivation of C[[X ]] is denoted by D,
D(Hes+)(X) is successively equal to:

−
∑

k≥1

∑

k1,··· ,kr≥0
k1+···+kr=k

r∑

p=1

kp

(
r∏

i=1

(
si + ki − 1

ki

))
Zes1+k1,··· ,sr+kr(−X)k−1

= −
r∑

p=1

∑

k≥0

∑

k1,··· ,k̂p,··· ,kr≥0
kp≥1

k1+···kr=k+1

sp


 ∏

i∈[[ 1 ; r ]]−{p}

(
si + ki − 1

ki

)

(
sp + kp − 1

kp − 1

)

×Zes1+k1,··· ,sr+kr(−X)k
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= −
r∑

p=1

∑

k≥0

∑

k1,··· ,kr≥0
k1+···+kr=k

sp


 ∏

i∈[[ 1 ; r ]]−{p}

(
si + ki − 1

ki

)

(
sp + kp
kp

)

×Zes1+k1,··· ,sp−1+kp−1,sp+1+kp,sp+1+kp+1,··· ,sr+kr(−X)k

= −
r∑

p=1

He
s1,··· ,sp−1,sp+1,sp+1,··· ,sr
+ (X) .

2. From the formal case to the analytic one.

It is well-known that 0 ≤ Zes ≤ 2 (resp. 0 ≤ Zes− ≤ 2) for all sequences
s ∈ S⋆b (resp. s ∈ S⋆e ). Thus, the formal power series Hes+(X) and Hes−(X)
are actually Taylor expansions. Consequently, the previous equalities are
valid in the analytical case, first on the disc centered in 0 and with radius
1

2
and then on C − Z, according to the identity theorem for holomorphic

functions.

These properties have immediate consequences on T e• extended to seq(N∗).
These, as well as Corollary 2 and the definition of He1+ and H•− are summed
up in the following theorem:

Theorem 4. There exists a symmetrel extension of T e• to seq(N∗), valued
in holomorphic functions over C− Z, such that:





T e• = He•+ × Ce• ×He•− ,

T e1(z) = π

tan(πz)
, for all z ∈ C− Z .

Moreover, the following properties hold for all sequences s ∈ seq(N∗):

1.
∂T es
∂z

= −
l(s)∑

i=1

siT es+ei , where ei = (0, · · · , 0, 1, 0, · · · , 0), the 1 being

in the i-th position.

2. T es(−z) = (−1)||s||T e
←
s (z) , where z ∈ C− Z .
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Proof. From the definition of He1+ and He1− , we only have to prove the
differentiation properties as well as the parity property. According to the
trifactorisation, for s ∈ seq(N∗) and if we denote ei = (0[i−1]; 1; 0[l(s)−i]), we
have successively10 :

1.
∂T es
∂z

=
∑

s1·s2·s3=s

(
∂Hes1+
∂z

Ces2Hes3− +Hes1+
∂Ces2

∂z
Hes3− +Hes1+ Ces2 ∂He

s3

−

∂z

)

= −
l(s)∑

i=1

∑

s1·s2·s3=s

l(s2)=1

siHes
1+e

≤l(s1)
i

+ Ces2+e
l(s1)<·≤l(s1)+l(s2)
i Hes

3+e
>l(s1)+l(s2)
i

− ,

= −
l(s)∑

i=1

(
si

∑

s1·s2·s3=s+ei
l(s2)=1

Hes1+ Ces2Hes3−
)

= −
l(s)∑

i=1

siT es+ei .

2. T es(−z) =
∑

s1·s2·s3=s

Hes1+ (−z)Ces2(−z)Hes3− (−z)

= (−1)||s||
∑

s1s2s3=s

He
←

s3

+ (z)Ce
←

s2(z)He
←

s1

− (z)

= (−1)||s||T e
←
s (z) .

7.5. Reduction into monotangent functions

The only property of divergent multitangent which remains to be proved
is the reduction into monotangent functions. From now on and until the end
of this section, our aim is to find and prove such a property for convergent
and divergent multitangent functions. For this, we will adapt the proof
given in the convergent case. To simplify the computation, we will apply
the same technique, that is to say a partial fraction expansion, but for

10 Let us remind that, for a sequence ααα and two non-negative integers i and j such
that i ≤ j ≤ r, the sequences ααα≤i , αααi<·≤j and ααα>i are defined by :

ααα≤i = (α1; · · · ;αi) , αααi<·≤j = (αi+1; · · · ;αj) , ααα>i = (αi+1; · · · ;αr) .
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the generating series T ig• . Then, we will see that the reduction into
monotangent functions can not have exactly the same expression as in the
convergent case.

7.5.1. Preliminary reminder

In this section, we shall use extensively generating functions of a sym-
metrel mould Me• over seq(N∗) with values in a commutative algebra A.
Such a generating function is a formal mould (see Appendix A.5), will al-
ways be denoted by Mig•, and is defined by:





Mig∅ = 1 .

Migv1,··· ,vr =
∑

s1,··· ,sr≥1

Mes1,··· ,srv1
s1−1 · · · vrsr−1 ∈ A[[v1; · · · ; vr]] .

Such a mould turns out to be automatically symmetril , meaning that
an expression close to the symmetrelity one holds:

MigvMigw =
∑

x∈shi(v;w)

Migx .

The multiset shi (v;w) is also a quasi-shuffle product as defined in [28],
as is the stuffle. If v andw are sequences over an alphabet of indeterminates,
this set is defined exactly in the same way as she(v;w), but here, the
contraction of the quasi-shuffle product is an abstract contraction defined
over (N∗)2. The evaluation of a mould Mig• on a sequence which has such
a contraction is then done by induction and given by the formula:

Migv·(x⊛y)·w =
Migv·x·w −Migv·y·w

x− y
.

For examples of relations satisfied by a symmetril mould, see §A.6 of
the appendix A.

7.5.2. A first expression of T ig•(X)

The moulds Ze•, Te•(X), He•+(X), He•−(X) and Ce•(X) are sym-
metrel. We will consider their generating functions, respectively denoted
by Zig•, T ig•(X), Hig•+(X), Hig•−(X) and Cig•(X). Let us remark that
these moulds are valued in C[[X ]] or C((X)).

We can begin with the computation of the generating functions ofHe•+(X):
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Lemma 14. The generating function of the mould He•+(X) , denoted by
Hig•+(X) with values in C[[X ]][[(Yr)r∈N∗ ]] ≃ C[[X ; Y1; Y2; · · · ]], is :

HigY1,··· ,Yr+ (X) = ZigY1−X,··· ,Yr−X .

Such a result has to be expected, because Hurwitz multizeta functions
He•+(z) are nothing else than translations of multizeta values. Consequently,
this should have a translation readable on the generating function.

Proof. Let r ∈ N∗. Let us denote DYi the derivation with respect to Yi
and S(F ) the constant term of F ∈ A[[Y1; · · · ; Yr]] .
For all (k1; · · · ; kr) ∈ (N∗)r , we have:

1

k1! · · · kr!
S
(
Dk1
Y1

◦ · · · ◦Dkr
Yr
(ZigY1−X,··· ,Yr−X)

)

= S

( ∑

p1,··· ,pr≥0

Zep1+k1+1,··· ,pr+kr+1

(
r∏

i=1

(
pi + ki
ki

)
(Yi −X)pi

))

=
∑

p1,··· ,pr≥0

Zep1+k1+1,··· ,pr+kr+1

(
p1 + k1
k1

)
· · ·
(
pr + kr
kr

)
(−X)p1+···+pr

=
∑

p≥0

∑

p1+···+pr=p

Zep1+k1+1,··· ,pr+kr+1

(
p1 + k1
k1

)
· · ·
(
pr + kr
kr

)
(−X)p

= Hek1+1,··· ,kr+1
+ (X) .

Thus, the formal Taylor formula for formal power series in several inde-

terminates gives: ZigY1−X,··· ,Yr−X =
∑

k1,··· ,kr≥0

Hek1+1,··· ,kr+1
+ (X)Y k1

1 · · ·Y kr
r

= HigY1,··· ,Yr+ (X) .

Moreover, according to the parity property, the generating function
ZigY1,··· ,Yr− of Ze•− is defined by:

ZigY1,··· ,Yr− = (−1)rZig−Yr,··· ,−Y1 .

The same computation as in the previous proof gives:
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Lemma 15. The generating function of the mould He•−(X) , denoted by
Hig•−(X) with values in C[[X ]][[(Yr)r∈N∗ ]] ≃ C[[X ; Y1; Y2; · · · ]], is:

HigY1,··· ,Yr− (X) = ZigY1−X,··· ,Yr−X− .

These two lemmas, together with the trifactorisation, imply immediately
the first expression of T ig•(X) .

Property 13. Let us denote by Zig•(X) and Zig•−(X) the moulds valued
in C[[X ]][[(Yr)r∈N∗ ]] ≃ C[[X ; Y1; Y2; · · · ]] respectively defined by:

ZigY1,··· ,Yr(X) = ZigY1−X,··· ,Yr−X .

ZigY1,··· ,Yr− (X) = ZigY1−X,··· ,Yr−X− .

Then, in C((X))[[(Yr)r∈N∗ ]], the generating series of Te•(X) is given by:

T ig•(X) = Zig•(X)× Cig•(X)× Zig•−(X).

7.5.3. Second expression of T ig• and flexion markers

The second expression of T ig•(X) will use some notations and notions
introduced by Jean Ecalle for his study of flexion structures (see. [19], [20],
[21] or [22]). Let us introduce these before stating the result.

Flexion markers. The four flexion markers ⌊ , ⌋ , ⌈ and ⌉ act on factorisation
of (bi)sequences. So, let us consider two alphabets Ω1 , Ω2 and then their
product Ω = Ω1 × Ω2 ; let us also consider a sequence w ∈ seq(Ω) which
can be factorized:

w = w1 · · ·wr ∈ seq(Ω) .

The flexion marker ⌊ acts on wi by subtracting the right inferior element
of wi−1 to each inferior element of wi while the flexion marker ⌈ acts on wi

by adding the sum of superior elements of wi−1 to the left superior element
of wi. In the same way, the flexion marker ⌋ acts on wi by subtracting the
left inferior element of wi+1 to each inferior element of wi while the flexion
marker ⌉ acts on wi by adding the sum of superior elements of wi+1 to the
right superior element of wi.

By the use of these flexion markers, elements of Ω1 will be added to each
other while elements of Ω2 will be subtracted each other.
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To clarify the definitions and the actions of the different markers, here

is an example. If w = · · ·a · b · · · = · · ·



u6, · · · ,u9

v6 , · · · ,v9






u10, · · · ,u15

v10 , · · · ,v15


 · · · ,

then we have:

a⌋ =




u6 , · · · , u9

v6:10 , · · · , v9:10


 , a⌉ =




u6 , · · · , u8, u9···15

v6 , · · · , v8, v9


 ,

⌊b =




u11 , · · · , u15

v11:9 , · · · , v15:9


 , ⌈b =




u6···10 , u11 , · · · , u15

v10 , v11 , · · · , v15


 ,

where ni···j = ni + · · ·+ nj and ni:j = ni − nj in the variables n.

Colors. If we do not care, it is easy not to see flexion structures. But, when
there are some addition or subtraction of the variables, flexion structures
are possibly present. The use of colors is a good way to avoid passing next
to them. So, we will stiffen a bit more the situation by using colors in a
temporary way. This requires to redefine our moulds as bimoulds.

First, there is the bimould of colored multizeta values defined for se-
quences in seq (Q/Z× N∗) by:

Ze



ε1, · · · , εr

s1, · · · , sr




=
∑

1≤nr<···<n1

e1
n1 · · · ernr

n1
s1 · · ·nrsr

where ek = e−2iπεk , for k ∈ [[ 1 ; n ]].

Its generating series Zig• is then a symmetril mould defined for se-
quences in seq

(
Q/Z × (Vi)i∈N∗

)
. This also gives us the definition of the

bimould Zig•−:

Zig



ε1,· · · ,εr

V1,· · · ,Vr




− = (−1)rZig



−εr , · · · ,−ε1

−Vr , · · · ,−V1




.
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In a similar way, we can define formal or analytical colored Hurwitz mul-
tizeta functions as well as formal or analytical colored multitangent func-
tions. These are bimoulds valued in the algebra of holomorphic functions

over C − Z or in C[[X ]] . If

(
ε1, · · · , εr

s1, · · · , sr

)
∈ seq (Q/Z× N∗) − {∅}, with the

notation ek = e−2iπεk , for k ∈ [[ 1 ; n ]], these are respectively defined by:

He



ε1, · · · , εr

s1, · · · , sr




+ (z) =
∑

0<nr<···<n1<+∞

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
,

He



ε1, · · · , εr

s1, · · · , sr




+ (X) =
∑

k,k1,··· ,kr≥0
k1+···+kr=k

[
r∏

i=1

(
si + ki − 1

ki

)]
Ze




ε1 , · · · , εr

s1 + k1, · · · ,sr + kr




(−X)k ,

T e



ε1, · · · , εr

s1, · · · , sr




(z) =
∑

−∞<nr<···<n1<+∞

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
,

T e



ε1, · · · , εr

s1, · · · , sr




(X) =
∑



ε1

s
1


·



ε2

s
2


·



ε3

s
3


=



ε

s




He



ε1

s1




+ (X)Ce



ε2

s
2




(X)He



ε3

s3




− (X) .

Obviously, these definitions contain some divergent cases for Hurwitz
multizeta functions as well as for multitangent functions: in the first case, it
is when (ε1; s1) = (0; 1) , while it is when (ε1; s1) = (0; 1) or (εr; sr) = (0; 1)
in the second case. In these exceptional cases, a regularization process is
needed and is based, as we have done previously without colors, on the
regularization of the generating series Zig• and, so, on the following well-
known lemma due to Jean Ecalle (see [20] p. 5 and [22] p. 6) :
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Lemma 16. Let µn1,··· ,nr =
1

r1! · · · rn!
where the non-increasing sequence

n = (n1; · · · ;nr) ∈ seq(N∗) contains r1 times its highest value, r2 times its
second highest value, etc.
For (up)p∈[[ 1 ; r ]] ∈ Cr and k ∈ [[ 1 ; r ]] , let ek = e−2iukπ .

Finally, for all k ∈ N∗, we consider the moulds doZig•k and coZig•k defined

for all

(
u1, · · · ,ur

v1 , · · · ,vr

)
∈ seq

(
Q/Z× (Vi)i∈N∗

)
by:

doZig



u1, · · · ,ur

V1, · · · ,Vr




k =





∑

1≤nr<···<n1<k

e1
n1 · · · ernr

(n1 − V1) · · · (nr − Vr)
, if r 6= 0 .

1 , if r = 0 .

coZig



u1, · · · ,ur

V1, · · · ,Vr




k =





(−1)r
∑

1≤nr≤···≤n1<k

µn1,··· ,nr

n1 · · ·nr
, if u 6= 0 and r 6= 0 .

0 , if u = 0 and r 6= 0 .

1 , if r = 0 .

Then, the mould Zig admits an elementary mould “factorisation”:

Zig• = lim
n−→+∞

(coZig•n × doZig•n) .

Let us remark that in this “factorisation”, the mould doZig•k gives us the
dominant terms of Zig•, while the mould coZig•k plays the role of correcting
the series to restore the convergence of the divergent series

∑

1≤nr<···<n1<k

e1
n1 · · · ernr

(n1 − v1) · · · (nr − vr)
.

Some new moulds. Let δ be the indicator function of {0}. Let us also
consider the formal bimoulds Qig• and δ• defined on seq

(
Q/Z × (Vi)i∈N∗

)
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by: 



Qig∅ = 0 .

Qig



u1

V1




= −Te



u1

1




(V1) .

Qig



u1, · · · , ur

V1, · · · , Vr




= 0 , if r ≥ 2 .





δ∅ = 0 .

δ



u1,· · · ,ur

V1,· · · ,Vr




=





(iπ)r

r!
δ(u1) · · · δ(ur) , if r is even.

0 , if r is odd.

Second expression of T ig•. We will apply the previous lemma, which gives
an expression of Zig• in the first expression of T ig•. This will allow us to
make a partial fraction expansion in the indeterminate X . We then obtain:

Theorem 5. Let Qig• be the bimould valued in H(C− Z) and defined for
all z ∈ C− Z by:

Qigy1,··· ,yr(z) =





−T e1(y1 − z) , if r = 1 .

0 , otherwise.

Then, for all z ∈ C− Z, we have in C[[X ]][[(Vr)r∈N∗ ]]:

T ig•(z) = δ• + Zig•⌋ ×Qig⌈•⌉(z)×Zig⌊•− .

Proof. Continuing to use the same principle for our notations, we set:

doZig



u1, · · · , ur

V1, · · · , Vr




N (X) = doZig




u1 , · · · , ur

V1 − Y , · · · ,Vr − Y




N .
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coZig



u1, · · · , ur

V1, · · · , Vr




N (X) = coZig




u1 , · · · , ur

V1 − Y , · · · ,Vr − Y




N .

doZig



u1, · · · , ur

V1, · · · , Vr




−,N (X) = (−1)rdoZig



−ur, · · · ,−u1

−Vr, · · · ,−V1




−,N (X) .

coZig



u1, · · · , ur

V1, · · · , Vr




−,N (X) = (−1)rcoZig



−ur , · · · ,−u1

−Vr , · · · ,−V1




−,N (X) .

Let



u1,· · · ,ur

V1,· · · ,Vr


 ∈ seq

(
Q/Z× (Vi)i∈N∗

)
. Applying Lemmas 13 and 16,

T ig•(X) = lim
N−→+∞

(
coZig•N × T ig•N(X)× coZig•−,N

)
,

where T ig•N(X) = doZig•N(X)× Cig•(X)× doZig•−,N(X) .

It is not difficult to obtain another form of the previous trifactorisation
by proceeding in the same way as in the proof of the trifactorisation of T e•:

T ig



u1, · · · , ur

V1, · · · , Vr




N =
∑

−N<nr<···<n1<N

e1
n1 · · · ernr

(n1 − V1 +X) · · · (nr − Vr +X)
.

(24)

Now, we can write down the partial fraction expansion in T ig•N :

T ig



u1, · · · , ur

V1, · · · , Vr




N =

r∑

k=1

∑

−N<nr<···<n1<N



∏

j∈[[ 1 ; r ]]
j 6=k

ej
nj

nj − nk + Vk − Vj


×

ek
nk

nk − Vk +X
.

Plugging this expansion in (24), after some computations, we obtain in
C[[X ]][[(Vr)r∈N∗]]:

T ig•(X) = δ• + Zig•⌋ ×Qig⌈•⌉(X)×Zig⌊•− .
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It is clear thatQig•(z) is also well-defined in a neighbourhood of 0 in seq(C).
Moreover, the generating functions Zig• and Zig•− are actually Taylor ex-
pansions defined in seq

(
D(0; 1)

)
. Here, the key point is that |Zes| ≤ 4rr!

for all sequences s ∈ seq(N∗) of length r. Such an upper bound is far from
being precise, but is sufficient for our purpose. A proof of it comes from the
shift to the right of the ones beginning an evaluation sequence and:

♯she(ααα;βββ) =

min(a;b)∑

k=0

2k
(

a

a− k

)(
b

b− k

)
.

This gives a neighbourhood of 0 in seq(C) where Zig•⌋×Qig⌈•⌉(X)×Zig⌊•−
defines an analytic function. The identity theorem for holomorphic func-
tions concludes the proof of this theorem.

To conclude this section, let us explain why the corrective term δ• is
mandatory.

Let us imagine this is not the case, that is to say that we have two
functions ϕ and ψ such that the mould T e• is extended to the divergent
case by T e• = He•+,ϕ×Ce•×He•−,ψ , whereHe•+,ϕ andHe•−,ψ are respectively
the extension to the divergent case of the moulds He•+ and He•− such that
He1+ = ϕ and He1− = ψ .

Then, we would have the following identity because of the fundamental
equality proved in the previous theorem, but without the corrective term:

Hig•+,ϕ × Cig• ×Hig•−,ψ = T ig• = Zig•⌋ ×Qig⌈•⌉(z)× Zig⌊•− .

In particular, we would have equality of the constant terms of these
generating functions, that is, we would have 1 = 0 · · · Consequently, we
cannot find a choice of the functions ϕ and ψ that extend the Hurwitz
multizeta functions such that there is no corrective term in the reduction
into monotangent of divergent multitangent functions.

7.5.4. Reduction into monotangent functions for divergent multitangent func-
tions

Theorem 5 admits the following corollary which comes from a direct
formal power series expansion of T ig•(z) . This corresponds exactly to the
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fourth point mentionned at the beginning of this section. Let us remark
that, from now on, we only consider moulds and not bimoulds.

Let us recall that we have introduced the following notations (see sec-
tions 3.1 and 7.5.3):

iB
s

k
=

(
i−1∏

l=1

(−1)kl

)(
r∏

l=i+1

(−1)sl

)


r∏

l=1
l 6=i

(
sl + kl − 1

sl − 1

)

 .

Zs

i,k =
∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

iBs

k
Zesr+kr ,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1 .

δs =





(iπ)r

r!
, if s = 1[r] et if r is even.

0 , otherwise.

Then, we have:

Theorem 6. (Reduction into monotangent functions, version 2)
For all sequences s ∈ seq(N∗), we have:

T es(z) = δs +
r∑

i=1

si∑

k=1

Zs

i,si−k
T ek(z) .

Moreover, if s ∈ S⋆b,e, the summation of k begins at 2 .

This result is computable. One can give complete tables for divergent
multitangent functions up to a fixed weight, as in the convergent case (see
Table 1 for the convergent case and Table 7 for the divergent case) .

For example, one can see that T e2,1 and T e1,2 are identically vanishing.
As already said in the introduction, this remarkable fact shows that the
relation of symmetrelity T e2T e1 = T e2,1 + T e1,2 + T e3 = T e3(z) allows us
to find in a different way (more complicated, but more general) the simplest
relations between Eisenstein series.

8. Some explicit computations of multitangent functions

Before presenting some explicit computations of multitangent functions,
let us recall a few notations. If ααα is any sequence, then ααα[r] denotes the
sequence ααα · · · · ·ααα︸ ︷︷ ︸

r times

, where the sequence ααα is repeated k times. In particular,

n[k] is the sequence (n; · · · ;n) where n is repeated k times.
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8.1. Computation of T e1[r](z) , for r ∈ N

For all r ∈ N, T e1[r](z) is the constant term of T igY1,··· ,Yr , so

T e1[r](X) =





(iπ)r

r!
, if r ∈ 2Z

0 , if r 6∈ 2Z





+

(
r−1∑

k=0

Zig0[k]Zig0[r−1−k]

−

)
T e1(X) .

We will evaluate
n∑

k=0

Zig0[k]Zig0[n−k]

− for n ∈ N∗, by considering the prod-

uct Z+Z−, where:




Z+ =
∑

n≥0

Zig0[n]

Xn =
∑

n≥0

Ze1[n]

Xn .

Z− =
∑

n≥0

Zig0[n]

− Xn =
∑

n≥0

Ze1[n]

− Xn .

The mould Ze• and Ze•− being symmetrel , we automatically obtain the
following formal differential equations (see Property 14) :





DZ+ = Z+ ×
(∑

n≥0

(−1)nZen+1Xn

)
= Z+He

1
+ .

DZ− = Z− ×
(∑

n≥0

(−1)nZen+1
− Xn

)
= Z−He1− .

So: D(Z+Z−) = Z+He
1
+Z− + Z+He

1
−Z− = Z+Z−

(
He1+ +He1−

)

= −2Z+Z−
(∑

n≥0

Ze2n+2X2n+1

)

= −2Z+Z−
(∑

n≥1

Ze2nX2n−1

)
.

Letting Exp be the exponential map, we obtain:

Z+Z− = Exp

(
−
∑

n≥1

Ze2n
n

X2n

)
.
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On the other hand, in C((X)), we have:

He1+(X) +He1−(X) = Te1(X)−X−1 = π
cos(πX)

sin(πX)
− 1

X
.

Indeed, this relation is valid in C[[X ]], so:

He1+(X) +He1−(X) = D

(
Log

(
sin(πX)

πX

))
.

So that:

Z+Z− = Exp

(
−
∑

n≥1

Ze2n
n

X2n

)
=

sin(πX)

πX
=
∑

n≥0

(−1)n
(πX)2n

(2n+ 1)!
.

Finally, we obtain:

Te1
[r]
(X) =





(iπ)r

r!
, if r ∈ 2Z

0 , if r 6∈ 2Z





+





0 , if r ∈ 2Z

(iπ)r−1

r!
, if r 6∈ 2Z





× Te1(X) ,

and the analytic equality follows for all z ∈ C− Z:

T e1[r](z) =





(−1)p
π2p

(2p)!
, if r = 2p .

(−1)p
π2p

(2p+ 1)!
T e1(z) , if r = 2p+ 1 .

8.2. Computation of T en[k]
(z), for n ∈ N∗ and k ∈ N

We now prove Property 2, p. 13, giving an explicit evaluation of all
multitangent functions of the form T en[k]

(z), for n ∈ N∗ and k ∈ N, in
terms of monotangent functions and multizeta values.

We will use an elementary theory of formal power series in one indeter-
minate. The central point is the following lemma. This gives us a formal
differential equation automatically satisfied by the generating functions of
the family of multitangent functions under consideration. Then, we only
have to find out a formal power series expansion of solutions of this equa-
tion.
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8.2.1. A property linking symmetrelity and formal differential equation

Let us begin by proving the following general property concerning sym-
metrel moulds:

Property 14. Let us consider a commutative algebra A, a semigroup (Ω;+)
and a symmetrel mould Se• ∈ M•

A(Ω) .
For all ω ∈ Ω , we set:

Fω =

+∞∑

p=0

Seω
[p]

Xp , Gω =

+∞∑

p=0

(−1)pSe(p+1)ωXp.

For a given ω ∈ Ω, the formal power series Fω satisfies the differential
equation:

DY = Y Gω .

Let us point out that this property is well-known in combinatorics as
the Newton relations for symmetric functions. Here, the term Fω represents
the elementary symmetric functions while the term Gω is then the power
sums.

The proof we will give here of this property is based on the shift to the
right of the ones beginning an evaluation sequence ω ∈ Ω of the mould Se• ;
so the proof is exactly based on the notion of symmetrelity. This algorithm
is recursively presented by the following formula:

Seω
[p]

Seω = (p+ 1)Seω
[p+1]

+

p−1∑

k=0

Seω
[k],2ω,ω[p−k−1]

.

Proof. Let us fix ω ∈ Ω and introduce the temporary notation up,l for
(p; l) ∈ N× N∗:

up,l = (−1)l
p∑

k=0

Seω
[k],lω,ω[p−k]

.

Then, using the symmetrelity property, we have for (p; l) ∈ (N∗)2 :

(−1)lSeω
[p]
Selω = (−1)l

p∑

k=0

Seω
[k],lω,ω[p−k] − (−1)l+1

p−1∑

k=0

Seω
[k],(l+1)ω,ω[p−1−k]

= up,l − up−1,l+1 .
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This implies successively, for p ∈ N∗:
p−1∑

l=0

(−1)lSeω
[p−l]

Se(l+1)ω = −
p∑

l=1

(−1)lSeω
[p−(l−1)]

Selω

= −
p∑

l=1

(
up−(l−1),l − up−l,l+1

)

= u0,p+1 − up,1

= (−1)p+1Se(p+1)ω + (p+ 1)Seω
[p+1]

.

Then: (p+ 1)Seω
[p+1]

=

p∑

l=0

(−1)lSeω
[p−1]

Se(l+1)ω , for all p ∈ N∗ .

Since the previous equality is also true for p = 0, we can state the fol-
lowing equality between formal power series:

DFω = FωGω .

Using the fact that two formal power series with the same formal deriva-
tive differ only by their constant term, it is not difficult to see that, if A is a
ring and if ϕ ∈ A[[X ]], then the formal power series satisfying DY = Y Dϕ
are defined by:

Y (X) = CExp(ϕ(X)− ϕ(0)), C ∈ A .

Here, Exp refers to the exponential. The resolution of such a formal
differential equation boils down to a problem of expressing an indefinite in-
tegral. The constant C is then determined by the constant term in Y .

Recall that Z+ =
∑

r≥0

Ze1[r]Xr satisfies the formal following differential

equation, as we have seen in §8.1 during the evaluation of Te1,··· ,1(X):

DZ+ = Z+

(∑

p≥0

(−1)pZep+1Xp

)
= Z+He

1
+ .
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8.2.2. Application to the mould Te•(X)

Recall that the mould Te•(X) has been extended to seq(N∗) in the
previous section, in order to preserve the symmetrelity property. Hence,

the previous property applies: if we set, for n ∈ N∗, Tn =
+∞∑

p=0

Ten
[p]

(X)Y p

and Un =

+∞∑

p=0

(−1)pTen(p+1)(X)Y p, we then have, for all positive integer n,

in C((X))[[Y ]]:
DTn = TnUn .

We just need to compute a formal indefinite integral of Un in order to
compute Ten

[p]
(X) for all p ∈ N. Let us consider Vn ∈ C((X))[[Y ]] defined

by Vn(X ; Y ) = Un(X ; Y n) . A permutation of formal summation symbols
(which is a priori a non-authorized operation) , followed by a partial fraction
expansion, suggests we have for all positive integer n:

nY n−1Vn(X ; Y ) = −
n−1∑

k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
)
.

Recall that, here, S denotes the linear map that associates with each
formal power series its constant term, while D(Y ) denotes the formal deriva-
tive relative to the indeterminate Y . Indeed, the Taylor formula allows to
prove this relation in the ring C((X))[[Y ]] . For l ∈ N , if we denote the right
hand side of the previous equality by Wn, we have successively:

1

l!
S
(
Dl

(Y )Wn

)
= S

(
−

n−1∑

k=0

e(2k+1)(l+1) iπ
n Tel+1

(
X − e(2k+1) iπ

n Y
))

= −
(
n−1∑

k=0

e(2k+1)(l+1) iπ
n

)
Tel+1(X)

=





0 , si l + 1 6≡ 0[n] .

n(−1)q+1Teqn(X) , si l + 1 = qn .

Hence: Wn =

+∞∑

l=0

1

l!
S
(
Dl

(Y )Wn

)
Y l =

+∞∑

q=1

n(−1)q+1Teqn(X)Y qn−1
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= nY n−1
+∞∑

q=0

(−1)qTen(q+1)(X)Y qn

= nY n−1Vn(X ; Y ) .

In the ring C((X))[[Y ]], we therefore have:

nY n−1Vn(X ; Y ) = −
n−1∑

k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
)
.

The ring morphism ϕn : C((X))[[Y ]] −→ C((X))[[Y 1/n]] defined by

ϕn(Y ) = Y 1/n

is a continuous one for the I-adic topology; we hence observe that if P is
a polynomial with coefficients in C((X)), then ϕ(P (X ; Y )) = P (X ; Y 1/n) .
This can be extended to formal power series of C((X))[[Y ]], using the conti-
nuity of ϕn and the density of polynomials.

Transposed in C((X))[[Y 1/n]] using the morphisms ϕn, the relation ex-
pressing Vn(X ; Y ) becomes in C((X))[[Y 1/n]] :

Un(X ; Y ) = −1

n

n−1∑

k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
1
n

)
Y

1
n
−1 .

A priori, this last equality is in C((X))[[Y 1/n]], while by definition we have
Un ∈ C((X))[[Y ]] . We can then proceed component by component in the
ring C((X))[[Y ]] .

To express Tn by using the general formula of solving a first order formal
differential equation, it is sufficient to determine the exponential of the
formal indefinite integral (in Y ), without constant term, of ωTe1(X + ωY )
in C((X))[[Y ]] .

To this purpose, let us recall that we have proved in C((X))[[Y ]] the

relation Te1(X + Y ) =
π

tan(πX + πY )
. Therefore, the formal indefinite

integral in Y of ωTe1(X + ωY ), for ω ∈ C, without constant term, is given

by Log

(
sin(π(X + ωY ))

sin(πX)

)
. Consequently, in C((X))[[Y 1/n]], the formal in-

definite primitive in Y without constant term of
ω

n
Te1
(
X + ωY

1
n

)
Y

1
n
−1 is
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Log

(
sin(π(X + ωY

1
n ))

sin(πX)

)
. Thus, by solving the formal differential equa-

tion in C((X))[[Y 1/n]], we deduce that for all positive integer n:

Tn =

+∞∑

p=0

Ten
[p]

(X)Y p =

n−1∏

k=0

sin
(
π
(
X − e(2k+1) iπ

n Y
1
n

))

sinn(πX)
.

Let us insist on the fact that, although seeming to be a priori a relation
in C((X))[[Y 1/n]], this equality holds in fact in C((X))[[Y ]], by definition of
Tn .

8.2.3. A new formal power series expansion of Tn
In order to compute Ten

[p]
(X) for (n; p) ∈ (N∗)2, we need a formal power

series expansion of Tn expressed in another way than its definition. To get
this new expansion, it is convenient to expand the product of many sinus
terms.

It is easily seen, by induction on n, that in C[[X1; · · · ;Xn]]:

n∏

k=1

sin(Xk) =
(−1)n−1

2n

∑

(ε1;··· ;εn)∈{+1;−1}n

(−1)♯{k∈[[ 1 ;n ]];εk=−1} sin(n−1)

(
n∑

k=1

εkXk

)
.

Let us consider the moulds sg• , e• and s• , with values in C and
defined over the alphabet Ω = {1;−1} for all sequences ε ∈ seq(Ω) by:

sgε =

n∏

k=1

εk = (−1)♯{i∈[[ 1 ;n ]];εi=−1}, sε =

n∑

k=1

εk and eε =

n∑

k=1

εke
(2k−1) iπ

n .

Let E be the floor function and define all for (k;n) ∈ N×N∗ the functions
tk,n by:

∀x ∈ R , tk,n(x) =





cos(n−1)(x) , if k is odd.

sin(n−1)(x) , if k is even.

It follows that for all n ∈ N∗, we have successively:
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Tn =
(−1)n−1

(2 sin(πX))n

∑

ε=(ε1;··· ;εn)∈Ωn

sgε sin(n−1)
(
sεπX + eεπY

1
n

)

=
(−1)n−1

(2 sin(πX))n

∑

ε=(ε;··· ;εn)∈Ωn

(
sgε

+∞∑

k=0

(−1)E(k+1
2

)(eεπ)k

k!
tk,n(s

επX)Y
k
n

)

=

+∞∑

k=0


(−1)n−1+E(k+1

2
)πk

k!(2 sin(πX))n

∑

ε=(ε1;··· ;εn)∈Ωn

sgε(eε)ktk,n(s
επX)Y

k
n


 .

Note that we have used in the second equality

sin(n−1)(X + Y ) =

+∞∑

k=0

(−1)E(k+1
2

)

k!
tk,n(X)Y k in C[[X ; Y ]] ,

and that in the last sum, Ωn is a finite set.

As already indicated, Tn ∈ C((X))[[Y ]] by definition of Tn. This implies

that the coefficients of Y
k
n if n ∤ k vanish in the previous equality. Hence:

Tn =
+∞∑

k=0


(−1)n−1+E(kn+1

2
)πkn

(kn)!(2 sin(πX))n

∑

ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(s
επX)Y k


 .

It follows that we have proved, for all (n; k) ∈ N∗×N, the formal equality
announced in Property 2:

Ten
[k]

=
(−1)n−1+E(kn+1

2
)πkn

(kn)!(2 sin(πX))n

∑

ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(s
επX) .

To conclude this computation, we only have to justify that the analytic
equality follows from the formal one. This is obvious because each (conver-
gent or divergent) multitangent function is a Laurent series at 0 which is
exactly given by the expression of the associated formal multitangent func-
tion. In the componentwise equality which has just been proved, we can
thus replace the straight capital letters by cursive capital letters to conclude
the proof of Property 2.
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8.2.4. A few examples

For n = 1, this result gives, for k ∈ N∗ and z ∈ C− Z:

T e1[k](z) =





(−1)pπ2p

(2p)!
, if k = 2p .

(−1)pπ2p

(2p+ 1)!
T e1(z) , if k = 2p+ 1 .

Also, for n = 2, this result gives, for k ∈ N∗ and z ∈ C− Z:

T e2[k](z) = 22k−1π2k−2

(2k)!
T e2(z).

Table 8 gives some others explicit results from this property.

8.3. About odd, even or null multitangent functions

Surprisingly, there exists convergent multitangent functions which are
null (see table 1). The first multitangent with this property is T e2,1,2. It is
easy to see: the reduction into monotangent functions imposes on T e2,1,2 to
be C-linearly dependent of T e2, hence to be an even function ; nevertheless,
the parity property tells us T e2,1,2 is also an odd function. Necessary, the
multitangent function T e2,1,2 is the null function.

In the same manner, we can state the following lemma:

Lemma 17. Let s ∈ S⋆b,e∩seq
(
{1; 2}

)
be a symmetric sequence (i.e.

←
s = s),

of odd weight and of length greater than 1.
Then, T es is the null function.

When we look at a table of convergent multitangent functions up to
weight 18, it seems that the converse is also true:

Conjecture 12. (Characterisation of null multitangent functions) The null
convergent multitangent functions are exactly the multitangent functions
T es with symmetric sequence s ∈ S⋆b,e ∩ seq

(
{1; 2}

)
, of odd weight and of

length greater than 1 .

We mentioned that this conjecture is true for length 3 (see [4]).

Let us remark that even (resp. odd) components of an odd (resp. even)
multitangent function are naturaly null. The following question is then
an interesting one: “ If s ∈ S⋆b,e (or seq(N∗)) , is there any component
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T ek, k ∈ [[ 2 ; max(s1; · · · ; sr) ]] which does not appear in the reduction into
monotangent functions of T es ?”

It seems that the answer might be no, except when the multitangent
function not having this component is an odd or an even function.

Another question is also: “ If T es is an odd or even function, do we have
←
s = s?” The answer seems to be yes. The converse is already acquired,
according to the parity property.

This can be summed up in the following conjecture (which obviously
implies the previous one) :

Conjecture 13. (Characterisation of odd or even multitangent functions)
Let s ∈ S⋆b,e.
1. If the component T ek, k ∈ [[ 2 ; max(s1; · · · ; sr) ]], does not appear in the
reduction into monotangent functions of T es , then T es will be of opposite
parity of k (and thus may be the null function) .
2. The multitangent function T es is an odd or even function if and only if
←
s = s .

8.4. Explicit computation of some multitangent functions

The reduction into monotangent functions allows us to do some explicit
computations of multitangent functions. We will give a few examples in the
convergent case.

In order to apply this reduction simply, here are a few elementary re-
marks:

1. Only the indexes i satisfying si ≥ 2 give a contribution to the expres-
sion of the reduction into monotangent functions.

2. If s ∈ S⋆b,e ∩ seq({1; 2; 3}) is a symmetric sequence (ie
←
s = s) of even

weight, only the monotangent function T e2 has to be considered; this
means that only the indexes k = 2 give a contribution to the reduction.

3. If s ∈ S⋆b,e ∩ seq({1; 2; 3}) is a symmetric sequence of odd weight, only
the monotangent function T e3 has to be considered; this means that
only the indexes k = 3 give a contribution to the reduction.

Applying these remarks, a simple computation gives us the results of
the table 9.
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9. Conclusion

In this article, we have thoroughly investigated the algebra MTGFCV
of multitangent functions, spanned as a Q-vector space by the functions:

T es : C− Z −→ C

z 7−→
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
,

for sequences in S⋆b,e =
{
s ∈ seq(N∗); s1 ≥ 2 and sl(s) ≥ 2

}
.

The first properties we have proved are elementary ones and concern the
symmetrelity of the mould T e•, the differentiation property and the parity
property. Another seemingly easy property is in fact a deep one, namely
the reduction into monotangent functions:

Theorem. (Reduction into monotangent functions)
For all sequences s = (s1; · · · ; sr) ∈ seq(N∗), there exists an explicit family
(z

s

k)k∈[[ 0 ;M ]] ∈ MZV M+1
CV , with M = max

i∈[[ 1 ; r ]]
si, such that:

∀z ∈ C− Z , T es(z) = z
s

0 +

M∑

k=1

z
s

kT ek(z) .

Moreover, if s ∈ S⋆b,e, then zs0 = z
s

1 = 0 .

We have then immediately derived that for all p ≥ 2, we have:

MTGFCV,p ⊆
p⊕

k=2

MZVCV,p−k · T ek .

Then, we have explained why the reduction into monotangent functions
is such an important operation. The reason is that this process has in a
certain sense a converse, namely the projection onto multitangent functions.
According to Conjectures 2 , 3 and 4 and Properties 4 and 5, we have proved
the following:

Theorem. (Projection onto multitangent functions)
The following hypothetically statement are equivalent:
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1. For all p ≥ 2 , MTGFCV,p =

p⊕

k=2

MZVCV,p−k · T ek .

2. MTGFCV is a MZVCV -module.

3. For all sequence σσσ ∈ S⋆e , ZeσσσT e2 ∈ MTGFCV,||σσσ||+2 .

By a linear algebra argument, we have explained that the largest p is,
the stronger are the reasons to believe in the previous assertions. We have
verified them up to weight 18 .

The third important fact, which was used during the regularization pro-
cess of divergent multitangent functions, is the trifactorization of the mul-
titangent functions: all multitangents can be expressed as a finite product
of Hurwitz multizeta functions in such a way to preserve the exponentially
flat character of multitangent functions.

Finally, the links between the algebra of multizeta values and the algebra
of multitangent functions are summed up by these three properties and the
following diagram:

MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization // HMZF±,CV

As an example of the “duality” multizeta values/multitangent functions,
we have explained that if the hypothetical MZVCV -module structure holds,
then we have a conjecture concerning the dimension of MTGFCV,p which is
actually equivalent to Zagier’s conjecture on multizeta values. This justifies
the table 5 of conjectural dimensions.

If these dimensions looks reasonable, this is because of the existence of
many Q-linear relations between multitangent functions. For instance,

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0

is an interesting relation because it implies a relation between multizeta
values, discussed at the end of Section 5.
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p 0 1 2 3 4 5 6 7 8 9 10 11 12

dim MZVCV,p 1 0 1 1 1 2 2 3 4 5 7 9 12

dim MTGFCV,p+2 1 1 2 3 4 6 8 11 15 20 27 36 48

Figure 5: The first hypothetical dimensions of multitangent vector space
of weight p+ 2.

Now, the remaining question is to find a new method to prove that there
is no non-trivialQ-linear relations between the multitangent functions which
are supposed to span MTGFCV,p. To illustrate this, if we were able to prove
the absence of non-trivial Q-linear relations between T e5 , T e3,2 , T e2,3 and
T e2, this would imply a well-known fact: ζ(3) = Ze3 6∈ Q . Such a partial
result would already be an important breakthrough, because such a method
would certainly be generalisable to other weights, while Apery’s method is
not. Nevertheless, such a method would probably not give an upper bound
of the irrationality measure, while Apery’s method can.

Probably, the new method would come from the study of the Hurwitz
multizeta functions, and more precisely from the study of algebraic relations
in the algebra HMZV±,CV .

A. Introduction to mould notations and calculus

For all this annex, references can be found in many text of Jean Ecalle.
See for instance [18] or [20] ; for other presentations of mould calculus, see
[15] or [37].

A.1. Notion of moulds

If Ω is a set, seq(Ω) will denote in the sequel the set of (finite) sequence
of positive integers:

seq(N∗) = {∅} ∪
⋃

r∈N∗

{(s1; · · · ; sr) ∈ (N∗)r} .
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A mould is a function defined over a free monoid seq(Ω) or sometimes
over a subset of seq(Ω), with values in an algebra A. Concretely, this means
that “a mould is a function with a variable number of variables”.

Sometimes, it may be usefull to see a mould as a collection of functions
(f0, f1, f2, · · · ), where, for all non negative integer i, fi is a function defined
on Ωi (and consequently, f0 is a constant function) .

Thus, moulds depend on sequences w = (w1; · · · ;wr) of any length r.
The empty sequence is denoted by ∅. The variables wi are elements of Ω. We
will often identify sequences of seq(Ω) and non-commutative polynomials
over the alphabet Ω.

In a general way, we will use the mould notations:

1. Sequences will always be written in bold and underlined, with an
upper indexation if necessary. We call length of w and denote l(w)
the number of elements of w. Without more precisions, we will use
the letter r to indicate the length of any sequence. We also define the
weight of w, when Ω has a semi-group structure, by:

||w|| = w1 + · · ·+ wr .

2. For a given mould, we will prefer the notation Mωωω, which indicate
the evaluation of the mould M• on the sequence ωωω of seq(Ω), to the
functionnal notation which would have been M(ωωω) .

3. We shall use the notation M•
A(Ω) to refer to the set of all the moulds

constructed over the alphabet Ω with values in the algebra A .

A.2. Mould operations

Moulds can be, among other operations, added, multiplied by a scalar
as well as multiplied, composed, and so on. In this article, among the
operations we will use, only the multiplication needs to be defined: if
(A•;B•) ∈ (M•

A(Ω))
2, then, the mould multiplication M• = A• × B• is

defined for all sequences ωωω ∈ seq(Ω) by:

Mωωω =
∑

(ωωω1;ωωω2)∈seq(Ω)2

ωωω1·ωωω2=ωωω

Aωωω
1

Bωωω2

=

l(ωωω)∑

i=0

Aωωω
≤i

Bωωω>i

.

A few explanations relative to notations used here have to be given. For
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a sequence ωωω = (ω1; · · · ;ωr) ∈ seq(Ω) and an integer k ∈ [[ 0 ; r ]], we write:

ωωω≤k =





∅ , if k = 0

(ω1; · · · ;ωk) , if k > 0

and ωωω>k =





(ωk+1; · · · ;ωr) , if k < r .

∅ , if k = r .

Let us remark that the two deconcatenations ∅ · ω and ω · ∅ intervene
in the definition of the mould multiplication and refer respectively to the
index i = 0 and i = l(ω). We will denote such a product in a short way by:

(A• × B•)ω =
∑

ω1·ω2=ω

Aω
1

Bω2

.

Finally, (M•
A(Ω),+, ·,×) is an associative but non-commutative A-algebra

with unit, whose invertibles are easily characterised:

(M•
A(Ω))

× = {M• ∈ M•
A(Ω) ; M

∅ ∈ A×} .

We will denote by (M•)×−1 the multiplicative inverse of a mould M•, when
it exists.

A.3. Symmetrality

Let us first remind that the shuffle product of two words P = p1 · · ·pr
and Q = q1 · · · qs constructed over the alphabet Ω is denoted by � and
recursively defined by:





P � ε = ε� P = P ,

P �Q = p1
(
p2 · · · pr �Q

)
+ q1

(
P � q2 · · · qr

)
,

where ε is the empty word. As an example, if P = a · b and Q = c, we have
P �Q = abc + acb+ cab .

In order to have a better understanding of the shuffle, a visual represen-
tation of it can be usefull. A word can be seen as a desk of card, then the
shuffle of two words becomes the set of all the obtained result by inserting
classically one desk of cards in the other one.

The multiset sha(ααα;βββ), where ααα and βββ are sequences of seq(Ω), is de-
fined to be the set of all monomials that appear in the non-commutative
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polynomial ααα� βββ, counted with their multiplicity.

When A is an algebra, we define a symmetral mouldMa• to be a mould

of M•
A(Ω) which satisfies for all (ααα;βββ) ∈

(
seq(Ω)

)2
:





MaαααMaβββ =
∑

γγγ∈sha(ααα;βββ)

′ Maγγγ .

Ma∅ = 1 .

(A.1)

Here, the sum
∑

γγγ∈sha(ααα;βββ)

′ Maγγγ is a shorthand for
∑

γγγ∈seq(Ω)

mult

(
ααα ; βββ

γγγ

)
Maγγγ ,

where mult
(
ααα ;βββ
γγγ

)
is the coefficient of the monomial γγγ in the product ααα� βββ

and is equal to 〈ααα� βββ|γγγ〉 . From now on, we shall omit the prime on the
sum:

MaαααMaβββ =
∑

γγγ∈seq(Ω)

〈ααα� βββ|γγγ〉Maγγγ =
∑

γγγ∈sha(ααα,βββ)

Maγγγ .

The symmetrality imposes, through a multitude of relations, a strong
rigidity. For example, if (x; y) ∈ Ω2 and Ma• denote a symmetral mould,
then we have necessarily:

MaxMay = Max,y +May,x .

Max,yMay = May,x,y + 2Max,y,y .

The definition of symmetrelity may also apply to a mould which is de-
fined only on a subset D of seq(Ω) (in which case, we require D to be stable
by the shuffle).

A.4. Symmetrelity

Let (Ω, ·) be an alphabet with a semi-group structure. Let us first re-
mind that the stuffle product of two words P = p1 · · · pr and Q = q1 · · · qs
constructed over the alphabet Ω is denoted by and defined recursively
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by:




P ε = ε P = P ,

P Q = p1
(
p2 · · · pr Q

)
+ q1

(
P q2 · · · qs

)
+ (p1 · q1)

(
p2 · · · pr q2 · · · qs

)
,

where ε is again the empty word. As an example, in seq(N), if P = 1 · 2
and Q = 3, we have: P Q = 1 · 2 · 3 + 1 · 3 · 2 + 3 · 1 · 2 + 1 · 5 + 4 · 2 .

As well as for the shuffle product, a visual representation of the stuffle
product can be usefull. Seeing one more time a word as a desk of card, the
stuffle of two words becomes the set of all the obtained results by inserting
magically one desk of blue cards in a desk of red cards. By magically, we
mean that some new cards may appear: these new ones are hydrid cards,
that is, one of their sides is blue while the other is red. Such a hybrid card
can only be obtained when two cards of different colors are situated side by
side in a classic shuffle of the two desks of cards. In the previous example,
the hybrid cards are 5, coming from 2 + 3, and 4, from 3 + 1 .

The multiset she(ααα;βββ), where ααα and βββ are sequences in seq(Ω), is de-
fined to be the set of all monomials that appear in the non-commutative
polynomial ααα βββ, counting with their multiplicity.

When the alphabet Ω is an additive semigroup and A an algebra, we
define a symmetrel mould Me• to be a mould of M•

A(Ω) which satisfies for

all (ααα;βββ) ∈
(
seq(Ω)

)2
:





MeαααMeβββ =
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ .

Me∅ = 1 .

Here, the sum
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ is a shorthand for
∑

γγγ∈seq(Ω)

mult

(
ααα ; βββ

γγγ

)
Meγγγ ,

where mult
(
ααα;βββ
γγγ

)
is the coefficient of the monomial γγγ in the product ααα βββ

and is equal to 〈ααα βββ|γγγ〉 . From now on, we also omit the prime:

MeαααMeβββ =
∑

γγγ∈seq(Ω)

〈ααα βββ|γγγ〉Meγγγ =
∑

γγγ∈she(ααα,βββ)

Meγγγ .
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As well as the symmetrality, the symmetrelity imposes a strong rigidity.
For example, if (x; y) ∈ Ω2 and Me• denote a symmetrel mould, then we
have necessarily:

MexMey = Mex,y +Mey,x +Mex+y.

Mex,yMey = Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y .

The definition of symmetrelity may also apply to a mould which is de-
fined only on a subset D of seq(Ω) (in which case, we require D to be stable
by stuffle).

A.5. Formal moulds

Remind that a mould over the alphabet Ω can be seen as a collection
of functions (f0, f1, f2, · · · ), where, for all non negative integer i, fi is a
function defined on Ωi. Let us now define a formal mould as a collection of
formal series (S0, S1, S2, · · · ), where, for all non negative integer i, Si is a
formal power series in i indeterminates (and consequently, S0 is constant) .
The set of all formal mould with values in the algebra A is denoted by
FM•

A . So, by definition, it is clear that:

FM•
A ⊂ M•

A(X1, X2, X3, · · · ) := lim ind
n−→+∞

M•
A(X1, · · · , Xn) . (A.2)

For a mould M•, defined over an infinite alphabet of indeterminates
(X1, X2, · · · ), there is absolutely no reason thatMX1,X2 be related toMX2,X1 ;
but, for a formal mould M•, there is a link since it is the substitution of a
sequences of indeterminates in a formal series. Consequently, it’s impossible
to have an equality in (A.2).

Nevertheless, a formal mould is a mould. This implies in particular that
we can add, multiply them for instance.

A.6. Symmetrility

IfMe• is a symmetrel mould over seq(N∗) , with values in a commutative
algebra A, then its generating functions, denoted byMig•, is a formal mould
defined by:




Mig∅ = 1 .

Migv1,··· ,vr =
∑

s1,··· ,sr≥1

Mes1,··· ,srv1
s1−1 · · · vrsr−1 ∈ A[[v1; · · · ; vr]] .
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The mould Mig• is then automatically a symmetril mould, that is to
say that it satisfies the relation:

MigvMigw =
∑

x∈shi(v;w)

Migx .

The multiset shi (v;w) is also a quasi-shuffle product as defined in [28],
as i the stuffle. If v and w are sequences over an alphabet of indeterminates,
this set is defined exactly in the same way as she(v;w), but here, the
contraction of the quasi-shuffle product is an (formal) contraction defined
over the set of (formal) indeterminates. The evaluation of a mould Mig•

on a sequence which has such a contraction is then done by induction and
given by the formula:

Migv·(x⊛y)·w =
Migv·x·w −Migv·y·w

x− y
.

For example, a symmetril mould Mig• satisfies:

MigXMigY = MigX,Y +MigY,X +
MigX −MigY

X − Y
,

MigX,YMigZ = MigX,Y,Z +MigX,Z,Y +MigZ,X,Y +
MigX,Y −MigX,Z

Y − Z

+
MigX,Y −MigZ,Y

X − Z
.

To evaluate MigX,YMigY , we have to use derivative:

MigX,YMigY = 2MigX,Y,Y +MigY,X,Y +DYMigX,Y +DXMigX,Z .

A.7. Some examples of rules

Envisaged as a simple system of notations, the mould language already
leads us to concise formulas as well as the economy of long sequences of
indexes. But its real utility resides in the different mould operations and
the rules which indicate how these affect (preserve or transform) basic sym-
metries.

For example: 1. [alterna l ; alterna l] = alterna l , where [·, ·] is a Lie bracket.

2. symmetre l × symmetre l = symmetre l .

3. alterna/el conjugated by symmetra/el = alterna/el .

4. exponential (alterna/el) = symtra/el .
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A.8. Some notations

We will always write in bold, italic and underlined the vowel which
indicates not only a symmetry of the considered moulds, but also the nature
of the products of sequences which will appear. Using this, it will become
simpler to distinguish symmetral , symmetrel and symmetril moulds as well
as to distinguish the set sha(ααα;βββ), she(ααα;βββ) and shi (ααα;βββ).

The moulds that we consider will carry in their name the vowelic alter-
ation which immediately indicates their symmetry type. For example, the
mould T e•(z) is a symmetrel mould (see p. 94), while Zig• is symmetril
(see p. 74). The absence of this vowel will also indicate that the mould
verifies no symmetry.

Finally, if ααα = (α1; · · · ;αn) is a sequence constructed over an alphabet

Ω, we respectively denote by
←
ααα and ααα[k], the reversed sequence ααα and the

sequence ααα repeated k times:

←
ααα = (αn; · · · ;α1) , ααα[k] = ααα · · ·ααα︸ ︷︷ ︸

k times

.

Remind that we can also extract a part of the sequence ααα . If i and j are
two non-negative integers such that i ≤ j ≤ r, the sequences ααα≤i , αααi<·≤j

and ααα>i are defined by:

ααα≤i = (α1; · · · ;αi) , αααi<·≤j = (αi+1; · · · ;αj) , ααα>i = (αi+1; · · · ;αr) .
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Weight

Multitangent functions Multitangent functions

with no multizeta linearisation with exact evaluation of multizeta values

4 Te2,2 = 2Ze2Te2 .

5

Te2,3 = −3Ze3Te2 + Ze2Te3 .

Te3,2 = 3Ze3Te2 + Ze2Te3 .

Te2,1,2 = 0 .

6

Te2,4 = 4Ze4Te2 − 2Ze3Te3 + Ze2Te4 . Te2,4 =
8

5
ζ(2)2Te2 − 2ζ(3)Te3 + ζ(2)Te4 .

Te3,3 = −6Ze4Te2 . Te3,3 = −12

5
ζ(2)2Te2 .

Te4,2 = 4Ze4Te2 + 2Ze3Te3 + Ze2Te4 . Te4,2 =
8

5
ζ(2)2Te2 + 2ζ(3)Te3 + ζ(2)Te4 .

Te2,1,3 = −
(
Ze2,2 + Ze3,1

)
Te2 + Ze2,1Te3 . Te2,1,3 = −2

5
ζ(2)2Te2 + ζ(3)Te3 .

Te2,2,2 = 2
(
Ze2,2 +

(
Ze2

)2) Te2 . Te2,2,2 =
8

5
ζ(2)2Te2 .

Te3,1,2 = −
(
Ze2,2 + Ze3,1

)
Te2 − Ze2,1Te3 . Te3,1,2 = −2

5
ζ(2)2Te2 − ζ(3)Te3 .

Te2,1,1,2 = 2Ze2,1,1Te2 . Te2,1,1,2 =
4

5
ζ(2)2Te2 .

Table 1. Tabulation of the multitangent functions of weight 4 , 5 and 6.
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||s|| = 4 Ze2T e2 = 1

2
T e2,2 .

||s|| = 5
Ze3T e2 = 1

6
T e3,2 − 1

6
T e2,3 .

Ze2,1T e2 = 1

6
T e3,2 − 1

6
T e2,3 .

||s|| = 6

Ze4T e2 = −1

6
T e3,3 .

Ze2,2T e2 = −1

8
T e3,3 .

Ze3,1T e2 = − 1

24
T e3,3 .

Ze2,1,1T e2 = −1

6
T e3,3 .

||s|| = 7

Ze5T e2 = − 1

30
T e5,2 − 1

15
T e4,3 + 1

15
T e3,4 + 1

30
T e2,5 .

Ze4,1T e2 = 1

12
T e2,2,3 − 1

12
T e3,2,2 − 1

40
T e5,2 − 1

20
T e4,3 + 1

20
T e3,4 + 1

40
T e2,5 .

Ze3,2T e2 = 1

4
T e3,2,2 − 1

4
T e2,2,3 + 7

120
T e5,2 + 7

60
T e4,3 − 7

60
T e3,4 − 7

120
T e2,5 .

Ze2,3T e2 = 1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

15
T e5,2 − 2

15
T e4,3 + 2

15
T e3,4 + 1

15
T e2,5 .

Ze3,1,1T e2 = 1

12
T e2,2,3 − 1

12
T e3,2,2 − 1

40
T e5,2 − 1

20
T e4,3 + 1

20
T e3,4 + 1

40
T e2,5 .

Ze2,2,1T e2 = 1

4
T e3,2,2 − 1

4
T e2,2,3 + 7

120
T e5,2 + 7

60
T e4,3 − 7

60
T e3,4 − 7

120
T e2,5 .

Ze2,1,2T e2 = 1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

15
T e5,2 − 2

15
T e4,3 + 2

15
T e3,4 + 1

15
T e2,5 .

Ze2,1,1,1T e2 = − 1

30
T e5,2 − 1

15
T e4,3 + 1

15
T e3,4 + 1

30
T e2,5 .

Table 2. Some examples of projection onto multitangent functions.
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p = 4 : p = 5 : p = 6 : p = 7 :




8

5

−
12

5

8

5

8

5







− 5 0

10 0

−10 0

5 0

15

2
−6

0 0

−
15

2
6







48

35
0

−
24

7
0

32

7
0

−
24

7
0

48

35
0

352

105
−6

−
88

35

9

2

16

105
3

−
88

35

9

2

16

7
−9

16

105
3

24

35
0







−7 0 0

21 0 0

−35 0 0

35 0 0

−21 0 0

7 0 0

0 0 0

14 −20
16

5

−14 20
16

5

21 −10
16

5

−14 20
16

5

0 0 0

−28 0
48

5

14 −20
16

5

28 0 −
48

5

−21 10
16

5

−
441

16
15 0

441

16
−15 0

−
189

16
15 −

24

5

189

16
−15

24

5




Table 3. Matrices obtained, for the weight p ∈ [[ 4 ; 7 ]], applying the explained

method relatively to the unit-cleansing for multitangent functions.
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||s|| = 5 T e2,1,2 = 0 .

||s|| = 6

T e3,1,2 = 1

6
T e3,3 + 1

4
T e2,4 − 1

4
T e4,2 .

T e2,1,3 = 1

6
T e3,3 − 1

4
T e2,4 + 1

4
T e4,2 .

T 2,1,1,2 = −1

3
T e3,3 .

||s|| = 7

T e4,1,2 = 1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

3
T e5,2 + 7

48
T e4,3 + 23

48
T e3,4 + 1

3
T e2,5 .

T e3,1,3 = 1

5
T e2,3,2 .

T e2,1,4 = 1

3
T e3,2,2 + 1

3
T e5,2 + 13

24
T e4,3 + 5

24
T e3,4 − 1

3
T e2,5 .

T e2,1,1,3 = 1

3
T e3,2,2 + 1

12
T e5,2 − 1

48
T e4,3 − 17

48
T e3,4 − 1

12
T e2,5 .

T e2,1,2,2 = 2

3
T e3,2,2 − 1

6
T e5,2 − 5

24
T e4,3 + 11

24
T e3,4 + 1

6
T e2,5 .

T e2,2,1,2 = 2

3
T e3,2,2 + 1

6
T e5,2 + 11

24
T e4,3 − 5

24
T e3,4 − 1

6
T e2,5 .

T e3,1,1,2 = −1

3
T e3,2,2 − 1

12
T e5,2 − 23

48
T e4,3 − 7

48
T e3,4 + 1

12
T e2,5 .

T e2,1,1,1,2 = 0 .

Table 4. Some examples of unit cleansing for multitangent functions of

weight 5, 6 and 7.
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Relations in MTGF6 Equivalent relations in MZV

Relations Origin

T e3,1,2 + T e2,1,3 + T e2,1,1,2 = 0 . Ze2,1,1 = Ze3,1 + Ze2,2 . Double-shuffle

2T e3,1,2 + T e2,2,2 + 2T e2,1,3 = 0 .
(
Ze2

)2
= 4Ze3,1 + 2Ze2,2 . Shuffle

T e2,4 − T e4,2 + 2T e2,1,3 − 2T e3,1,2 = 0 .





Ze3Ze2

Ze3

=

=

6Ze4,1 + 3Ze3,2 + Ze2,3 .

Ze2,1 .

Shuffle

Double-shuffle

3T e3,1,2 + 3T e2,1,3 − T e3,3 = 0 . Ze4 = Ze3,1 + Ze2,2 Double-shuffle

Table 5. The four independent Q-linear relations between multitangent

functions of weight 6.
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Relations in MTGF7

T e2,1,1,1,2 = 0 .

−4T e3,1,3 + T e3,1,1,2 + T e2,1,1,3 = 0 .

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 .

−4T e3,1,3 + 2T e3,1,1,2 + T e2,2,1,2 = 0 .

T e4,1,2 + 5T e3,1,3 + T e2,1,4 = 0 .

−T e4,3 + T e4,1,2 + 5T e3,1,3 + T e2,2,3 − 4T e3,1,1,2 = 0 .

−5T e3,1,3 + T e2,3,2 = 0 .

T e4,3 − T e4,1,2 + T e3,2,2 − 8T e3,1,3 + 4T e3,1,1,2 = 0 .

−T e5,2 + T e2,5 − 4T e4,1,2 − 18T e3,1,3 + 4T e3,1,1,2 = 0 .

T e4,3 + T e3,4 + 8T e3,1,3 = 0 .

Table 6. The ten independent Q-linear relations between multitangent

functions of weight 7.
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Weight Multitangent functions

2 Te1,1 = −3 ζ(2) .

3

Te1,2 = 0 .

Te2,1 = 0 .

Te1,1,1 = −ζ(2)Te1 .

4

Te1,3 = −ζ(2)Te2 .

Te3,1 = −ζ(2)Te2 .

Te1,1,2 = −1

2
ζ(2)Te2 .

Te1,2,1 = 0 .

Te2,1,1 = −1

2
ζ(2)Te2 .

Te1,1,1,1 =
3

2
ζ(2)2 .

Weight Multitangent functions

5

Te1,4 = ζ(3)Te2 − ζ(2)Te3 .

Te4,1 = −ζ(3)Te2 − ζ(2)Te3 .

Te1,1,3 = ζ(3)Te2 − 1

2
ζ(2)Te3 .

Te1,2,2 = −2 ζ(3)Te2 .

Te1,3,1 = 0 .

Te2,2,1 = 2 ζ(3)Te2 .

Te3,1,1 = −ζ(3)Te2 − 1

2
ζ(2)Te3 .

Te1,1,1,2 =
1

3
ζ(3)Te2 .

Te1,1,2,1 = 0 .

Te1,2,1,1 = 0 .

Te2,1,1,1 = −1

3
ζ(3)Te2 .

Te1,1,1,1,1 =
3

10
ζ(2)2Te1 .

Table 7. Tabulation of the divergent multitangent functions of weight 2 , 3 , 4 and 5.
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



Te1[2k] = (−1)kπ2k

(2k)!
.

Te1[2k+1]
=

(−1)kπ2k

(2k + 1)!
Te1 .

Te2[k] = 22k−1π2(k−1)

(2k)!
Te2 .





Te3[2k] = 3(−1)k26k−2π6k−2

(6k)!
Te2 .

Te3[2k+1]

=
3(−1)k26k+1π6k

(6k + 3)!
Te3 .

Te4[k] = 24k−1π4(k−1)

(4k)!

((
2(−1)k + 22k−1

)(
Te2
)2 − 3(−1)kTe4

)
.





Te5[2k] = 5

16

(−1)k29kπ10k−4

(10k)!

((
2k · 3 + αk + ᾱk

)(
Te2
)2 − 2k+1 · 3Te4

)
,

Te5[2k+1]

=
5(−1)k29kπ10k

(10k + 5)!

(
2k+3 · 3Te5 + αnTe1

(
Te2
)2)

,

where αn = 11
(
αk + ᾱk − 2k+1

)
+ 5

√
5
(
αk − ᾱk

)
and





α = 123 + 5
√
5 .

ᾱ = 123− 5
√
5 .

Te6[k] = 26k−5π6(k−1)

(6k)!

(
360Te6 − 18ukTe2Te4 − vk

(
Te2
)3)

,

where





uk = 26 + (−27)k .

vk = 30− 6(−27)k − 3 · 2k .

Table 8. Examples of computations of multitangent functions with repeated argument.
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∀p ∈ N , T e2,1[p],2 =
(
1 + (−1)p

)
Zep+2T e2 .

∀(p; q) ∈ N2 , T e2,1[p],2,1[q],2 =
(
(−1)p+qZep+2,q+2 + (−1)qZep+2Zeq+2 + Zeq+2,p+2

)
T e2 .

∀p ∈ N , T e2,1[p],3,1[p],2 = (−1)p
(
Zep+2

)2T e3 .

∀p ∈ N , T e3,1[2p+1],3 = 2Ze3,1[2p+1]T e3 = 2Ze2p+3,1T e3 .

∀p ∈ N , T e{3,1}[p],3 =
(
24p+4 − 2(−4)p+1

) π4p

(4p+ 4)!
T e3 .

∀p ∈ N , T e2,1[p],3 = −
((

(−1)p + 1
)
Zep+2,1 + Zep+3

)
T e2 + Zep+2T e3 .

∀p ∈ N , T e3,1[p],2 =
((

(−1)p + 1
)
Zep+2,1 + (−1)pZep+3

)
T e2 + (−1)pZep+2T e3 .

Table 9. Examples of explicit calculations of multitangent functions.
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