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ON COMPOSITIONS WITH x2/(1− x)

HANS-CHRISTIAN HERBIG, DANIEL HERDEN, AND CHRISTOPHER SEATON

Abstract. In the past, empirical evidence has been presented that Hilbert se-
ries of symplectic quotients of unitary representations obey a certain universal
system of infinitely many constraints. Formal series with this property have
been called symplectic. Here we show that a formal power series is symplectic
if and only if it is a formal composite with the formal power series x2/(1− x).
Hence the set of symplectic power series forms a subalgebra of the algebra of
formal power series. The subalgebra property is translated into an identity for
the coefficients of the even Euler polynomials, which can be interpreted as a
cubic identity for the Bernoulli numbers. Furthermore we show that a rational
power series is symplectic if and only if it is invariant under the idempotent
Möbius transformation x 7→ x/(x − 1). It follows that the Hilbert series of a
graded Cohen-Macaulay algebra A is symplectic if and only if A is Gorenstein
with its a-invariant and its Krull dimension adding up to zero. It is shown
that this is the case for algebras of regular functions on symplectic quotients
of unitary representations of tori.
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1. Introduction

Let G → U(V ) be a unitary representation of a compact Lie group G on a
hermitian vector space (V, 〈 , 〉). Here, V is viewed as a symplectic manifold or
real variety. The R-algebra of smooth functions on V is denoted C∞(V ), and its
subalgebra of real regular functions is denoted R[V ]. Note that R[V ] is actually a
Poisson subalgebra of C∞(V ). The symplectic form on V is given by the imaginary
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part of the scalar product 〈 , 〉, and the G-action on V is Hamiltonian with moment
map

J : V → g
∗, Jξ(v) := (J(v), ξ) :=

√
−1

2
〈v, ξ.v〉.

Here, ξ.v := d/dtt=0 (exp(−tξ).v) denotes the infinitesimal action of ξ ∈ g on v ∈ V
and ( , ) stands for the dual pairing between the dual space g

∗ and the Lie algebra
g of G.

Let us denote by Z := J−1(0) the zero fibre of the moment map. If G is finite,
then J = 0 by convention and Z = V . Since J is G-equivariant, we can consider
the space M0 := Z/G of G-orbits in Z, the so-called symplectic quotient. It is a
stratified symplectic space and can be viewed in a natural way as a semialgebraic set
(for more information the reader may consult [10]). In order to define the smooth
structure onM0, one introduces the vanishing ideal IZ of Z inside C∞(V ). Then the
algebra of smooth functions onM0 is given by C∞(M0) := C∞(V )G/(IZ∩C∞(V )G).
Note that C∞(M0) carries a canonical Poisson bracket. The N-graded R-algebra of
regular functions R[M0] := R[V ]G/(IZ∩R[V ]G) is a Poisson subalgebra of C∞(M0).

In this paper, we are concerned with the Hilbert series of the N-graded algebra
R[M0]. This is the generating function counting the dimensions dimR(R[M0]i) of
the spaces of regular functions of degree i ∈ N:

HilbR[M0](t) :=
∑

i≥0

dimR(R[M0]i) t
i ∈ N[[t]] ⊂ C[[t]].

The Poisson brackets will play no role in the considerations to follow.
The main motivation for our investigation is Conjecture 1.2 below, that has been

formulated in [8]. We recall the following definition from [8].

Definition 1.1. For a formal power series ϕ(x) =
∑

i≥0 γi x
i ∈ C[[x]] and m ≥ 1

we introduce the linear constraint

(Sm)

m−1∑

k=0

(−1)k
(
m− 1

k

)

γm+k = 0.

We say that ϕ(x) is symplectic if condition (Sm) holds for each m ≥ 1. A meromor-
phic function ψ(t) in the variable t is said to be symplectic at a ∈ C of pole order
d ∈ Z if the formal power series xdψ(a− x) ∈ C[[x]] is symplectic. Here we assume
that the order of the pole of ψ(t) at t = a is ≤ d.

The reader is invited to check that in a symplectic power series ϕ(x) =
∑

i≥0 γix
i ∈

C[[x]] the odd coefficients γ1, γ3, γ5, . . . are uniquely determined by the even ones
γ0, γ2, γ4, . . . . Moreover, for each choice of the even coefficients γ0, γ2, γ4, . . . there
is a uniquely determined symplectic power series ϕ(x) =

∑

i≥0 γi x
i.

The curious sign convention (we expand in powers of (a− x) instead of (x− a))
appears to be more natural, because in this way our typical examples render non-
negative coefficients. When we say a meromorphic function is symplectic at x = a
of order d = 0, we mean that it is analytic at x = a and symplectic as a series
expanded in (a−x). Note that we only use this sign convention for a formal power
series in the context of Lemma 3.1.

Conjecture 1.2 ([8]). Let G → U(V ) be a unitary representation of a compact
Lie group G and let R[M0] be the graded R-algebra of regular functions on the
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corresponding symplectic quotient M0. Then HilbR[M0](t) is symplectic at t = 1 of
order d = dimR(M0).

There is an analogue of this conjecture for cotangent lifted representations of
reductive complex Lie groups. Certainly, over the complex numbers, there exist
also symplectic quotients that arise from non-cotangent lifted representations whose
Hilbert series are symplectic. For instance, the invariant ring of any unimodular
representation of a finite group has a symplectic Hilbert series; for more details, see
Section 6. To name a specific example, for n ≥ 2 the action of the binary dihedral
group Dn ⊂ SL2(C) on C2 cannot be cotangent lifted as there are no quadratic
invariants.

Our aim is to give a simple proof of the following statement.

Theorem 1.3. Conjecture 1.2 holds if G is a torus.

The crucial insight that helps us to achieve our goal is the following reformulation
of what it means for a generating function to be symplectic.

Proposition 1.4. A formal power series ϕ(x) is symplectic if and only if it is a
formal composite with x2/(1− x), i.e., if there exists a formal power series ρ(y) ∈
C[[y]] such that ϕ(x) = ρ(x2/(1− x)).

As a corollary, we obtain the following.

Corollary 1.5. The space of symplectic power series forms a subalgebra of C[[x]].
A meromorphic function ψ(t) is symplectic of order d at a ∈ C if and only if there
exists a formal power series ρ(y) ∈ C[[y]] such that the Laurent expansion of ψ(t) at
t = a is

1

(a− t)d
ρ

(
(a− t)2

1− a+ t

)

.

If ψ1(t) is symplectic at a ∈ C of order d1 and ψ2(t) is symplectic at a ∈ C of order
d2, then the product ψ1(t)ψ2(t) is symplectic at a ∈ C of order d1 + d2.

It is tempting to think of x2/(1 − x) as some sort of fundamental (rational or
formal) invariant of a group action. In fact, the requisite transformation is provided
by the order two Möbius transformation x 7→ x/(x− 1).

Theorem 1.6. A formal power series ϕ(x) is symplectic if and only if it is invari-
ant under the substitution x 7→ x/(x − 1). If ϕ(x) is rational, then the following
statements are equivalent:

(1) ϕ(x) is symplectic,
(2) there exists a rational function ρ(y) such that ϕ(x) = ρ(x2/(1− x)),
(3) ϕ(x) = ϕ(x/(x − 1)).

Corollary 1.7. A rational function ψ(t) is symplectic of order d at t = a if and
only if

ψ

(
a2 − 2a+ (1− a)t

a− 1− t

)

= (a− 1− t)d ψ(t).(1.1)

This type of functional equation one encounters in the theory of Gorenstein
algebras (cf. [2, Section 4.4]). Namely, by a theorem of Richard P. Stanley [12],
an N-graded Cohen-Macaulay algebra R = ⊕i≥0Ri is Gorenstein if and only if its
Hilbert series HilbR(t) =

∑

i≥0 dim(Ri) t
i fulfills

HilbR(t
−1) = (−1)dt−a(R) HilbR(t),(1.2)



4 HANS-CHRISTIAN HERBIG, DANIEL HERDEN, AND CHRISTOPHER SEATON

where d = dim(R) and a(R) is the so-called a-invariant. By comparison with (1.1)
for a = 1 we finally obtain the following result.

Corollary 1.8. The Hilbert series HilbR(t) of a graded Cohen-Macaulay algebra
R is symplectic of order d = dimR if and only if R is Gorenstein with a-invariant
a(R) = −d.
Remark 1.9. In particular, this implies that if the graded ring R = ⊕i≥0Ri is
Gorenstein of Krull dimension d and in the Laurent expansion

HilbR(t) =
∑

i≥0

γi
(1− t)d−i

,(1.3)

the coefficient γ1 = 0, then HilbR(t) is symplectic of order d. Here we make use of
the fact [15, Equation (3.32)] that −2γ1/γ0 = a(R) + d.

Let us give an outline of the paper. In Section 2 we prove Proposition 1.4 and,
as a side remark, discuss relations to the sequence of Genocchi numbers. In Section
3 we use Proposition 1.4 to show Theorem 1.6. The latter is used in Section 4 to
give a proof of our main result, Theorem 1.3, that is based on Molien’s formula
and the fact that a moment map of a faithful torus representation forms a regular
sequence in the ring of invariants [7, 5]. In Section 5 we deduce from Corollary
1.5 an identity for the coefficients of the even Euler polynomials. In Section 6 we
illustrate our results by discussing specific examples.

Acknowledgements. We would like to thank Srikanth Iyengar for suggesting that
condition (Sm) might be fulfilled termwise in the Molien formula for a finite unitary
group. The third author would like to thank Eric Gottlieb for helpful conversations.

2. Proof of Proposition 1.4

As, for each i ≥ 1, the alternating sum over the ith row of the Pascal triangle is
zero, the power series x2/(1 − x) is symplectic. Based on this observation we are
able to find more examples.

Lemma 2.1. For each n ≥ 0 the formal power series (x2/(1− x))n is symplectic.

Proof. First let us observe that for a formal power series ϕ(x) we have

(Sm) ⇐⇒ d2m−1

d2m−1x

∣
∣
∣
∣
x=0

(

(1− x)m−1ϕ(x)
)

= 0.

Let us introduce the shorthand notation fn,m(x) := (1−x)m−1
(
x2/(1− x)

)n
. The

rational function fn,m(x) is regular at x = 0 and vanishes there to the order 2n.
So if m ≤ n, then

f (2m−1)
n,m (0) = 0.

On the other hand, if m > n, then fn,m(x) is a polynomial of degree n+m− 1 <
2m− 1 and hence the (2m− 1)-fold derivative of fn,m vanishes identically. �

It will be convenient to introduce some terminology.

Definition 2.2. By a symplectic basis we mean a sequence (ϕn(x))n∈N of sym-
plectic power series ϕn(x) ∈ C[[x]] such that each ϕn(x) ∈ m

2n and its class in
m

2n/m2n+1 is nonzero. Here m denotes the maximal ideal xC[[x]] of the complete
local ring C[[x]].
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Lemma 2.3. Let (ϕn(x))n∈N be a symplectic basis. Then for each symplectic power
series ϕ(x) there exists a unique sequence (an)n∈N of numbers such that for each
k ≥ 0

ϕ(x) −
k∑

i=0

ai ϕi(x) ∈ m
2k+2.(2.1)

It follows that ϕ(x) =
∑

i≥0 ai ϕi(x), where the sum converges in the m-adic topology

of C[[x]].

Proof. We start with a preparatory observation. Suppose that k ≥ 0 and f(x) =
∑

i≥0 αi x
i is symplectic and in m

2k+1, i.e., α0 = α1 = · · · = α2k = 0. Then (Sk+1)

implies that α2k+1 = 0 as well, that is f(x) ∈ m
2k+2.

Assume now for induction that

ϕ(x)−
k−1∑

i=0

ai ϕi(x) ∈ m
2k.

It follows that there is a unique number ak such that ϕ(x)−∑k
i=0 ai ϕi(x) ∈ m

2k+1.
Since the latter series is symplectic, the above argument tells us that it is in fact
in m

2k+2. �

As a consequence, with the choice of the symplectic basis

((
x2

1− x

)n)

n∈N

(2.2)

we can write each symplectic series ϕ(x) as a formal composite ρ(x2/(1−x)), where
ρ(y) =

∑

i≥0 ai y
i ∈ C[[y]]. This proves Proposition 1.4.

Remark 2.4. There are of course plenty of other symplectic bases. In fact, any
symplectic power series ϕ1(x) that is inm

2 and whose class inm
2/m3 does not vanish

generates a symplectic basis ((ϕ1(x))
n)n∈N

. A choice different from x2/(1 − x) is
provided by the sequence of Genocchi numbers. The sequence of Genocchi numbers
(Gn)n∈N (cf. entry A036968 in the online encyclopedia [11]) is defined by the
exponential generating function

2z

ez + 1
=

∑

n≥0

Gn
zn

n!

= z − z2

2!
+
z4

4!
− 3z6

6!
+

17z8

8!
− 155z10

10!
+

2073z12

12!
− . . . ∈ C[[z]].

Setting Gen(x) :=
∑

i≥0Gn+1x
n, it follows from [6] (see also Section 5) that

ϕ1(x) := x2 Gen(−x)(2.3)

is symplectic, and hence generates a symplectic basis as described above. As Gn =
O(n!/πn), Gen(x) as well as ϕ1(x) cannot be rational. Also note that the only even
monomial occurring in the expansion of ϕ1(x) := x2 Gen(−x) is x2.
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3. Proof of Theorem 1.6

First let us prove that a formal power series ϕ(x) =
∑

i≥0 γi x
i is symplectic if

and only if

ϕ(x) = ϕ(x/(x− 1)).(3.1)

The implication =⇒ is a consequence of Proposition 1.4. Conversely, let us assume
that ϕ(x) fulfills Equation (3.1). Using the identity

(
x

x− 1

)n

=
∑

i≥0

(−1)n
(
n+ i− 1

n− 1

)

xn+i,

for n ≥ 1, we see that Equation (3.1) is tantamount to

γm =

m∑

i=1

(−1)n
(
m− 1

n− 1

)

γn(3.2)

for all m ≥ 1. Without loss of generality we can assume that γ2n = 0 for all
n ≥ 0. This can be achieved by subtracting a suitable symplectic power series.
With this assumption it follows recursively from (3.2) that γn = 0 for all n ≥ 0.
Since ϕ(x) = 0 is symplectic, this shows implication ⇐=.

This establishes the first claim of Theorem 1.6. The rest of the statement will
follow from the following.

Lemma 3.1. Let ϕ(x) = P (x)/Q(x) be a rational symplectic function. Then there
exists a rational function ρ(y) such that ϕ(x) = ρ(x2/(1− x)).

Proof. Assume that ϕ is nonzero, and then we may express

(3.3) ϕ(x) = Cxk(x− 1)ℓ(x− 2)m
r∏

i=1

(x− λi)
ni

where C ∈ C×, each λi ∈ Cr {0, 1, 2}, r is a nonnegative integer, and k, ℓ, m, and
ni for i = 1, . . . , r are integers. Let q = deg(Q(x)) − deg(P (x)), and then we have

(3.4) q = −k − ℓ−m−
r∑

i=1

ni.

By a simple computation,

(3.5) ϕ

(
x

x− 1

)

= C(−1)mxk(x − 1)q(x− 2)m
r∏

i=1

(1− λi)
ni

(

x− λi
λi − 1

)ni

.

We have that ϕ(x) is symplectic by hypothesis so that by the substitution theorem
[1, Theorem 9.25], Equation (3.1) holds for ϕ(x). Hence, a comparison of Equations
(3.3) and (3.5) yields

(−1)m
r∏

i=1

(1− λi)
ni = 1,(3.6)

q = ℓ, and(3.7)
r∏

i=1

(

x− λi
λi − 1

)ni

=
r∏

i=1

(x− λi)
ni .(3.8)
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From Equation (3.8), we have that for each factor x−λi in
∏r

i=1(x−λi)ni , a factor
x− λi/(λi − 1) must also appear. Hence we may rewrite

(3.9)

r∏

i=1

(x − λi)
ni =

r′∏

j=1

(x− µj)
n′

j

(

x− µj

µj − 1

)n′

j

for a nonnegative integer r′, nonnegative integers n′
j and µj ∈ C r {0, 1, 2} for

j = 1, . . . , r′. Combining Equations (3.6) and (3.9) and observing that for each j,
(1− µj)(1− µj/(µj − 1)) = 1, we obtain

1 = (−1)m
r′∏

j=1

(1− µj)
n′

j

(

1− µj

µj − 1

)n′

j

= (−1)m

so that m = 2m′ for some m′ ∈ Z. Similarly, Equations (3.4) and (3.7) can now be
used to express

k = −2ℓ− 2m′ −
r′∑

j=1

2n′
j

so that k = 2k′ for some k′ ∈ Z, and then we have

ℓ = −k′ −m′ −
r′∑

j=1

n′
j .

Substituting (3.9) into (3.3) and applying the above observations yields

ϕ(x) = Cx2k
′

(x− 1)−k′−m′−
∑r′

j=1
n′

j (x− 2)2m
′

r′∏

j=1

(x− µj)
n′

j

(

x− µj

µj − 1

)n′

j

= C

(

− x2

1− x

)k′ (

− x2

1− x
− 4

)m′ r′∏

j=1

(

− x2

1− x
−

µ2
j

µj − 1

)n′

j

,

a rational function of x2/(1− x), completing the proof. �

4. Proof of Theorem 1.3

In this section, we let G = Tℓ = (S1)ℓ, let V be a unitary representation of G
with dimC V = n, and let M0 denote the corresponding symplectic quotient. We
choose a (complex) basis for V with respect to which the G-action is diagonal, and
then the action of G is described by a weight matrix A ∈ Zℓ×n. Specifically, we
let z := (z1, . . . , zℓ) ∈ G with each zi ∈ S1 and introduce the notation z

aj :=
z
a1,j

1 z
a2,j

2 · · · zaℓ,j

ℓ for each j = 1, . . . , n. Then the action of z on V as a unitary
transformation is given with respect to this basis by

z 7→ diag(za1 , . . . , zan).

Concatenating our basis for V with its complex conjugate to produce a real basis
for V , the action of z on V as real linear transformations is given by

z 7→ diag(za1 , . . . , zan , z−a1 , . . . , z−an).

Let J : V → g
∗ denote the homogeneous quadratic moment map, let Z :=

J−1(0), and let M0 := Z/G denote the symplectic quotient; see Section 1. As G is
abelian, the components of J are elements of R[V ]G. We may assume without loss
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of generality that 0 is in the convex hull of the columns of A in Rℓ and the rank of
A is ℓ; see [7, Section 2] or [5, Section 3].

Using Molien’s formula, see [3, Section 4.6.1], the Hilbert series of the invariant
ring R[V ]G is given by

HilbR[V ]G(t) =
1

(2πi)ℓ

∫

z∈Tℓ

dz1dz2 · · · dzℓ
(
∏n

j=1 zj)
∏n

j=1(1 − tzaj )(1 − tz−aj )
.

Then by [8, Proposition 2.1], the Hilbert series of the real regular functions on the
symplectic quotient M0 is given by

HilbR[M0](t) =
1

(2πi)ℓ

∫

z∈Tℓ

(1 − t2)ℓdz1dz2 · · · dzℓ
(
∏n

j=1 zj)
∏n

j=1(1− tzaj )(1 − tz−aj )
.

Define the function

h(z, t) =
(1− t2)ℓ

(
∏n

j=1 zj)
∏n

j=1(1 − tzaj )(1 − tz−aj )
,

and then we have

h(z, t−1) =
(1− t−2)ℓ

(
∏n

j=1 zj)
∏n

j=1(1 − t−1
z
aj )(1 − t−1

z
−aj )

=
t2(n−ℓ)(t2 − 1)ℓ

(
∏n

j=1 zj)
∏n

j=1(1 − tzaj )(1 − tz−aj )

= (−1)ℓt2(n−ℓ)h(z, t).

Fix t ∈ C with |t| < 1, and then

HilbR[M0](t
−1) =

1

(2πi)ℓ

∫

z∈Tℓ

h(z, t−1)dz1dz2 · · · dzℓ

=
t2(n−ℓ)

(2πi)ℓ

∫

z∈Tℓ

(−1)ℓh(z, t)dz1dz2 · · · dzℓ.

Choose an i and fix arbitrary values zk ∈ S1 for k 6= i. Dividing the numerator and
denominator by z

ai,j

i for each ai,j < 0 to express h(z, t) in terms of positive powers
of zi, and using the fact that each row of A contains at least one nonzero entry, it
is easy to see that

Reszi=∞ h(z, t) = −Reszi=0
1

z2i
h(z1, . . . , 1/zi, . . . , zn, t) = 0.

A computation demonstrates that the transformation t 7→ t−1 induces a bijection
between the poles in zi inside the unit disk with those outside the unit disk. Then
considering each S1-factor of Tℓ as a negatively-oriented curve about the point at
infinity, introducing a factor of (−1)ℓ, we have

HilbR[M0](t
−1) = t2(n−ℓ)HilbR[M0](t).

Then Theorem 1.3 follows from Corollary 1.7 and the fact that R[M0] has dimension
d = 2(n− ℓ).
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5. Applications to even Euler polynomials and Bernoulli Numbers

Our aim is to derive from the fact that the space of symplectic power series forms
a subalgebra (cf. Corollary 1.5) a certain combinatorial identity, Equation (5.3),
that might be of independent interest. We recall that the Euler polynomials En(x),
n = 0, 1, 2, . . . , are defined by the expansion

(5.1)
2ext

et + 1
=
∑

n≥0

En(x)
tn

n!
.

We introduce numbers
[
n
i

]
via

x(x2n − E2n(x)) =:
∑

i

[
n

i

]

x2i,

observing that the even Euler polynomials, apart from their leading monomials,
contain only monomials that are odd powers of x. Note that

[
n
i

]
are integers and

[
n
i

]
= 0 for i ≤ 0 or i > n. The coefficients of the even indexed Euler polynomials

are listed in the online encyclopedia [11] as entry A060083. The first six lines in
the triangle of

[
n
i

]
are:

1
−1 2

3 −5 3
−17 28 −14 4

155 −255 126 −30 5
−2073 3410 −1683 396 −55 6 ,

where the line and diagonal indexing starts with n = 1 (read from top to bottom)
and i = 1 (read from left to right). We warn the reader that the recursions for the
[
n
i

]
have no resemblance to those for the binomial coefficients.

Theorem 5.1. Let ϕ(x) =
∑

i≥0 γi x
i be a formal power series. Then ϕ(x) is

symplectic if and only if for each n ≥ 0,

(5.2) γ2n+1 =
∑

i

[
n

i

]

γ2i.

In particular, for each choice of γ0, γ2, γ4, γ6, . . . there is a uniquely defined sym-
plectic power series ϕ(x) determined by the above rule.

Corollary 5.2. For all integers n, k, ℓ we have

(5.3)

[
n− k

ℓ

]

+

[
n− ℓ

k

]

=

[
n

k + ℓ

]

+
∑

i

∑

r

[
n

i

][
r − 1

k

][
i− r

ℓ

]

.

We would like to mention that the Euler coefficients are related to the Genocchi
numbers Gn, respectively the Bernoulli numbers Bn, using the formula

[
n

i

]

= − G2(n−i+1)

2(n− i+ 1)

(
2n

2i− 1

)

=
4n−i+1 − 1

n− i+ 1
B2(n−i+1)

(
2n

2i− 1

)

.

This means that Equation (5.3) can be interpreted as a cubic relation for the
Bernoulli numbers.
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Proof of Corollary 5.2. Let
∑

i≥0 γi x
i and

∑

j≥0 δj x
j be symplectic power series.

From Corollary 1.5 we know that their Cauchy product
∑

m≥0 ϑm xm is symplectic

with, for each m ∈ N, ϑm =
∑

i+j=m γi δj . The left hand side of Equation (5.3)
arises from expressing

ϑ2n+1 =
∑

r+s=2n+1

γr δs

in terms of even γ’s and δ’s using Equation (5.2). Similarly, the right hand side of
Equation (5.3) arises from expressing

ϑ2n+1 =
n∑

i=1

[
n

i

]

ϑ2i =
n∑

i=1

∑

r+s=2i

[
n

i

]

γr δs

in terms of even γ’s and δ’s. In the argument, we also use the fact that the even
γ’s and δ’s can be chosen freely. �

Proof of Theorem 5.1. The argument is inspired by [6, Section 7]. There the situ-
ation is studied when two sequences (cn)n∈N and (dn)n∈N are related by

dn =

n∑

i=0

(
n

i

)

ci(5.4)

for all n. Then [6, Theorem 7.4] states that for all nonnegative integers m and n,

m∑

i=0

(
m

i

)

cn+i =

n∑

j=0

(−1)n+j

(
n

j

)

dm+j .(5.5)

By inspection of the generating function (5.1), we derive the recursion

En(x) +

n∑

i=0

(
n

i

)

Ei(x) = 2xn.

The idea is to put ci := Ei(x) and dn := 2xn − En(x) and observe that condition
(5.4) holds. As the special case n = m ≥ 0 of (5.5), we find

n∑

i=0

(
n

i

)

En+i(x) =
n∑

i=0

(−1)n+i

(
n

i

)
(
2xn+i − En+i(x)

)
.(5.6)

This can be rewritten as
n∑

i=0
n+i even

(
n

i

)
(
xn+i − En+i(x)

)
=

n∑

i=0
n+i odd

(
n

i

)

xn+i,

which is equivalent to

n∑

i=0
n+i even

(−1)i
(
n

i

)
∑

j

[n+i
2

j

]

x2j−1 +

n∑

i=0
n+i odd

(−1)i
(
n

i

)

xn+i = 0.(5.7)

Let now (γn)n∈N be a number sequence such that (5.2) holds. It will be enough
to show that

∑

i≥0 γi x
i is symplectic. We interpret x as an umbral variable (cf.

for example [6]) and define the functional Γ : C[x] → C by Γ(xn) = γn+1 for n
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odd. For even n, we put Γ(xn) = 0 (this choice will not affect the considerations
to follow). Applying Γ to Equation (5.7), we end up with

n∑

i=0
n+i even

(−1)i
(
n

i

)
∑

j

[n+i
2

j

]

γ2j

︸ ︷︷ ︸

=γn+i+1

+

n∑

i=0
n+i odd

(−1)i
(
n

i

)

γn+i+1 = 0,

showing that
∑n

i=0(−1)i
(
n
i

)
γn+i+1 = 0, i.e., condition (Sn+1) of Definition 1.1. �

To complete this section, we use the above observations to indicate an alternate
symplectic basis than those considered in Section 2.

Lemma 5.3. For all integers k ≥ 0, the formal power series

ψk(x) :=
1

(2k − 1)!

∞∑

i=0

(−1)i−1E
(2k−1)
i−1 (0)xi = −x2k −

∞∑

i=k

[
i

k

]

x2i+1(5.8)

is symplectic.

Proof. Using Equation (5.6), we write
n∑

i=0

(
n

i

)

En+i(x) =
1

2

n∑

i=0

(
n

i

)

En+i(x) +
1

2

n∑

i=0

(−1)n+i

(
n

i

)
(
2xn+i − En+i(x)

)

=
1

2

n∑

i=0

(
1− (−1)n+i

)
(
n

i

)

En+i(x) +

n∑

i=0

(
n

i

)

(−x)n+i

=
n∑

i=0
n+i odd

(
n

i

)
(
En+i(x)− xn+i

)

︸ ︷︷ ︸

=: (∗)

+
n∑

i=0
n+i even

(
n

i

)

xn+i,

where (∗) contains only even powers of x. Thus in
∑

i

(
n
i

)
En+i(x), all coefficients

of odd degree vanish, meaning that for all k ≥ 1,

1

(2k − 1)!

n∑

i=0

(
n

i

)

E
(2k−1)
n+i (0) = 0.

It follows that
∞∑

i=0

(−1)i−1E
(2k−1)
n−1 (0)xi fulfills (Sn+1). �

As a consequence of Lemma 5.3, we have that (ψn(x))n∈N forms a symplectic
basis in the sense of Definition 2.2. Note that ψ1 is essentially the generating
function of the Genocchi sequence (2.3), namely we have ψ1(x) = −ϕ1(x). The
idea of the above proof can be used to argue that for each λ ∈ C the power series

∑

i≥0

(−1)i−1 (Ei−1(λ) − Ei−1(−λ)) xi ∈ C[[x]]

is symplectic.

6. Sample Calculations

In this section, we survey a few special cases of Conjecture 1.2 and Theorem 1.3
that can be verified by direct computations. We first consider the case of a unitary
representation of a finite group. In this case, as a consequence of Corollary 1.7,
Conjecture 1.2 is a special case of Watanabe’s Theorem [16, 17], see in particular
[13, Theorem 7.1].
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6.1. Quotients by finite unitary group representations. Let G be a finite
group and G → U(V ) a unitary representation. For g ∈ G, we let gV : V → V
denote the corresponding linear transformation. Let W := V × V , and then G
acts on W via gW : (u, v) 7→ (gV u, (g

−1
V )tv). We identify R[V ] with the subring

C[W ]− of C[W ] given by those elements fixed by complex conjugation, and then
by Molien’s formula [9], see also [3, 14], the Hilbert series of real regular invariants
is given by

(6.1) HilbR[V ]G|R(t) =
1

|G|
∑

g∈G

1

det(idW −g−1
W t)

.

Fix g ∈ G and choose a basis for V with respect to which gV is diagonal, say
gV = diag(λ1, . . . , λn) where |λi| = 1 for each i. Choosing the conjugate basis for V
and concatenating to form a basis forW , we have gW = diag(λ1, . . . , λn, λ1, . . . , λn).
It then follows that

(6.2)
1

det(idW −g−1
W t)

=

n∏

i=1

1

(1 − λit)(1− λ−1
i t)

.

In this case, each term of the sum in Equation (6.1) is symplectic of order 2n at
t = 1. Specifically, for λ ∈ C, define

fλ(t) :=
1

(1− λt)(1 − λ−1t)
.

Then by the above observations, we have that each term in Molien’s formula is
given by a product of fλi

(t). We claim the following.

Lemma 6.1. For nonzero λ ∈ C, the function fλ(t) is symplectic at t = 1 of order
2.

Proof. If λ = 1, then f1(t) = (1 − t)−2 and the result is trivial, so assume not.
Define

ρλ(y) =
λy

1 + 2λ+ λ2 + λy
,

and then by a simple computation,

1

(1 − t)2
ρλ

(
(1− t)2

t

)

= fλ(t).

The result then follows from Corollary 1.5. �

We remark that Lemma 6.1 can also be seen using the expansion

fλ(t) =

∞∑

k=−2

−λ(λk+1 − (−1)k+1)

(λ2 − 1)(λ− 1)k+1
(1− t)k

and verifying (Sm) directly, or by checking that fλ(t) satisfies (1.1) for a = 1 and
d = 2.

By Lemma 6.1 and Corollary 1.5, it follows that the expression in Equation (6.2)
is symplectic of order 2n at t = 1.
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6.2. Symplectic quotients by S1. We observe that Corollary 1.5 (in the case
a = 1) is a sufficient tool to verify Conjecture 1.2 for symplectic S1-quotients case-
by-case. When the action is generic, i.e. no two weights have the same absolute
value, an algorithm for computing the Hilbert series is described in [8, Section 4]
and has been implemented on Mathematica [18]. To check that a concrete Hilbert
series is symplectic of order d = dim(M0), we use the substitution

t 7→ 1

2

(

y + 2±
√

y(y + 4)
)

as a heuristic to find a rational function ρ(y) as in Corollary 1.5.
As an example, ifM0 is a reduced space associated to the weight vector (±1,±2,±3)

where not all weights have the same sign, then

HilbR[M0](t) =
t10 + t8 + 3t7 + 4t6 + 4t5 + 4t4 + 3t3 + t2 + 1

(1− t2)(1 − t3)(1− t4)(1− t5)
.

One easily checks that

ρ(y) =
y5 + 10y4 + 36y3 + 59y2 + 50y + 22

(y + 2)(y + 3)(y + 4)(y2 + 5y + 5)

satisfies the condition of Corollary 1.5.
Similarly, let S1 act on Cn with weight vector (±1, . . . ,±1) and let M0 denote

the symplectic quotient, which we note has dimension 2n − 2. We assume that
n ≥ 2 and not all weights have the same sign, for otherwise M0 is a point and the
result is trivial. By [8, Section 5.3], the Hilbert series R[M0] is given by

HilbR[M0](t) = (1− t2) 2F1(n, n, 1, t
2) =

1

(1− t2)2n−2

n−1∑

k=0

(
n− 1

k

)2

t2k

where 2F1 denotes the hypergeometric function; see [4]. Theorem 1.3 can be verified
directly using Corollary 1.5 for this case as follows.

Define

ρ(y) =
1

(y + 4)n−1

n−1∑

k=0

(
n− 1

k

)(
2k

k

)

yn−k−1.

Let (a)b denote the Pochhammer symbol, i.e. (a)b := a(a + 1) · · · (a + b − 1) for
b > 0 and (a)0 = 1, and note that (1/2)k = (2k)!/(4kk!). Applying the definition
of 2F1, we compute

1

(1− t)2n−2
ρ

(
(1− t)2

t

)

=
1

(1 + t)2n−2

n−1∑

k=0

(
n− 1

k

)(
2k

k

)(
t

(1− t)2

)k

=
1

(1 + t)2n−2

n−1∑

k=0

(1− n)k(1/2)k
(1)kk!

( −4t

(1− t)2

)k

=
1

(1 + t)2n−2 2F1(1 − n, 1/2, 1,−4t/(1− t)2).
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We then apply [4, page 113, Equation (36)] and continue

=
1

(1− t2)2n−2 2F1(1− n, 1− n, 1, t2) =
1

(1 − t2)2n−2

n−1∑

k=0

(1− n)k(1 − n)k
(1)kk!

t2k

=
1

(1 − t2)2n−2

n−1∑

k=0

(
n− 1

k

)2

t2k

= HilbR[M0](t).
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