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Abstract

We present a rigorous and relatively fast method for the computa-
tion of the complexity of a natural number (sequence A005245), and
answer some old and new questions related to the question in the title
of this note. We also extend the known terms of the related sequence
A005520.

Introduction.

The subject of this note was (more or less indirectly) initiated in 1953 by
K. Mahler and J. Popken [1]. We begin with a brief description of part of
their work: Given a symbol x, consider the set Vn of all formal sum-products
which can be constructed by using only the symbol x and precisely n − 1
symbols from {+,×} and an arbitrary number of parentheses “(” and “)”.

We have, for example, V1 = {x}, V2 = {x+ x, x× x},

V3 = {x+ (x+ x), x+ (x× x), x× (x+ x), x× (x× x)}.

More generally, for n ≥ 2,

Vn =

n−1⋃
k=1

(Vk + Vn−k) ∪
n−1⋃
k=1

(Vk × Vn−k).

Mahler and Popken’s question was the following: If x is a positive real
number, what is the largest number in Vn ? We restrict ourselves here to the
case x = 1. Then the answer is [1] Mn := maxVn = max1≤k≤n pn,k where

pn,k =
⌊n
k

⌋k(bnk c+1)−n(⌊n
k

⌋
+ 1
)n−kbnk c

.

This formula was simplified by Selfridge (see Guy [4, p. 189]) to M3m−1 =
2 · 3m−1, M3m = 3m, M3m+1 = 4 · 3m−1 for all m ≥ 1. Clearly M1 = 1.

Our problem is more or less the converse: Write a given natural number
n as a sum-product as described above, only using the five symbols 1, +, ×,
(, and ). (However, not all these signs need to be used.)
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It is clear that this is always possible: n = 1 + 1 + 1 + · · · + 1 (using n
1’s). Some further simple examples are

5 = 1 + (1 + 1)× (1 + 1), 6 = (1 + 1)× (1 + 1 + 1).

Our goal will, of course, be to minimize the number of 1’s used.

In a sum-product representation of n we will usually write 2 instead of
1 + 1, and 3 instead of 1 + 1 + 1. Also, we will replace the symbol × (times)
by a dot · or simply juxtapose. For example, the Fibonacci number F25 can
then be written with 35 1’s as follows

F25 = 75025 = (1 + 22)(1 + 22)(1 + 2(1 + 22)(1 + 22)(22 · 3(1 + 22)))

and 227 − 1 can be written with 56 as

227 − 1 = 134217727 = (1 + 2 · 3)(1 + 23 · 32)(1 + 29 · 33(1 + 2 · 32)).

All these examples are minimal in the sense defined in the next section.

1 Definitions and first properties.

Definition 1. The minimal number of 1’s needed to represent n as a sum-
product will be denoted by ‖n‖ and will be called the complexity of n.

It is clear that ‖1‖ = 1 and ‖2‖ = 2, but ‖11‖ 6= 2 (“pasting together”
two 1’s is not an allowed operation). One may verify directly that ‖3‖ = 3,
‖4‖ = 4, ‖5‖ = 5, ‖6‖ = 5, and by means of our program in Section 2 it
may be shown that

‖7‖ = 6, ‖8‖ = 6, ‖9‖ = 6, ‖10‖ = 7, ‖11‖ = 8, ‖12‖ = 7,

‖13‖ = 8, ‖14‖ = 8, ‖15‖ = 8, ‖16‖ = 8, ‖17‖ = 9, ‖18‖ = 8.

Note that

(a) ‖n‖ is not monotonic

(b) n may have different minimal representations (4 = 1 + 1 + 1 + 1 =
(1 + 1)(1 + 1)).

It is clear that we always have

‖a+ b‖ ≤ ‖a‖+ ‖b‖ and ‖a · b‖ ≤ ‖a‖+ ‖b‖

so that, for example, ‖2n‖ ≤ 2n. Also see Section 4.3.

Some useful bounds on the complexity are known

3

log 3
log n ≤ ‖n‖ ≤ 3

log 2
log n, n ≥ 2.
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The first can be found in Guy [4] and is essentially due to Selfridge. The
second appeared in Arias de Reyna [8] (this inequality can easily be proved.
Indeed, just think of the binary expansion of n.) Since it is known that
‖3k‖ = 3k for k ≥ 1, the first inequality cannot be improved. As for the
second one:

lim sup
n→∞

‖n‖/ log n

is not known, but we conjecture that it is considerably < 3
log 2 (≈ 4.328).

Our most extreme observation is ‖1439‖/ log 1439 ≈ 3.575503.

2 Computing the complexity.

For n ≥ 2 we may compute ‖n‖ from

‖n‖ = min
{

min
1≤j≤n/2

‖j‖+ ‖n− j‖ , min
d|n, 2≤d≤

√
n
‖d‖+ ‖n/d‖

}
. (1)

From this it is clear that, for large n, the computation of

min
1≤j≤n/2

‖j‖+ ‖n− j‖

is quite time consuming, if not eventually prohibitive. Rawsthorne [7, p. 14]
wrote This formula is very time consuming to use for large n, but we know
of no other way to calculate ‖n‖.

The principal goal of this note is to reduce the number of operations for
the computation of ‖n‖. (We can show that, instead of O(n2), our algorithm
needs only O(n1.345) operations for the computation of ‖n‖.)

According to the definition we have to compute

P := min
1≤k≤n/2

‖k‖+ ‖n− k‖ and T := min
d|n, 2≤d≤

√
n
‖d‖+ ‖n/d‖

and then set ‖n‖ = min(P, T ). It is clear that P ≤ ‖1‖+ ‖n− 1‖ so that P
is the result of the loop

P = 1 + ‖n− 1‖;
For k = 2 to k = n/2 do P = min(P , ‖k‖+ ‖n− k‖) .

Clearly this is cumbersome for large n. It would be very helpful to have a
relatively small number kMax such that P would just as well be the result
of the much shorter loop

P = 1 + ‖n− 1‖;
For k = 2 to k = kMax do P = min(P , ‖k‖+ ‖n− k‖) .
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Such a relatively small kMax may be found indeed by observing that

‖m‖ ≥ 3

log 3
logm for all m ≥ 1.

Indeed, we are through if kMax satisfies

‖k‖+ ‖n− k‖ ≥ 3

log 3

(
log k + log(n− k)

)
≥ 1 + ‖n− 1‖

for kMax + 1 ≤ k ≤ n/2.

This only requires to solve a simple quadratic inequality:

k2 − nk + exp(R) ≥ 0 where R =
log 3

3
(1 + ‖n− 1‖).

It is easily seen that, for n ≥ 7, we can safely take

kMax =
⌊1

2
+
n

2

(
1−

√
1− 4 exp(R− 2 log n)

)⌋
.

It will soon become clear that for large n this kMax is very small compared
to n/2. In our computations covering all n ≤ 905 000 000 we observed that
kMax ≤ 66 in all cases, with an average value of about 11.57.

However, we can not use this “trick” for the × part.

Mathematica program to compute Compl[n]:= ‖n‖.

Compl[1] = 1; Compl[2] = 2; Compl[3] = 3; Compl[4] = 4;

Compl[5] = 5; Compl[6] = 5; nDone = 6;

(* Our computed kMax is not real for n<= 6 *)

ComplChamp = 5;

(* = largest value of C[n] found so far.*)

n = nDone; While[0 == 0, n += 1;

(* First we deal with the PLUS-part. *)

P = 1 + Compl[n - 1]; R=N[Log[3] P/3];

kMax = Floor[1/2+n(1-Sqrt[ 1 - 4Exp[R - 2Log[n]]])/2];

For[k = 2 , k <= kMax , k++ ,

P = Min[ P , Compl[k] + Compl[n - k]]];

(* kMax < 2 causes no problem. *)

(* Now for the TIMES-part. *)

S = Divisors[n]; LSplus1 = Length[S] + 1; T = P;

(* From the PLUS-part we already

know that Compl[n] <= P *)
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For[k = 2 , k <= LSplus1/2 , k++ ,

d = S[[k]]; T = Min[ T , Compl[d] + Compl[n/d]]];

Compl[n] = T; (* There we are ! *)

(* We output the Champion Compl[n] and the

corresponding Compl[n] / Log[n] *)

If[T > ComplChamp,

ComplChamp = T;

Print["n = ", n, " kMax = ", kMax, " ComplChamp = ",

ComplChamp, " ||n||/Log [n] = ",

N[Compl[n]/Log[n]]]]]

A much faster Delphi-Object-Pascal version of this program, run on a
Toshiba laptop, computes ‖n‖ for all n ≤ 905 000 000 in about 2 hours and
40 minutes.

Note. In the range n ≤ 905 000 000 it suffices to take kMax = 6. This
value (kMax = 6) is necessary only for n = 353 942 783 and n = 516 743 639.
But this is hindsight!

3 Some records.

Definition 2. The number n is called highly complex if ‖k‖ < ‖n‖ for all
k < n.

P. Fabian (see [10]) has computed the first 58 highly complex numbers.
With our new method we have been able to add those with 59 ≤ ‖n‖ ≤ 67
(in boldface at the end of Table 1). There are no others in the range n ≤
905 000 000. We performed our computations on a Toshiba laptop, 2GB
RAM, 3.2 GHz, and could verify Fabian’s results within 138 seconds.

We denote by Fm the first number having complexity m (i. e. Fm is
the m-th highly complex number). S(m) denotes the set of numbers with
complexity m, its first element is Fm, and its maximal element Mm.

TABLE 1
Some data related to Highly Complex numbers

m Fm kMax ‖Fm‖/ logFm Mm #S(m)
1 1 1 1
2 2 2.8853900818 2 1
3 3 2.7307176799 3 1
4 4 2.8853900818 4 1
5 5 3.1066746728 6 2
6 7 3.0833900542 9 3
7 10 2 3.0400613733 12 2
8 11 2 3.3362591314 18 6
9 17 2 3.1766051148 27 6

10 22 2 3.2351545315 36 7
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m Fm kMax ‖Fm‖/ logFm Mm #S(m)
11 23 3 3.5082188779 54 14
12 41 2 3.2313900968 81 16
13 47 3 3.3764939282 108 20
14 59 3 3.4334448653 162 34
15 89 3 3.3417721474 243 42
16 107 3 3.4240500919 324 56
17 167 3 3.3216140197 486 84
18 179 4 3.4699559034 729 108
19 263 4 3.4098124155 972 152
20 347 4 3.4191980703 1458 214
21 467 5 3.4166734517 2187 295
22 683 5 3.3708752513 2916 398
23 719 6 3.4965771927 4374 569
24 1223 5 3.3759727432 6561 763
25 1438 7 3.4383125626 8748 1094
26 1439 10 3.5755032174 13122 1475
27 2879 7 3.3897461199 19683 2058
28 3767 8 3.4005202424 26244 2878
29 4283 10 3.4679002280 39366 3929
30 6299 9 3.4292979813 59049 5493
31 10079 8 3.3629090954 78732 7669
32 11807 10 3.4128062668 118098 10501
33 15287 12 3.4250989750 177147 14707
34 21599 12 3.4066763033 236196 20476
35 33599 11 3.3581994945 354294 28226
36 45197 12 3.3585893055 531441 39287
37 56039 14 3.3840009256 708588 54817
38 81647 14 3.3598108962 1062882 75619
39 98999 16 3.3904596729 1594323 105584
40 163259 14 3.3324743393 2125764 146910
41 203999 16 3.3535444722 3188646 203294
42 241883 20 3.3881324998 4782969 283764
43 371447 19 3.3527842988 6377292 394437
44 540539 18 3.3332520048 9565938 547485
45 590399 24 3.3863730003 14348907 763821
46 907199 23 3.3532298662 19131876 1061367
47 1081079 28 3.3828841470 28697814 1476067
48 1851119 23 3.3261034748 43046721 2057708
49 2041199 30 3.3725540867 57395628 2861449
50 3243239 28 3.3350935780 86093442 3982054
51 3840479 34 3.3638703158 129140163 5552628
52 6562079 28 3.3127733211 172186884 7721319
53 8206559 33 3.3290528266 258280326 10758388
54 11696759 33 3.3180085674 387420489 14994291
55 14648759 38 3.3333603679 516560652 20866891
56 22312799 36 3.3095614199 774840978 29079672
57 27494879 42 3.3275907432 1162261467
58 41746319 40 3.3053853809 1549681956
59 52252199 46 3.3199050612 2324522934
60 78331679 45 3.3009723129 3486784401
61 108606959 46 3.2967188492 4649045868
62 142990559 51 3.3016852310 6973568802
63 203098319 52 3.2933942627 10460353203
64 273985919 55 3.2941149607 13947137604
65 382021919 57 3.2893091281 20920706406
66 495437039 63 3.2965467292 31381059609
67 681327359 66 3.2940742853 41841412812
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4 Some questions solved and proposed.

One of the facts that our extended computation has revealed is that some-
times the minimum in equation (1) is assumed only by the sums and with a
j > 1. In the range n ≤ 905 000 000 there are only two such instances.

The first case is the prime number p = 353 942 783 (with j = 6). Indeed,
the representation

353 942 783 = 2 ∗ 3 + (1 + 22 ∗ 32) ∗ (2 + 34(1 + 2 ∗ 310))

proves that ‖p‖ ≤ 63, and one may verify that ‖p‖ = 63 and ‖p− 1‖ = 63,
so that

‖p‖ = ‖6‖+ ‖p− 6‖ = 5 + 58 = 63 < 64 = ‖p− 1‖+ 1.

In this case we thus have ‖p‖ = ‖k‖ + ‖p − k‖ with k = 6 (and no other
choice of k is adequate).

The second example is the number n = 516 743 639. It is the product of
two primes n = 353 · 1 463 863. We have

516 743 639 = 2 ∗ 3 + (1 + 2236)(2 + 311)

so that ‖n‖ ≤ 63. Also ‖n − 1‖ = 63, ‖353‖ = 19, ‖1463863‖ = 45,
‖n− 6‖ = 58 and finally ‖n‖ = 63, so that

1 + ‖n− 1‖ = ‖353‖+ ‖1463863‖ = 64 > ‖6‖+ ‖n− 6‖ = ‖n‖ = 63.

Hence ‖n‖ = ‖k‖+ ‖n−k‖ with k = 6 and no other choice of k is adequate,
as claimed.

Now we are sufficiently prepared to answer some questions asked by Guy.

4.1 Answering some questions of Guy

Q1: For which values a and b is ‖2a3b‖ = 2a+ 3b ?

A1: ‖2a3b‖ = 2a + 3b for all 2a3b ≤ 905 000 000. No counter examples
are known (to us).

Q2: Is it always true that ‖p‖ = 1 + ‖p− 1‖, if p is prime ?

A2: No.
The first prime for which this is not true is p = 353 942 783 with ‖p‖ = 63
and ‖p− 1‖ = 63. This is the only example in the range n ≤ 905 000 000.

Q3: Is it always true that 3 + ‖p‖ ≤ 1 + ‖3p− 1‖, if p is prime ?

A3: No.
There are many exceptions: p = 107, 347, 383, 467, 587, 683, 719, 887, . . .
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Q4: Is it always true that ‖2p‖ = min
{

2+‖p‖, 1+‖2p−1‖
}

, if p is prime ?

A4: Yes for 2p ≤ 905 000 000.
Putting L = 2 + ‖p‖ and R = 1 + ‖2p− 1‖, we found in this range

‖2p‖ = L (< R) in 12 317 371 cases

‖2p‖ = R (< L) in 3 629 305 cases

‖2p‖ = L = R in 8 031 758 cases.

Note that “(L < R) + (R < L) + (L = R)”= 23 978 434 = π(905 000 000/2)
where π(·) is the prime counting function.

Q5: When the value of ‖n‖ is of the form ‖a‖ + ‖b‖, with a + b = n, and
this minimum is not achieved as a product, is either a or b equal to 1 ?

A5: No.
We have only our two earlier mentioned ( counter ) examples: The prime p =
353942783 and n = 516743639 with prime factorization n = 353 · 1463863.

We have also searched in the range n ≤ 905 000 000 for those cases where
the minimum of ‖k‖+ ‖n− k‖ is not assumed for k = 1. In the cases with
k > 1 we mostly have k = 6, but sometimes we have k = 8. In all cases
‖n‖ = ‖k‖+ ‖n− k‖ = ‖n− 1‖. All cases found with k > 1 are (those with
k = 8 in boldface)

21080618, 63241604, 67139098, 116385658, 117448688, 126483083, 152523860, 189724562,

212400458, 229762259, 318689258, 348330652, 353942783, 366873514, 373603732, 379448999,

385159320, 404764540, 409108300, 460759642, 465722100, 477258719, 498197068, 511069678,

516743639, 519835084, 538858312, 545438698, 545790940, 546853138, 574842670, 575550972,

581106238, 590785918, 608504399, 612752632, 612752634, 613028608, 613175855, 614416318,

636135035, 637198964, 669796594, 673335934, 690342298, 690342300, 691406048, 692981240,

698494572, 817595279, 822093928, 833714854, 860101032, 861764920, 865717578.

Q6: There are two conflicting conjectures:

For large n, (3 + ε)
log n

log 3
ones suffice ?

There are infinitely many n, perhaps a set of positive density for which

(3 + c)
log n

log 3
ones are needed, for some c > 0 ?
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A6: To the first question: In view of the values of ‖n‖/ log n in Table 1,
the answer will most probably be no.

A6: To the second question: Here the answer might very well be yes. If
we solve for c in the equation

‖n‖ = (3 + c)
log n

log 3

we get a mean value c > 0.366 and a standard deviation σ < 0.047 in the
range 2 ≤ n ≤ 905 000 000. Also, the frequency of the event c > 0.3 is
> 92.5%.

Certainly lim infn ‖n‖/ log n = 3/ log 3 ≈ 2.73072. Our computations
suggest that lim supn ‖n‖/ log n ≤ 3.58 and that

lim
N→∞

1

N − 1

N∑
k=2

‖k‖
log k

> 3 (possibly even > 3.06).

4.2 Some other questions

Note that the sequence ‖n‖ is not monotonic. It is clear that ‖n−1‖−‖n‖ ≥
−1. So, one may pose the question: How large can ‖n− 1‖ − ‖n‖ be ? We
found the first values of n for which this difference is equal to k

Large values of ‖n− 1‖ − ‖n‖

n 6 12 24 108 720 1440 81648 2041200 612360000
k = ‖n− 1‖ − ‖n‖ 0 1 2 3 4 5 6 7 8

In the range n ≤ 905 000 000 there are no larger values of ‖n− 1‖−‖n‖.

Conjecture 1. lim sup
n→∞

(‖n− 1‖ − ‖n‖) = +∞.

Let n =
∏
p
aj
j be the standard prime-factorization of n. It is clear that

‖n‖ ≤ ∑
j ‖paj‖. So we define a function AddExc(n) =

∑
j ‖paj‖ − ‖n‖

(Additive Excess) and ask how large AddExc(n) can be. We found

First nk with AddExc(nk) = k

AddExc(n) 1 2 3 4 5 6 7
n 46 253 649 6049 69989 166213 551137

AddExc(n) 8 9 10 11
n 9064261 68444596 347562415 612220081

and there are no n ≤ 905 000 000 with a larger Additive Excess.
Suppose that in our program for ‖n‖ we start with ‖1‖ = 1 and ‖2‖ =

1 + x ( where x is any given real value ). Then the ‖n‖ will be functions of
x. What can be said about the resulting ‖n‖x ?
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Is it true that ‖pk‖ = k‖p‖ ? Yes for p = 3, but we have some doubts
about p = 2. See Section 4.3. We conjecture: False for all other primes.
Examples:

‖56‖ = ‖15 625‖ = 29 < 30 = 6‖5‖;
‖79‖ = ‖40 353 607‖ = 53 < 54 = 9‖7‖;
‖196‖ = ‖47 045 881‖ = 53 < 54 = 6‖19‖;
‖375‖ = ‖69 343 957‖ = 54 < 55 = 5‖37‖.

Our computations have revealed that for all primes 5 ≤ p ≤ 113 ( with
the possible exceptions p = 73, 97 and 109 ) it is not true that ‖pn‖ = n‖p‖
for all n ≥ 1.

We also wondered how often ‖∏ pe‖ =
∑
e‖p‖. We got the impression

that in the long run we have about equally often true and false.
Pegg [10] asks what the smallest number requiring 100 ones is? The

points (‖n‖, logFn) form approximately a straight line (similarly as the
Mahler-Popken-Selfridge points (m, logMm)). Various least squares fits of
the form A+Bt suggest that M100 should be situated between

11 857 300 000 000 and 27 345 300 000 000.

A real challenge for a supercomputer ! The largest number requiring 100
ones is M100 = 7 412 080 755 407 364.

Some other predictions are

F (68) ≈ 0.98 · 109, F (69) ≈ 1.35 · 109, F (70) ≈ 1.86 · 109,

F (71) ≈ 2.56 · 109, F (72) ≈ 3.53 · 109, F (73) ≈ 4.85 · 109,

F (74) ≈ 6.68 · 109, F (75) ≈ 9.20 · 109, F (80) ≈ 45.54 · 109.

4.3 Is it true that ‖2k‖ = 2k ?

Selfridge asked whether ‖2k‖ = 2k for all k ≥ 1. We have verified this for
1 ≤ k ≤ 29. Nevertheless, we will present an argument suggesting that the
answer may very well be no.

Given a natural number n with complexity ‖n‖ = a we denote by Ma

the greatest number with the same complexity, and we will call

CR (n) = 1− n

Ma

the complexity ratio of n.
We always have 0 ≤ CR(n) < 1. In a certain sense the numbers n with

a small complexity ratio are simple and those with a large complexity ratio
are complex. To illustrate this we present here some numbers comparable
in size but with different complexity ratios and their corresponding minimal
representations.
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n ‖n‖ CR(n) Minimal Expression

371447 43 0.94 1+2(1+2(1+22(1+22)(1+2(1+24(1+2432)))))

373714 40 0.82 2(1+23(1+22(1+2·3(1+2235))))

377202 39 0.76 3(1+2·3)2(1+(1+22)(1+2·32)33)
377233 38 0.65 (1+253)(1+2435)

360910 37 0.49 (1+2·33)(1+38)

422820 37 0.40 22(1+2432)36

492075 37 0.31 (1+22)239

413343 36 0.22 (1+2·3)310

531441 36 0 312

Let S be some (arbitrary but fixed) natural number (this will be the
span of n). Choose S not too small. For example, S = 1 000 000. Let

M = max{‖s‖ : 1 ≤ s ≤ S}. So, M is also fixed.

Now choose k such that 23k > S. Clearly there are infinitely many such
k.

Now let n satisfy 23k−S ≤ n < 23k, and let ‖n‖ = 3a+r with 0 ≤ r ≤ 2.
Then we have

CR (n) = 1− n

3a
, 1− n

4 · 3a−1 , 1− n

2 · 3a

for r = 0, 1 or 2, respectively. Therefore, in all cases we will have

CR (n) = 1− f n
3a

where f = 1 for r = 0, f = 3/4 for r = 1 and f = 1/2 for r = 2.

Now choose a small fixed p > 0, (p = 1/1000, say).
Let’s now consider the inequality

CR (n) + p < 1−
(8

9

)k
. (2)

For large k this comes very close to the event CR (n) + p ≤ 1 or CR (n) ≤
1− p. Quite extensive statistics on CR (n) suggest strongly that this event
is highly probable (for small p > 0). So, we venture to assume that we have
(2). Observe that this is equivalent to(

1− f n
3a

)
+ p ≤ 1−

(8

9

)k
.

Hence, since f ≤ 1 (also using previous assumptions)

23k

3a
>

n

3a
≥ f n

3a
≥ p+

(8

9

)k
= p+

23k

32k

so that 2k > a or 2k − a > 0.
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Also observe that

p+
(8

9

)k
≤ 1− CR (n) = f

n

3a
≤ 32k−a

n

32k
< 32k−a

23k

32k
= 32k−a

(8

9

)k
so that

p+
(8

9

)k
< 32k−a

(8

9

)k
or p

(9

8

)k
+ 1 < 32k−a.

Now choose k so large that 3M+r ≤ 3M+2 < p
(
9
8

)k
+ 1, without violating

previous assumptions.
Then we clearly have 2k − a > M + r.
Now we can conclude that

‖23k‖ = ‖n+ (23k − n)‖ ≤ ‖n‖+ ‖23k − n‖ ≤ 3a+ r + ‖some s ≤ S‖ ≤
≤ 3a+ r +M < 3a+ (2k − a) = 2a+ 2k < 2(2k) + 2k = 6k

so that
‖23k‖ < 6k = 3k‖2‖.

Hence, the answer to Selfridge’s question might very well be no.
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Figure 1: Distribution of CR (n) for 1 ≤ n ≤ 905 000 000
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