
Nested sets, set partitions and Kirkman-Cayley dissection
numbers

Giovanni Gaiffi

June 24, 2014

Abstract

In this paper we show a a proof by explicit bijections of the famous Kirkman-Cayley formula for the
number of dissections of a convex polygon. Our starting point is the bijective correspondence between
the set of nested sets made by k subsets of {1, 2, ..., n} with cardinality ≥ 2 and the set of partitions of
{1, 2, ..., n+ k− 1} into k parts with cardinality ≥ 2. A bijection between these two sets can be obtained
from Péter L Erdős and L.A Székely result in [10]; to make this paper self contained we describe another
explicit bijection that is a variant of their bijection.

1 Introduction
Let Dn+1,k−1 be the number of dissections of a convex polygon with n+ 1 labelled edges by k− 1 diagonals,
such that no two of the diagonals intersect in their interior. The formula for Dn+1,k−1 dates back to Kirkman
(see [19]) and Cayley (who gave the first complete proof in [3]):

Dn+1,k−1 =
1

k

(
n− 2

k − 1

)(
n+ k − 1

k − 1

)
In [23] and [25] one can find two elegant proofs of this formula via bijections. In this paper we show

another proof that consists in the description of two explicit bijections and is based on the combinatorics of
nested sets and set partitions. We also provide a proof of the classical formula (see Chapter 13 of [17]) for
the number of the dissections such that the types of the internal polygons are prescribed.

We start a more detailed outline of the content of the present paper by recalling the notion of nested
set. This notion appeared in geometry in connection with models of configuration spaces, first in Fulton and
MacPherson paper [13], then, with more generality, in De Concini and Procesi’s papers [5], [6] (and later in
[7]) on wonderful models of subspace arrangements.

Some generalizations of De Concini and Procesi’s definition successively appeared in various combinatorial
contexts. We refer the reader to [12] where the case of meet semilattices is dealt with, or to [21] and [22]
where some polytopes named nestohedra are constructed, and finally to [20] where one can find a comparison
among various definitions in the literature.

Let us denote by P2({1, 2, ..., n}) the subset of the power set P({1, 2, ..., n}) whose elements have cardi-
nality greater than or equal to 2. The following definition of nested set of P2({1, 2, ..., n}) is a special case
of the more general combinatorial definition.

Definition 1.1. Let n ≥ 2. A subset S of P2({1, 2, ..., n}) is a nested set if and only if it contains {1, 2, ..., n}
and for any I, J ∈ S we have that either I ⊂ J or J ⊂ I or I ∩ J = ∅. We will denote by S2(n, k) the set of
the nested sets S of P2({1, 2, ..., n}) such that |S| = k.

Now we observe that there is a bijective correspondence between S2(n, k) and the set T2(n+ k − 1, k) of
partitions of the set {1, 2, ..., n + k − 1} into k parts of cardinality greater than or equal to 2. A bijection
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between these two sets can be obtained as a particular case of the bijection between rooted trees on n leaves
and partitions proven by Péter L Erdős and L.A Székely (see Theorem 1 of [10]).

To make our paper self contained we show in Section 2 (Theorem 2.1) an explicit bijection between
S2(n, k) and T2(n+ k − 1, k) that is a variant of the bijection obtained from [10].

We notice that, for fixed n, the cardinalities |S2(n, k)| = |T2(n + k − 1, k)| are the Ward numbers (see
[27], and the sequence A134991 of OEIS) and can be read along the diagonals in the table of the 2-associated
Stirling numbers of the second kind at page 222 of [4]. They can as well be interpreted as the face numbers
in the tropical Grassmannian G(2, n + 1), i.e. the space of phylogenetic trees Tn+1 (see [1],[11],[24]). For a
description of generating formulas for these numbers one can also see Chapter 5 of [26] (in particular Section
5.2.5 and Exercise 5.40).

As it is well known (see Section 4, Figure 3), the dissections of a convex polygon with n + 1 edges by
k−1 diagonals are in bijection with the parenthesizations with k couples of parentheses of a list of n distinct
numbers a1, a2, ..., an (the maximal couple of parentheses is included and every couple of parentheses contains
at least two numbers). We will denote by S2((a1, a2, ..., an), k) the set of all these parenthesizations: as a
consequence of the remark above, |S2((a1, a2, ..., an), k)| = Dn+1,k−1.

Now, an ‘ordered’ variant of Theorem 2.1 (stated in Section 2 as Theorem 2.2) describes a bijec-
tion between

⋃
σ∈Sn

S2((aσ(1), aσ(2), ..., aσ(n)), k) and the set of admissible internally ordered partitions of

{1, 2, ..., n + k − 1} into k parts, i.e. partitions whose parts have cardinality ≥ 2 and are equipped with
an internal total ordering.

This leads to a proof (in Section 4, Corollary 4.1) of Kirkman-Cayley formula, since the enumeration of
the admissible internally ordered partitions is provided, again by an explicit bijection, by Theorem 3.1 in
Section 3.

Even if our proof is purely combinatorial, in the end of Section 4 we sketch out a geometric interpretation:
our argument corresponds to counting in two different ways the boundary components of a spherical model
of M0,n+1, the moduli space of real stable n+ 1-pointed curves of genus 0.

The classical formula for the number of dissections of a convex polygon with n + 1 edges such that the
types of the internal polygons are prescribed also follows, in this combinatorial picture, as an another quick
application of Theorem 2.2 (see Section 4, Corollary 4.2).

2 Nested sets and set partitions
For every i ∈ Z and k ∈ N let us denote by [i, i+ k] the interval of integers {i, i+ 1, ..., i+ k}.

As we pointed out in the Introduction, from Theorem 1 in [10] one obtains a bijection between S2(n, k)
and the set T2(n+ k − 1, k) of partitions of [1, n+ k − 1] into k parts of cardinality greater than or equal to
2. To make our paper self contained, the first part of this section is devoted to showing an explicit bijection
between S2(n, k) and T2(n + k − 1, k) that is a variant of the one that can be deduced from [10]. In the
second part of the present section an ‘ordered’ version of this bijection, that involves partitions into ordered
sets, is described (Theorem 2.2).

Definition 2.1. We fix the following (strict) partial ordering in P2({1, 2, ..., n}): given two sets I and J in
P2({1, 2, ..., n}) we put I < J if the minimal element in I is less than the minimal element in J .

Theorem 2.1. Let us consider two integers n, k with n ≥ 2, n − 1 ≥ k ≥ 1. There is a bijection between
S2(n, k) and the set T2(n+ k − 1, k) of partitions of [1, n+ k − 1] into k parts of cardinality greater than or
equal to 2.

Proof. Let us consider a nested set S ∈ S2(n, k). It can be represented by an oriented rooted tree on n leaves
labelled by the numbers 1, 2, ..., n in the following way. We consider the set S̃ = S ∪ {1} ∪ {2} ∪ · · · ∪ {n}.
Then the tree coincides with the Hasse diagram of S̃ viewed as a poset by the inclusion relation: the root
is {1, 2, ..., n} and the orientation goes from the root to the leaves, that are the vertices {1}, {2}, . . . , {n}
labelled respectively by the numbers 1, 2, ..., n.
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We observe that we can partition the set of vertices of the tree into levels: level 0 is made by the leaves,
and in general, level j is made by the vertices v such that the maximal length of an oriented path that
connects v to a leaf is j. We notice that, since the nested set has k elements, there are k internal vertices of
this tree, including the root. Now we can label the internal vertices of the tree in the following way. Let us
suppose that there are q vertices in level 1. These vertices correspond, by the nested property, to pairwise
disjoint elements of P2({1, 2, ..., n}) and therefore we can totally order them using the ordering of Definition
2.1. Then we label them with the numbers from n+ 1 to n+ q (the label n+ 1 goes to the minimum, while
n+ q goes to the maximum).

At the same way, if there are t vertices in level 2, we can label them with the numbers from n+ q + 1 to
n+ q+ t , and so on. At the end of the process, the root is labelled with the number n+k: we have obtained
an oriented labelled tree with n + k vertices, where at least two edges stem from each internal vertex and
the leaves are labelled by the numbers from 1 to n.

We can now associate to such a tree a partition in T2(n+ k− 1, k) by assigning to every internal vertex v
(including the root) the set of the labels of the vertices covered by v. An example of this process is provided
by Figure 1.

We have therefore described a map φ : S2(n, k)→ T2(n+ k − 1, k). Let us now describe its inverse.

1 2 3 54 6 7 8 9

13

10 11

14

12

15

{1,2,3} {4,6} {5,7} {8,10} {11,12} {9,13,14}

S = { {1,2,3}, {4,6}, {5,7} ,{1,2,3,8},
          {4,5,6,7}, {1,2,3,4,5,6,7,8,9} }

Figure 1: A nested set S with 6 elements in P2({1, 2, ..., 9}) (top of the picture), its associated oriented
rooted tree and its associated partition in T2(14, 6) (bottom of the picture).

Let us consider a partition P in T2(n+ k − 1, k) with k > 1 (the case k = 1 is trivial). We observe that,
since there are k parts in the partition, at least one of these parts is a subset of [1, n]. Let Ã1, Ã2, ..., Ãi
(with i ≤ k − 1) be the parts that are subsets of [1, n]; here we have indexed these sets according to the
ordering of Definition 2.1.

Now, if i = k− 1 the set S = {{1, 2, ..., n}, Ã1, Ã2, ..., Ãi} is the only one nested set in S2(n, k) such that
φ(S) = P . We observe that in the tree associated with this nested set the vertices in level 1 correspond to
the sets Ã1, Ã2, ..., Ãi.

If i < k − 1 we notice that at least one of the remaining k − i parts in the initial partition P is a subset
of the complement of [n+ i+ 1, n+ k− 1] in [1, n+ k− 1], since the set [n+ i+ 1, n+ k− 1] has cardinality

3



k − i− 1.
Let us then denote by Ai+1, ..., Ai+s (with 1 ≤ s ≤ k − 1 − i) these remaining parts included in the

complement of [n+ i+ 1, n+ k − 1]. For every t = 1, ..., s we associate to Ai+t the set

Ãi+t = (Ai+t ∩ [1, n]) ∪
⋃

h∈Ai+t∩[n+1,n+i]

Ãh−n

The indices have been chosen in such a way that, according to the ordering of Definition 2.1, we have
Ãi+1 < Ãi+2 < · · · < Ãi+s.

Now, if i+ s = k−1 the process stops, and the set S = {{1, 2, ..., n}, Ã1, Ã2, ..., Ãi, Ãi+1, Ãi+2, · · · , Ãi+s}
is the only one nested set in S2(n, k) such that φ(S) = P . We observe that in the tree associated with this
nested set the vertices in level 1 correspond to the sets Ã1, Ã2, ..., Ãi and the vertices in level 2 correspond
to the sets Ãi+1, Ãi+2, · · · , Ãi+s.

If i+ s < k−1 we can continue and we can construct, level after level, the only one nested set in S2(n, k)
such that φ(S) = P .

Remark 2.1. We notice that this bijection introduces on S2(n, k) an action of the symmetric group Sn+k−1.
As one can easily check, when k > 3 this action is not compatible with the usual Sn action. A geometric
application of this remark will be discussed in the paper [2].

We now state a variant of the theorem above, where nested sets of ordered lists and internally ordered
partitions come into play.

Definition 2.2. Let us consider a list of distinct numbers a1, a2, ..., an (with n ≥ 2), and a parenthesization
of a1, a2, ..., an that includes the maximal couple of parentheses (a1, a2, ..., an) and such that every couple
of parentheses contains at least two numbers. We will call this parenthesization a nested set of the list
a1, a2, ..., an, and we will denote by S2((a1, a2, ..., an), k) the set whose elements are the nested sets S of the
list a1, a2, ..., an with |S| = k. Furthermore, we will denote by OS2((a1, a2, ..., an), k) the set:

OS2((a1, a2, ..., an), k) =
⋃
σ∈Sn

S2((aσ(1), aσ(2), ..., aσ(n)), k)

We observe that if {a1, a2, ..., an} = {1, 2, .., n} we can associate to a nested set of the list a1, a2, ..., an
a nested set in S2(n, k) in the following obvious way: we associate to every couple of parentheses the set of
the numbers contained in it.

Definition 2.3. An internally ordered k-partition (with k ≥ 1) of a finite set X is given by

• an unordered partition P = {P1, P2, ..., Pk} of X into k parts;

• a complete ordering of the elements of Pi for every 1 ≤ i ≤ k.

If the cardinality of all the subsets P1, P2, ..., Pk is greater than or equal to 2 we say that the internally
ordered partition is admissible.

Theorem 2.2. Let us consider two integers n, k with n ≥ 2, n − 1 ≥ k ≥ 1. There is a bijection between
OS2((1, 2..., n), k) and the set IT2(n+k−1, k) of the admissible internally ordered k-partitions of [1, n+k−1].

Proof. Let us put a1 = 1, a2 = 2, ..., an = n. Starting from a nested set S in S2((aσ(1), aσ(2), ..., aσ(n)), k) we
can construct, in a similar way as in the proof of Theorem 2.1, an oriented rooted labelled tree.

The only difference from the construction described in the proof of Theorem 2.1 is the following one: we
draw the leaves labelled by aσ(1), aσ(2), ..., aσ(n) from left to right, and, since we are dealing with a nested
set of the list aσ(1), aσ(2), ..., aσ(n), in the picture of the tree no two of the edges intersect in their interiors.

Finally we construct an internally ordered admissible k-partition of [1, n+k−1] according to the following
rule. The parts P1, ..., Pk of the partition are produced by the internal vertices of the tree. The part Pi is
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obtained from the vertex labelled by n + i and it is an ordered set constructed in this way: if, from left
to right, the vertices covered by the vertex labelled by n + i are labelled by b1, b2, ..., br, then Pi is the set
{b1, b2, ..., br} ordered by b1 ≺ b2 ≺ · · · ≺ br.

We have described a map Γ : OS2((1, 2, ..., n), k) → IT2(n + k − 1, k). The inverse map is constructed
by associating a tree to an internally ordered admissible k-partition {P1, ..., Pk} of [1, n+ k− 1]. The idea is
essentially the same as in the proof of Theorem 2.1, with the only difference that we keep into account the
internal orderings of the sets P1, ..., Pk and we draw the edges from left to right according to this ordering.
At the end we produce a nested set of a permutation of the list 1, 2, ..., n as it is illustrated in Figure 2.

12 354 6 7 89

13

10
11

14

12

15

{2,3,1} {4,6} {7,5} {8,10} {11,12} {14,9,13}

S = (((4,6),(7,5)),9,(8,(2,3,1)))

Figure 2: The internally ordered partition of [1, 14] into 6 parts that is on top of the picture (the internal
orderings ≺ are obtained reading from left to right), produces, via its associated oriented rooted tree, the
parenthesization of the list 4, 6, 7, 5, 9, 8, 2, 3, 1 written on the bottom of the picture.

Remark 2.2. A slight modification of the proof of Theorem 2.1 shows that, as in [10], we can extend the
bijection in the statement to a bijection between the set of rooted trees that have k vertices (including the
root) and n labelled leaves and the set of all the partitions of [1, n + k − 1] into k parts. A similar remark
applies to Theorem 2.2.

3 Enumeration of internally ordered k-partitions
In the preceding section, Theorem 2.2 has pointed out an interesting combinatorial aspect of the admissible
internally ordered k-partitions of [1, n + k − 1]. In this section we are going to count them by showing an
explicit bijection. It is useful to add to these partitions a further structure: we mark one of the parts, that
becomes a distinguished part.

Definition 3.1. A distinguished internally ordered k-partition (with k ≥ 1) of a finite set X is an admissible
internally ordered k-partition where one of the parts of the partition is distinguished. We will denote by X1

this distinguished set, therefore the partition is made by the parts X1, P2, ..., Pk.
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Remark 3.1. In the definition above, the partition of X −X1 provided by the sets Pi is unordered. Let pi1
be, for every i, the smallest element of Pi with respect to its internal ordering. From now on we will consider
the case when X ⊂ Z and we will assign, by convention, the indices to the sets Pi in such a way that if i < j
than pi1 < pj1.

Theorem 3.1. Given two integers n, k with n ≥ 2, n − 1 ≥ k ≥ 1, there is a bijection between the set of
distinguished internally ordered k-partitions of [1, n+ k − 1] and the triples (I, σ,D) where

• I = i1, i2, ..., in is a sublist of cardinality n extracted from the list L = 1, 2, ..., n+ k − 1,

• σ is a permutation in the symmetric group Sn,

• D is a sublist of cardinality k−1 extracted from the list iσ(2), ..., iσ(n−1) (in particular, for every n ≥ 2,
if k = 1 then D is the empty list).

Therefore the number of distinguished internally ordered k-partitions of [1, n+ k − 1] is

n!

(
n− 2

k − 1

)(
n+ k − 1

k − 1

)
Proof. Let us consider a triple (I, σ,D) as in the statement of the theorem.

Then I = i1, i2, ..., in (with i1 < i2 < · · · < in) and we denote by J = j1, j2, ..., jk−1 the sublist of L made
by the numbers that do not belong to I (notice that j1 < j2 < · · · < jk−1). Now we use σ to permute the
list I, obtaining a list

σI = iσ(1), iσ(2), ..., iσ(n)

To fix the notation we put D = iσ(d1), ..., iσ(dk−1) with d1 ≥ 2, dk−1 ≤ n− 1.
Let us show how to associate to (I, σ,D) a distinguished internally ordered k-partition of [1, n+ k − 1].

First we put X1 to be equal to the set {iσ(n), iσ(1), ..., iσ(d1−1)} equipped with the ordering iσ(n) ≺ iσ(1) ≺
· · · ≺ iσ(d1−1). Then we build the sets

P2 = {j1, iσ(d1), iσ(d1+1), ..., iσ(d2−1)}

P3 = {j2, iσ(d2), iσ(d2+1), ..., iσ(d3−1)}

...

Pk = {jk−1, iσ(dk−1), iσ(dk−1+1), ..., iσ(n−1)}.

and for every 2 ≤ i ≤ k we order the elements of Pi as displayed above (for instance, in P2 we have
j1 ≺ iσ(d1) ≺ iσ(d1+1) ≺ · · · ≺ iσ(d2−1)).

We notice that the sets P2, ..., Pk form an unordered partition of [1, n + k − 1] −X1, indexed according
to Remark 3.1. In conclusion, starting from the triple (I, σ,D) we have produced a distinguished internally
ordered k-partition of [1, n+ k − 1] (see also the Example 3.1 at the end of this section). It is easy to check
that this map is injective.

Let us now show that all the distinguished internally ordered k-partitions of [1, n+k−1] can be obtained
starting from a triple. If k = 1 this is trivial. Let then k ≥ 2 and let X1, P2, ..., Pk be such a partition. More
in detail, let X1 be the ordered set {x1, x2, ..., x|X1|}, and, for every i with 2 ≤ i ≤ k, let Pi be the ordered
set Pi = {pi1, pi2, ..., pi|Pi|}. According to the convention described in Remark 3.1, the indices of the Pi’s
satisfy p21 < · · · < pk1. Let us denote by J the list p21, . . . , pk1 and by I = i1, ..., in the sublist of L that is
complementary to J . Then we choose the permutation σ ∈ Sn defined as the permutation such that the list

σI = iσ(1), ..., iσ(n−1), iσ(n)

coincides with the list

x2, .., x|X1|, p22, p23, ..., p2|P2|, p32, p33, ..., p3|P3|, p42, ..., p4|P4|, ..., pk,2, ..., pk|Pk|, x1
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As a last step, we extract from the list σI, after cutting out its first element and its last element, the
sublist of cardinality k − 1

D = iσ(|X1|), iσ(|X1|+|P2|−1), iσ(|X1|+|P2|+|P3|−2), ..., iσ(|X1|+|P2|+···+|Pk−1|−(k−2))

(in particular, if k = 2 this list is D = iσ(|X1|)).
We observe that, by construction, the triple (I, σ,D) is associated with the distinguished internally

ordered partition X1, P2, ..., Pk.

Example 3.1. Let n = 7, k = 4, and let us consider the triple (I, σ,D) where:

• I =
i1
1 ,
i2
2 ,
i3
3 ,
i4
4 ,
i5
6 ,
i6
9 ,

i7
10 is a sublist of L = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

• σ is the permutation in S7 such that

σI =
iσ(1)

2 ,
iσ(2)

6 ,
iσ(3)

1 ,
iσ(4)

10 ,
iσ(5)

3 ,
iσ(6)

9 ,
iσ(7)

4

• D =
iσ(3)

1 ,
iσ(5)

3 ,
iσ(6)

9 is a sublist of the list 6, 1, 10, 3, 9 (i.e. the list σI without its initial and final term).

Let us associate to this triple a distinguished internally ordered partition X1, P2, P3, P4 of [1, 10] according
to the bijection of Theorem 3.1.

The set X1 is {iσ(7), iσ(1), iσ(2)}, i.e. X1 = {4, 2, 6}, ordered from left to right: 4 ≺ 2 ≺ 6.
Now we notice that the complement of I = 1, 2, 3, 4, 6, 9, 10 in L = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, is the list

J = 5, 7, 8. Then P2 = {5, iσ(3), iσ(4)}, i.e. P2 = {5, 1, 10} equipped with the ordering 5 ≺ 1 ≺ 10. In an
analogous way one finds P3 = {7, 3} and P4 = {8, 9}.

4 Kirkman-Cayley dissection numbers and numbers of dissections
of a prescribed type

As it is well known,Dn+1,k−1 coincides with |S2((1, 2, ..., n), k)|: an explicit bijection between S2((1, 2, ..., n), k)
and the set of the dissections of a convex polygon with n+1 labelled edges by k−1 non intersecting diagonals
is illustrated by Figure 3.

0
1

2

3

4

5

(2,3)

(4
,5
)

((2,3
),(4,

5))

(1,((2,3),(45)))

Figure 3: This dissection of the hexagon with 3 diagonals produces the parenthesized list (1, ((2, 3), (4, 5)))
that has 4 couples of parentheses.

In view of this, a proof of Kirkman-Cayley formula via bijections immediately follows as a corollary of
the Theorems 2.2 and 3.1.
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Corollary 4.1 (A proof of Kirkman-Cayley formula).

Dn+1,k−1 =
1

k

(
n− 2

k − 1

)(
n+ k − 1

k − 1

)
Proof. We can count the cardinality of OS2((1, 2, ..., n), k) in two different ways. On one hand it is equal to

n!Dn+1,k−1

since there are n! different lists based on the set of numbers {1, 2, ..., n} and for every list we take into account
all its nested sets with k couples of parentheses.

On the other hand, by the Theorem 2.2, the cardinality of OS2((1, 2, ..., n), k) is equal to the number of
admissible internally ordered k-partitions of [1, n + k − 1]. This can be obtained dividing by k the number
of distinguished internally ordered k-partitions of [1, n+ k − 1].

Therefore by Theorem 3.1 we have:

n!Dn+1,k−1 =
1

k
n!

(
n− 2

k − 1

)(
n+ k − 1

k − 1

)
that, after dividing by n!, gives Kirkman-Cayley formula.

As another application of Theorem 2.2 we show a proof of the formula that counts the number of
dissections of a prescribed type. This is a classical result (for another proof see for instance Chapter 13 of
[17]; see also Section 2.3. of [9]).

Definition 4.1. Given a dissection of a convex polygon with n + 1 labelled edges by k − 1 diagonals, such
that no two of the diagonals intersect in their interior, we say that the dissection is of type (im1

1 , im2
2 , ..., imss ),

with 3 ≤ i1 < i2 < · · · < is ≤ n + 1, if the dissection is made by mj polygons with ij edges, for every
j = 1, 2, ..., s.

Remark 4.1. As one can immediately check, the numbers that appear in the above definition satisfy the

relations
s∑
j=1

mj = k and
s∑
j=1

ijmj = n+ 2k − 1.

Corollary 4.2 (A proof of the formula for the dissections of a prescribed type). Let n, k be two integers
such that n ≥ 2 and n − 1 ≥ k ≥ 1. Given a convex polygon with n + 1 labelled edges, the number of its
dissections of type (im1

1 , im2
2 , ..., imss ) by k − 1 diagonals is

(n+ k − 1)!

n! m1!m2! · · ·ms!
(1)

Proof. Let us consider a convex polygon with n + 1 edges labelled counterclockwise from 0 to n, as in the
example of Figure 3. As we know, a dissection of this polygon by k − 1 diagonals corresponds to a nested
set of the list 1, 2, ..., n and therefore, in view of Theorem 2.2, to an admissible internally ordered k-partition
of [1, n + k − 1]. By construction of the bijection of Theorem 2.2, each part of this partition describes one
of the polygons of the dissection, and if it has cardinality a this polygon has a + 1 edges. Therefore each
dissection of type (im1

1 , im2
2 , ..., imss ) corresponds to an admissible internally ordered partition of [1, n+k− 1]

that has mj parts of cardinality ij − 1 for every j = 1, ..., s.
Let us then denote by A the set of all the admissible internally ordered partitions of [1, n + k − 1] that

have mj parts of cardinality ij − 1, for every j = 1, ..., s. A quick and elementary computation shows that

|A| = (n+ k − 1)!

m1!m2! · · ·ms!
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Now by Theorem 2.2 we know that each of the partitions in A corresponds to a nested set of a list that is
a permutation of the list 1, 2, ..., n. Then, by Sn-symmetry, the partitions in A that correspond to a nested
set of the list 1, 2, ..., n, i.e., to a dissection of the prescribed type, are exactly

1

n!
|A| = 1

n!

(n+ k − 1)!

m1!m2! · · ·ms!

Even if our proof of Kirkman-Cayley formula is purely combinatorial, here we sketch out a geometric
interpretation. Let us consider the real moduli space M0,n+1 of stable n+ 1-pointed genus 0 curves.

In [14], [15] some spherical models of subspace arrangements are described, in the spirit of De Concini
and Procesi construction of wonderful models in [6]. These spherical models are manifolds with corners,
and the minimal spherical model associated with the root arrangement of type An−1 is made by the disjoint
union of n! copies of the (n − 2)-dimensional Stasheff’s associahedron (for a concrete realization see [16]).
Furthermore, there is a surjective map Γ from this minimal spherical model to the minimal real compact De
Concini-Procesi model of type An−1, that is isomorphic to M0,n+1.

This map Γ sends the k − 1-codimensional faces of the associahedra into the k − 1-codimensional strata
of the boundary of M0,n+1. We notice that these strata are indexed by the elements of S2(n, k) and the
resulting tessellation coincides with the one previously described in [18], [8] and [9].

The picture above leads to our computation since one observes that the k− 1-codimensional faces in the
minimal spherical model are indexed by OS2((1, 2, ..., n), k). On one hand they are n!Dn+1,k−1, given that
Dn+1,k−1 counts the k − 1-codimensional faces of a (n − 2)-dimensional Stasheff’s associahedron. On the
other hand, one can count them by regrouping the ones whose images via Γ lie in the same isomorphism
class of boundary strata of M0,n+1. Now, two strata belong to the same isomorphism class if and only if
their associated nested sets give rise, under the bijection of Theorem 2.1, to two partitions whose parts have
the same sizes. This remark points out the bijection, shown in Theorem 2.2, between OS2((1, 2, ..., n), k)
and IT2(n+ k− 1, k). Then the Kirkman-Cayley formula needs only a last step, i.e. the computation of the
cardinality of IT2(n+ k − 1, k), that is provided by the bijection of Theorem 3.1.
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