
 
Abstract: In the work are defined the concepts semi-

canonical and canonical binary matrix. What is described is 
an algorithm solving the combinatorial problem for finding 
the semi-canonical matrices in the set k

nΛ  consisting of all 

n n×  binary matrices having exactly k  1’s in every row and 
every column without perambulating all elements. In the 
described algorithm bitwise operations are substantially used. 
In this way it becomes easier to find the solution to the 
problem for receiving one representative from every 
equivalence class regarding the introduced in the article 
equivalence relation in the set k

nΛ . The last problem is 
equivalent to the problem for finding all canonical matrices 
in k

nΛ . 
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1. INTRODUCTION 
A big class of programming problems has the following 
general formulation: 

Problem 1. 1The set is given. Compose a computer 
program receiving the set ( )δ   from all elements of 

  possessing given properties. It is desirable to do this 
without perambulating all elements of the set .  

Variation of the problem above can be formulated in 
the following way:  

Problem 2. 2The set is given and an equivalence 
relation is defined   in  . Compose a computer 
program receiving exactly one representative of every 
equivalence class regarding  , i.e. construct the factor-
set /

. Moreover without the necessity to perambulate 

all elements of  .  

It is very often necessary to solve problems which 
solve simultaneously problems 1and 2, i.e. to find the 
intersection /( )δ ∩ 



of two sets, the first of which 
solves problem 1, and the second – problem 2. 

We presume that there is a procedure which with a 
given element of   answers in the affirmative or in the 
negative whether this element belongs or respectively does 
not belong to /( )δ ∩ 



. The solution to such a 

problem in real time is complicated if the set   is too 
big, i.e. if its cardinality is an exponential function of one 
or more parameters. In this case the time necessary to 
perambulate all elements of the set and to check for every 
element whether it possesses the necessary properties is 
inefficiently large during the growth of the parameters. 

One solution to the problems described above, which 
significantly increases the efficiency of the computer 
program, is to find a set ⊂  , such that | |<| |   

and /( )δ ∩ ⊆ ⊂   


, and the problem for 

finding   is algorithmically an easily solved problem. 
Then we will check whether they possess the given 
properties not for all elements of  , but only for the 
elements of  . The ideal case is when 

/= ( )δ ∩  


. Unfortunately this is not always an 
easy problem from an algorithmic point of view. One 

criterion for efficiency may be the fraction 
| |
| |



, where 

the efficiency is inversely proportional to the value of this 
fraction. In the current work we will use this approach. 

The algorithms solving the formulated problem are 
known as algorithms for isomorphism-free generations of 
combinatorial objects. Different approaches to creating 
such algorithms are discussed in [2]. 

The aim of the present article is to use the bitwise 
operations [6]-[8] in order to solve a problem from this 
class. The work is a continuation and addition to [7]. 

2. SEMI-CANONICAL AND CANONICAL BINARY 
MATRICES  

Binary (or boolean, or (0,1)-matrix) is called a matrix 
whose elements belong to the set = {0,1} . 

Let n  and m  be positive integers. With n m×  we will 
denote the set of all n m×  binary matrices, while with 

=n n n×   we will denote the set of all square n n×  
binary matrices. 
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Definition 1. 3Let n mA ×∈ .With ( )r A we will 
denote the ordered n -tuple 

1 2, , , ,nx x x〈 〉  

where 0 2 1m
ix≤ ≤ − , = 1,2,i n  and ix  is the 

integer written in binary notation with the help of the i -th 
row of A . 

Similarly with ( )c A  we will denote the ordered m -
tuple 

1 2, , , my y y〈 〉 , 

where 0 2 1n
jy≤ ≤ − , = 1,2,j m  and jy  is the 

integer written in binary notation with the help of the j -th 
column of A .   

We consider the sets: 

{ }
{ }

1 2= , , , | 0 2 1, = 1,2,

= ( )|

m
n m n i

n m

x x x x i n

r A A
×

×

〈 〉 ≤ ≤ −

∈

 


and 

{ }
{ }

1 2= , , , | 0 2 1, = 1,2,

= ( )|

n
n m m j

n m

y y y y j m

c A A
×

×

〈 〉 ≤ ≤ −

∈

 


 

With ''<'' we will denote the lexicographic orders in 

n m×  and in n m×  
It is easy to see that in definition 1 two mappings are 

described: 

: n m n mr × ×→   

and 

: ,n m n mc × ×→   

which are bijective and therefore 

.n m n m n m× × ×≅ ≅    

In [3] it is proven that the representation of the 
elements of n using ordered n -tuples of natural numbers 
leads to the creation of faster and memory-saving 
algorithms. 

Definition 2. 4Let n mA ×∈ ,  

1 2( ) = , , , ,nr A x x x〈 〉  

1 2( ) = , , , .mc A y y y〈 〉  

We will call the matrix A semi-canonical, if 

1 2 nx x x≤ ≤ ≤  

and 

1 2 .my y y≤ ≤ ≤  

Proposition 1. 5Let = [ ]ij n mA a ×∈  be a semi-

canonical matrix. Then there exist integers ,i j , such that 

1 i n≤ ≤ , 1 j m≤ ≤  and 

11 12 1 1 1 1 2 1= = = = 0, = = = = 1,j j j ma a a a a a+ +     (1) 

11 21 1 11 2 1 1= = = = 0, = = = = 1.i i i na a a a a a+ +    (2) 

Proof. Let  

1 2( ) = , , nr A x x x〈 〉  

and  

1 2( ) = , , mc A y y y〈 〉 . 

We assume that there exist integers p  and q , such that 

1 <p q m≤ ≤ , 1 = 1pa  and 1 = 0qa . But in this case 

>p qy y , which contradicts the condition for semi-

canonicity of the matrix A . We have proven (1). 
Similarly we prove (2) as well. 

  

Let n  be a positive integer. With  

=n n n n×⊂    
we will denote the set of all permutation matrices, i.e. the 
set of all n n×  binary matrices having exactly one 1 in 
every row and every column. The isomorphism 

,n n≅   

is true, where with n  we have denoted the symmetric 
group, i.e. the group of all one-to-one mappings of the set  

[ ] = {1,2, }n n  

in itself. 
As it is well known [4], [5], the multiplication of an 

arbitrary real or complex matrix A from the left with a 
permutation matrix (if the multiplication is possible) leads 
to dislocation of the rows of the matrix A . The 
multiplication of A from the right with a permutation 
matrix leads to the dislocation of the columns of A . 

Definition 3. 6Let , n mA B ×∈ . We will say that the 

matrices A  and B  are equivalent and we will write 

,A B                                (3) 

if there exist permutation matrices nX ∈  and mY ∈ , 
such that 

=A XBY                                  (4) 

In other words A B  if A  is received from B  after 
dislocation of some of the rows and the columns of B .   

Obviously the introduced relation is an equivalence 
relation. 



With  

n n⊂   

we denote the set of all transpositions in n , i.e. the set of 
all n n×  permutation matrices, which multiplying from 
the left an arbitrary n m×  matrix swaps the places of 
exactly two rows, while multiplying from the right an 
arbitrary k n×  matrix swaps the places of exactly two 
columns. 

Theorem 1. 7Let A  be an arbitrary matrix from 

n m× . Then: 

a) If  

1 2, , , s nX X X ∈   

 are such that 

1 2 2 3( ) < ( ) < < ( ) < ( ),s s sr X X X A r X X X A r X A r A  

 

then 

1 2( ) < ( ).sc X X X A c A  

b) If  

1 2, , , t mY Y Y ∈   

 are such that 

1 2 2 3( ) < ( ) < < ( ) < ( ),t t tc YY Y A c Y Y Y A c X A r A  
 

then 

1 2( ) < ( ).tr YY Y A r A  

Proof. a) Induction by s . Let = 1s  and let nX ∈  
be a transposition which multiplying an arbitrary matrix 

= [ ]ij n mA a ×∈  from the left swaps the places of the 

rows of A  with numbers u  and v  (1 <u v n≤ ≤ ), 
while the remaining rows stay in their places. In other 
words if 
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where {0,1}ija ∈ , 1 i n≤ ≤ , 1 j m≤ ≤ . 
Let 

1 2( ) = , , , , , , , .u v nr A x x x x x〈 〉    

Then 

1 2( ) = , , , , , , , .v u nr XA x x x x x〈 〉    

Since ( ) < ( )r XA r A  then according to the properties 

of the lexicographic order <v ux x . According to 

definition 1 the representation of ux  and vx  in binary 
notation with an eventual addition if necessary with 
unessential zeroes in the beginning is respectively as 
follows: 

1 2= ,u u u umx a a a  

1 2= .v v v vmx a a a  

Since <v ux x , then there exists an integer 

{1,2, , }r m∈  , such that =uj vja a  when <j r , 

= 1ura  and = 0vra . 
Let 

1 2( ) = , , , mc A y y y〈 〉  

and 

1 2( ) = , , , mc XA z z z〈 〉 .  

Then =j jy z  when <j r , while the representation 

of ry and rz in binary notation with an eventual addition if 
necessary with unessential zeroes in the beginning is 
respectively as follows:  

1 2 1= ,r r r u r ur vr nry a a a a a a−    

1 2 1= .r r r u r vr ur nrz a a a a a a−    

Since = 1ura , = 0vra , then <r rz y , whence it 

follows that ( ) < ( )c XA c A . 



We assume that for every s -tuple of transpositions 

1 2, , , s nX X X ∈   and for every matrix n mA ×∈  
from  

1 2 2( ) < ( ) < < ( ) < ( )s s sr X X X A r X X A r X A r A  
 

it follows that 

1 2( ) < ( )sc X X X A c A  

and let 1s nX + ∈  be such that  

1 2 1 2 1 1( ) < ( ) < < ( ) < ( ).s s s sr X X X X A r X X A r X A r A+ + +  

 

According to the induction assumption  

1( ) < ( )sc X A c A+ .  

We put  

1 1= sA X A+ . 

According to the induction assumption from 

1 2 1 2 1 1 1( ) < ( ) < < ( ) < ( )s s sr X X X A r X X A r X A r A  

 

it follows that 

1 2 1 1 2 1 1( ) = ( ) < ( ) =s s sc X X X X A c X X X A c A+ 

1= ( ) < ( ),sc X A c A+  

with which we have proven a). 
b) is proven similarly to a). 

  

Corollary 1. 8Let n mA ×∈ . Then  ( )r A  is a 
minimal element about the lexicographic order in the set 
{ ( ) | }r B B A  if and only if ( )c A  is a minimal 
element about the lexicographic order in the set 
{ ( ) | }c B B A . 

 
Corollary 1 gives us grounds to formulate the 

following definition: 

Definition 4. We will call the matrix n mA ×∈  

canonical matrix, if ( )r A  is a minimal element about the 

lexicographic order in the set { ( ) | }r B B A , and 

therefore ( )c A  is a minimal element about the 

lexicographic order in the set { ( ) | }c B B A . 

From definition 4 follows that in every equivalence 
class about the relation " "  (definition 3) there exists 
only one canonical matrix. 

If a matrix n mA B ×∈  is a canonical matrix, then it is 

easy to see that A  is a semi-canonical matrix, but as we 
will see in the next example the opposite statement is not 
always true. 

Example 1. 9We consider the matrices: 

0 1 1 1
1 0 0 1

=
1 0 1 0
1 1 1 0

A

 
 
 
 
 
   

and 

0 0 1 1
0 1 0 1

=
1 1 0 1
1 1 1 0

B

 
 
 
 
 
 

 

It is not difficult to see that A B . Furthermore  

( ) = 7,9,10,14r A 〈 〉 , 

( ) = 7,9,11,12c A 〈 〉 , 

( ) = 3,5,13,14r B 〈 〉 , 

( ) = 3,7,9,19c B 〈 〉 . 

Therefore A  and B  are two equivalent to each other 
semi-canonical matrices. 

  

From example 1 follows that in an equivalence class it 
is possible to exist more than one semi-canonical element. 

Let   be an arbitrary subset of n , such that if 

A∈  and B A , then B∈ . Then obviously 
there exists only one canonical matrix in every equivalence 
class in the factor-set /



. Therefore the number of the 

canonical matrices   will give us the cardinality of the 
factor-set /



. 

3. FORMULATION OF THE PROBLEM  
Definition 5. 10The square n n×  binary matrices in every 
row and every column on which there exist exactly k  1’s 
we will call k

nΛ -matrices, where with k
nΛ  we will also 

denote the set of these matrices.  

Let n  and k  be positive integers. We consider the 
sets:   

n - the set of all square n n×  binary matrices;  

k
nΛ - the set of all square n n×  binary matrices having 

exactly k  1’s in every row and every column; 

n = 1 2 1 2{ | ( ) = , , , , }n n n nA r A x x x x x x∈ 〈 〉 ≤ ≤ ≤ ⊂   ; 

n = 1 2 1 2{ | ( ) = , , , , }n n n nA c A y y y y y y∈ 〈 〉 ≤ ≤ ≤ ⊂   ; 

k
n = k

n nΛ ∩ - the set of all semi-canonical matrices 

in k
nΛ .  

Let us consider the following problem:   

Problem 3.11 Describe and implement an algorithm 
receiving the set k

n .  



By solving problem 3 we will facilitate to a minimum 

the solution to the problem for finding /( , ) = k
nn kµ Λ


, 

i.e. the number of the equivalence classes according to 
definition 3 relation. The problem for finding the number 

( , )n kµ  of the equivalence classes for every n  and k  is 
an open scientific problem. We will solve problem 3 by 
substantially using the properties of the bitwise operations 
with the aim of increasing the efficiency of the algorithm 
created by us.  

4. Description and implementation of the 
algorithm by using bitwise operations 
In the description of algorithms we will use the C++ 
programming language. 

As it is well known, there are exactly n2  nonnegative 
integers, which are presented with no more than n  digits 
in binary notation. We need to select all of them, which 
have exactly k  1's in binary notation. Their number is 

n

k
n

2<<







. We will describe an algorithm that directly 

receives the necessary elements without checking whether 
any integer 1]2[0, −∈ nm  satisfies the conditions. We 
will remember the result in the array p[] of size 









k
n

c = . Moreover, the obtained array will be sorted in 

ascending order and there are no duplicate elements. The 
algorithm is based on the fact that the set of all ordered 
m -tuples 

1 2= { , , , | = {0,1}}m
m ib b b b〈 〉 ∈  , 

mi ,1,2,=  , nm ,1,2,=  , is partitioned into two 
disjoint subsets 

1 2=m M M∪ ,  1 2 =M M∩ ∅ , 

where 

1 1 2 1= { , , , | = 0}mM b b b b〈 〉  

and 

2 1 2 1= { , , , | = 1}mM b b b b〈 〉 . 

The described below recursive algorithm will use the 
bitwise operations. 

void DataNumb(int p[], unsigned int n, int k, int& c)  
{ 

if (k<=0)  
{  

c = 1;  
p[0] = 0;  

}  
else if (k==n)  

{  
c = 1;  

p[0] = (1<<n)-1;    //  p[0]= 12 −n  
}  
else 
{  

int p1[10000], p2[10000];  
int c1, c2;  
DataNumb(p1, n-1, k, c1);  
DataNumb(p2, n-1, k-1, c2);  
c = c1+c2;  
for (int i=0; i<c1; i++)  
      p[i] = p1[i];  
for (int i=0; i<c2; i++)  
      p[c1+i] = p2[i] | 1<<(n-1);  

}  
} 

We will also use bitwise operations in constructing the 
next two functions. 

The function int n_tuple(int[], int, int, int) gets all 








 −+
k
kn

t
1

=  (combinations with repetitions) ordered 

n -tuples 〉〈 nxxx ,,, 21  , where cxxx n <0 21 ≤≤≤≤  , 

and for each ni ,1,2,=  , ix  are elements of sorted 

array p[] of size c . As a result, the function returns the 
number of semi-canonical elements. In her work, she will 
refer to function bool check(int[], int). This function 
refers to the use of each received n -tuple. It examines 
whether this is a semi-canonical element and prints it if the 
answer is yes. 

bool check(int x[], int n, int k)  
{  

int yj;      // the integer representing column (n-j)  
int y0=0;        // the integer preceding column j  
int b;  
for (int j=n-1; j>=0; j--)  

{  
yj=0; 
for (int i=0; i<n; i++)  
{  

b = 1<<j & x[i] ? 1 : 0;  
yj |= b << (n-1-i);  

}  
if (yj<y0 || (NumbOf_1(yj) != k)) return 

false;  
y0 = yj;  

}     

// We have received a canonical element. Print it: 

for (int i=0; i<n; i++) cout<<x[i]<<" ";  
cout<<'\n';  
return true;  

}  

int n_tuple(int p[], int n, int k, int c)  
{  

int t=0;  
int a[n], x[n];  



int indx = n-1;  
for (int i=0; i<n; i++) a[i]=0;  
while (indx >= 0)  

{  
for (int i=indx+1; i<n; i++)   a[i] = a[indx];  
for (int i=0; i<n; i++)   x[i] = p[a[i]]; 
if(check(x,n,k)) t++;  
indx = n-1;  
a[indx]++;  
while (indx>=0 && a[indx]==c)  

{  
indx--;  
a[indx]++;  
}  

}  
return t;  

}  

Here we will omit the description of the function 
main(). 

 

 

5. Conclusion – some results from the work of 
the algorithm 
Let n  and k  be natural numbers. Let us denote with 

( , )n kν  the number of all semi-canonical matrices in 
k
nΛ , i.e.  

( , ) = = .k k
n n nn kν Λ ∩   

Here for = 2,3,4k  and 5  we will indicate the 

beginning of the sequences { } =
( , )

n k
n kν ∞

 for some not 
big values of the parameter n . With the help of the 
computer program described in section 4, the following 
results have been obtained:  

{ } { }=2
( , 2) = 1,1,2,5,13,42,155,636,2889,14321,76834,443157,

n
nν ∞



 (5) 

{ } { }=3
( ,3) = 1,1,3,25,272,4070,79221,1906501,

n
nν ∞


   (6) 

{ } { }=4
( , 4) = 1,1,5,161,7776,626649,

n
nν ∞

       (7) 

{ } { }=5
( ,5) = 1,1,8,1112,287311,

n
nν ∞

                (8) 

The integer sequences (5), (6), (7) and (8) are indicated 
in the Encyclopedia of Integer Sequences [1], respectively 
under the numbers A229161, A229162, A229163 and 
A229164. All of them are presented by N. J. A. Sloane, 
who cites the work [9]. 

The sequence (5) is commented by Brendan McKay 
and is supplemented by R. H. Hardin with the elements 

(12,2) = 76 834ν  and (13,2) = 443157ν . 
In the sequence (6) the element 

(10,3) = 1906 501ν  is added by R. H. Hardin. 
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