

Abstract: In the work are defined the concepts semi-

canonical and canonical binary matrix. What is described is
an algorithm solving the combinatorial problem for finding
the semi-canonical matrices in the set k

nΛ consisting of all

n n× binary matrices having exactly k 1’s in every row and
every column without perambulating all elements. In the
described algorithm bitwise operations are substantially used.
In this way it becomes easier to find the solution to the
problem for receiving one representative from every
equivalence class regarding the introduced in the article
equivalence relation in the set k

nΛ . The last problem is
equivalent to the problem for finding all canonical matrices
in k

nΛ .

Keywords: binary matrix, equivalence relation, bitwise
operations, C++ programming language, isomorphism-free
generations

1. INTRODUCTION
A big class of programming problems has the following
general formulation:

Problem 1. 1The set is given. Compose a computer
program receiving the set ()δ  from all elements of

 possessing given properties. It is desirable to do this
without perambulating all elements of the set .

Variation of the problem above can be formulated in
the following way:

Problem 2. 2The set is given and an equivalence
relation is defined  in  . Compose a computer
program receiving exactly one representative of every
equivalence class regarding  , i.e. construct the factor-
set /

. Moreover without the necessity to perambulate

all elements of  .

It is very often necessary to solve problems which
solve simultaneously problems 1and 2, i.e. to find the
intersection /()δ ∩ 



of two sets, the first of which
solves problem 1, and the second – problem 2.

We presume that there is a procedure which with a
given element of  answers in the affirmative or in the
negative whether this element belongs or respectively does
not belong to /()δ ∩ 



. The solution to such a

problem in real time is complicated if the set  is too
big, i.e. if its cardinality is an exponential function of one
or more parameters. In this case the time necessary to
perambulate all elements of the set and to check for every
element whether it possesses the necessary properties is
inefficiently large during the growth of the parameters.

One solution to the problems described above, which
significantly increases the efficiency of the computer
program, is to find a set ⊂  , such that | |<| | 

and /()δ ∩ ⊆ ⊂   


, and the problem for

finding  is algorithmically an easily solved problem.
Then we will check whether they possess the given
properties not for all elements of  , but only for the
elements of  . The ideal case is when

/= ()δ ∩  


. Unfortunately this is not always an
easy problem from an algorithmic point of view. One

criterion for efficiency may be the fraction
| |
| |



, where

the efficiency is inversely proportional to the value of this
fraction. In the current work we will use this approach.

The algorithms solving the formulated problem are
known as algorithms for isomorphism-free generations of
combinatorial objects. Different approaches to creating
such algorithms are discussed in [2].

The aim of the present article is to use the bitwise
operations [6]-[8] in order to solve a problem from this
class. The work is a continuation and addition to [7].

2. SEMI-CANONICAL AND CANONICAL BINARY
MATRICES

Binary (or boolean, or (0,1)-matrix) is called a matrix
whose elements belong to the set = {0,1} .

Let n and m be positive integers. With n m× we will
denote the set of all n m× binary matrices, while with

=n n n×  we will denote the set of all square n n×
binary matrices.

On an Algorithm for Isomorphism-Free
Generations of Combinatorial Objects

Krasimir Yordzhev

Faculty of Mathematics and Natural Sciences
South-West University, Blagoevgrad, Bulgaria

yordzhev@swu.bg

mailto:yordzhev@swu.bg

Definition 1. 3Let n mA ×∈ .With ()r A we will
denote the ordered n -tuple

1 2, , , ,nx x x〈 〉

where 0 2 1m
ix≤ ≤ − , = 1,2,i n and ix is the

integer written in binary notation with the help of the i -th
row of A .

Similarly with ()c A we will denote the ordered m -
tuple

1 2, , , my y y〈 〉 ,

where 0 2 1n
jy≤ ≤ − , = 1,2,j m and jy is the

integer written in binary notation with the help of the j -th
column of A .

We consider the sets:

{ }
{ }

1 2= , , , | 0 2 1, = 1,2,

= ()|

m
n m n i

n m

x x x x i n

r A A
×

×

〈 〉 ≤ ≤ −

∈

 


and

{ }
{ }

1 2= , , , | 0 2 1, = 1,2,

= ()|

n
n m m j

n m

y y y y j m

c A A
×

×

〈 〉 ≤ ≤ −

∈

 



With ''<'' we will denote the lexicographic orders in

n m× and in n m×
It is easy to see that in definition 1 two mappings are

described:

: n m n mr × ×→ 

and

: ,n m n mc × ×→ 

which are bijective and therefore

.n m n m n m× × ×≅ ≅  

In [3] it is proven that the representation of the
elements of n using ordered n -tuples of natural numbers
leads to the creation of faster and memory-saving
algorithms.

Definition 2. 4Let n mA ×∈ ,

1 2() = , , , ,nr A x x x〈 〉

1 2() = , , , .mc A y y y〈 〉

We will call the matrix A semi-canonical, if

1 2 nx x x≤ ≤ ≤

and

1 2 .my y y≤ ≤ ≤

Proposition 1. 5Let = []ij n mA a ×∈ be a semi-

canonical matrix. Then there exist integers ,i j , such that

1 i n≤ ≤ , 1 j m≤ ≤ and

11 12 1 1 1 1 2 1= = = = 0, = = = = 1,j j j ma a a a a a+ +  (1)

11 21 1 11 2 1 1= = = = 0, = = = = 1.i i i na a a a a a+ +  (2)

Proof. Let

1 2() = , , nr A x x x〈 〉

and

1 2() = , , mc A y y y〈 〉 .

We assume that there exist integers p and q , such that

1 <p q m≤ ≤ , 1 = 1pa and 1 = 0qa . But in this case

>p qy y , which contradicts the condition for semi-

canonicity of the matrix A . We have proven (1).
Similarly we prove (2) as well.



Let n be a positive integer. With

=n n n n×⊂  
we will denote the set of all permutation matrices, i.e. the
set of all n n× binary matrices having exactly one 1 in
every row and every column. The isomorphism

,n n≅ 

is true, where with n we have denoted the symmetric
group, i.e. the group of all one-to-one mappings of the set

[] = {1,2, }n n

in itself.
As it is well known [4], [5], the multiplication of an

arbitrary real or complex matrix A from the left with a
permutation matrix (if the multiplication is possible) leads
to dislocation of the rows of the matrix A . The
multiplication of A from the right with a permutation
matrix leads to the dislocation of the columns of A .

Definition 3. 6Let , n mA B ×∈ . We will say that the

matrices A and B are equivalent and we will write

,A B (3)

if there exist permutation matrices nX ∈ and mY ∈ ,
such that

=A XBY (4)

In other words A B if A is received from B after
dislocation of some of the rows and the columns of B .

Obviously the introduced relation is an equivalence
relation.

With

n n⊂ 

we denote the set of all transpositions in n , i.e. the set of
all n n× permutation matrices, which multiplying from
the left an arbitrary n m× matrix swaps the places of
exactly two rows, while multiplying from the right an
arbitrary k n× matrix swaps the places of exactly two
columns.

Theorem 1. 7Let A be an arbitrary matrix from

n m× . Then:

a) If

1 2, , , s nX X X ∈ 

 are such that

1 2 2 3() < () < < () < (),s s sr X X X A r X X X A r X A r A  

then

1 2() < ().sc X X X A c A

b) If

1 2, , , t mY Y Y ∈ 

 are such that

1 2 2 3() < () < < () < (),t t tc YY Y A c Y Y Y A c X A r A  

then

1 2() < ().tr YY Y A r A

Proof. a) Induction by s . Let = 1s and let nX ∈
be a transposition which multiplying an arbitrary matrix

= []ij n mA a ×∈ from the left swaps the places of the

rows of A with numbers u and v (1 <u v n≤ ≤),
while the remaining rows stay in their places. In other
words if

11 12 1 1

21 22 2 2

1 2

1 2

1 2

=

r m

r m

u u ur um

v v vr vm

n n nr nm

a a a a
a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   

 

   

 

   

 

then

11 12 1 1

21 22 2 2

1 2

1 2

1 2

= ,

r m

r m

v v vr vm

u u ur um

n n nr nm

a a a a
a a a a

a a a a
XA

a a a a

a a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   

 

   

 

   

 

where {0,1}ija ∈ , 1 i n≤ ≤ , 1 j m≤ ≤ .
Let

1 2() = , , , , , , , .u v nr A x x x x x〈 〉  

Then

1 2() = , , , , , , , .v u nr XA x x x x x〈 〉  

Since () < ()r XA r A then according to the properties

of the lexicographic order <v ux x . According to

definition 1 the representation of ux and vx in binary
notation with an eventual addition if necessary with
unessential zeroes in the beginning is respectively as
follows:

1 2= ,u u u umx a a a

1 2= .v v v vmx a a a

Since <v ux x , then there exists an integer

{1,2, , }r m∈  , such that =uj vja a when <j r ,

= 1ura and = 0vra .
Let

1 2() = , , , mc A y y y〈 〉

and

1 2() = , , , mc XA z z z〈 〉 .

Then =j jy z when <j r , while the representation

of ry and rz in binary notation with an eventual addition if
necessary with unessential zeroes in the beginning is
respectively as follows:

1 2 1= ,r r r u r ur vr nry a a a a a a−  

1 2 1= .r r r u r vr ur nrz a a a a a a−  

Since = 1ura , = 0vra , then <r rz y , whence it

follows that () < ()c XA c A .

We assume that for every s -tuple of transpositions

1 2, , , s nX X X ∈  and for every matrix n mA ×∈
from

1 2 2() < () < < () < ()s s sr X X X A r X X A r X A r A  

it follows that

1 2() < ()sc X X X A c A

and let 1s nX + ∈ be such that

1 2 1 2 1 1() < () < < () < ().s s s sr X X X X A r X X A r X A r A+ + +  

According to the induction assumption

1() < ()sc X A c A+ .

We put

1 1= sA X A+ .

According to the induction assumption from

1 2 1 2 1 1 1() < () < < () < ()s s sr X X X A r X X A r X A r A  

it follows that

1 2 1 1 2 1 1() = () < () =s s sc X X X X A c X X X A c A+ 

1= () < (),sc X A c A+

with which we have proven a).
b) is proven similarly to a).



Corollary 1. 8Let n mA ×∈ . Then ()r A is a
minimal element about the lexicographic order in the set
{ () | }r B B A if and only if ()c A is a minimal
element about the lexicographic order in the set
{ () | }c B B A .

Corollary 1 gives us grounds to formulate the

following definition:

Definition 4. We will call the matrix n mA ×∈

canonical matrix, if ()r A is a minimal element about the

lexicographic order in the set { () | }r B B A , and

therefore ()c A is a minimal element about the

lexicographic order in the set { () | }c B B A .

From definition 4 follows that in every equivalence
class about the relation " " (definition 3) there exists
only one canonical matrix.

If a matrix n mA B ×∈ is a canonical matrix, then it is

easy to see that A is a semi-canonical matrix, but as we
will see in the next example the opposite statement is not
always true.

Example 1. 9We consider the matrices:

0 1 1 1
1 0 0 1

=
1 0 1 0
1 1 1 0

A

 
 
 
 
 
 

and

0 0 1 1
0 1 0 1

=
1 1 0 1
1 1 1 0

B

 
 
 
 
 
 

It is not difficult to see that A B . Furthermore

() = 7,9,10,14r A 〈 〉 ,

() = 7,9,11,12c A 〈 〉 ,

() = 3,5,13,14r B 〈 〉 ,

() = 3,7,9,19c B 〈 〉 .

Therefore A and B are two equivalent to each other
semi-canonical matrices.



From example 1 follows that in an equivalence class it
is possible to exist more than one semi-canonical element.

Let  be an arbitrary subset of n , such that if

A∈ and B A , then B∈ . Then obviously
there exists only one canonical matrix in every equivalence
class in the factor-set /



. Therefore the number of the

canonical matrices  will give us the cardinality of the
factor-set /



.

3. FORMULATION OF THE PROBLEM
Definition 5. 10The square n n× binary matrices in every
row and every column on which there exist exactly k 1’s
we will call k

nΛ -matrices, where with k
nΛ we will also

denote the set of these matrices.

Let n and k be positive integers. We consider the
sets:

n - the set of all square n n× binary matrices;

k
nΛ - the set of all square n n× binary matrices having

exactly k 1’s in every row and every column;

n = 1 2 1 2{ | () = , , , , }n n n nA r A x x x x x x∈ 〈 〉 ≤ ≤ ≤ ⊂   ;

n = 1 2 1 2{ | () = , , , , }n n n nA c A y y y y y y∈ 〈 〉 ≤ ≤ ≤ ⊂   ;

k
n = k

n nΛ ∩ - the set of all semi-canonical matrices

in k
nΛ .

Let us consider the following problem:

Problem 3.11 Describe and implement an algorithm
receiving the set k

n .

By solving problem 3 we will facilitate to a minimum

the solution to the problem for finding /(,) = k
nn kµ Λ


,

i.e. the number of the equivalence classes according to
definition 3 relation. The problem for finding the number

(,)n kµ of the equivalence classes for every n and k is
an open scientific problem. We will solve problem 3 by
substantially using the properties of the bitwise operations
with the aim of increasing the efficiency of the algorithm
created by us.

4. Description and implementation of the
algorithm by using bitwise operations
In the description of algorithms we will use the C++
programming language.

As it is well known, there are exactly n2 nonnegative
integers, which are presented with no more than n digits
in binary notation. We need to select all of them, which
have exactly k 1's in binary notation. Their number is

n

k
n

2<<







. We will describe an algorithm that directly

receives the necessary elements without checking whether
any integer 1]2[0, −∈ nm satisfies the conditions. We
will remember the result in the array p[] of size









k
n

c = . Moreover, the obtained array will be sorted in

ascending order and there are no duplicate elements. The
algorithm is based on the fact that the set of all ordered
m -tuples

1 2= { , , , | = {0,1}}m
m ib b b b〈 〉 ∈  ,

mi ,1,2,=  , nm ,1,2,=  , is partitioned into two
disjoint subsets

1 2=m M M∪ , 1 2 =M M∩ ∅ ,

where

1 1 2 1= { , , , | = 0}mM b b b b〈 〉

and

2 1 2 1= { , , , | = 1}mM b b b b〈 〉 .

The described below recursive algorithm will use the
bitwise operations.

void DataNumb(int p[], unsigned int n, int k, int& c)
{

if (k<=0)
{

c = 1;
p[0] = 0;

}
else if (k==n)

{
c = 1;

p[0] = (1<<n)-1; // p[0]= 12 −n
}
else
{

int p1[10000], p2[10000];
int c1, c2;
DataNumb(p1, n-1, k, c1);
DataNumb(p2, n-1, k-1, c2);
c = c1+c2;
for (int i=0; i<c1; i++)
 p[i] = p1[i];
for (int i=0; i<c2; i++)
 p[c1+i] = p2[i] | 1<<(n-1);

}
}

We will also use bitwise operations in constructing the
next two functions.

The function int n_tuple(int[], int, int, int) gets all








 −+
k
kn

t
1

= (combinations with repetitions) ordered

n -tuples 〉〈 nxxx ,,, 21  , where cxxx n <0 21 ≤≤≤≤  ,

and for each ni ,1,2,=  , ix are elements of sorted

array p[] of size c . As a result, the function returns the
number of semi-canonical elements. In her work, she will
refer to function bool check(int[], int). This function
refers to the use of each received n -tuple. It examines
whether this is a semi-canonical element and prints it if the
answer is yes.

bool check(int x[], int n, int k)
{

int yj; // the integer representing column (n-j)
int y0=0; // the integer preceding column j
int b;
for (int j=n-1; j>=0; j--)

{
yj=0;
for (int i=0; i<n; i++)
{

b = 1<<j & x[i] ? 1 : 0;
yj |= b << (n-1-i);

}
if (yj<y0 || (NumbOf_1(yj) != k)) return

false;
y0 = yj;

}

// We have received a canonical element. Print it:

for (int i=0; i<n; i++) cout<<x[i]<<" ";
cout<<'\n';
return true;

}

int n_tuple(int p[], int n, int k, int c)
{

int t=0;
int a[n], x[n];

int indx = n-1;
for (int i=0; i<n; i++) a[i]=0;
while (indx >= 0)

{
for (int i=indx+1; i<n; i++) a[i] = a[indx];
for (int i=0; i<n; i++) x[i] = p[a[i]];
if(check(x,n,k)) t++;
indx = n-1;
a[indx]++;
while (indx>=0 && a[indx]==c)

{
indx--;
a[indx]++;
}

}
return t;

}

Here we will omit the description of the function
main().

5. Conclusion – some results from the work of
the algorithm
Let n and k be natural numbers. Let us denote with

(,)n kν the number of all semi-canonical matrices in
k
nΛ , i.e.

(,) = = .k k
n n nn kν Λ ∩ 

Here for = 2,3,4k and 5 we will indicate the

beginning of the sequences { } =
(,)

n k
n kν ∞

 for some not
big values of the parameter n . With the help of the
computer program described in section 4, the following
results have been obtained:

{ } { }=2
(, 2) = 1,1,2,5,13,42,155,636,2889,14321,76834,443157,

n
nν ∞



 (5)

{ } { }=3
(,3) = 1,1,3,25,272,4070,79221,1906501,

n
nν ∞


 (6)

{ } { }=4
(, 4) = 1,1,5,161,7776,626649,

n
nν ∞

 (7)

{ } { }=5
(,5) = 1,1,8,1112,287311,

n
nν ∞

 (8)

The integer sequences (5), (6), (7) and (8) are indicated
in the Encyclopedia of Integer Sequences [1], respectively
under the numbers A229161, A229162, A229163 and
A229164. All of them are presented by N. J. A. Sloane,
who cites the work [9].

The sequence (5) is commented by Brendan McKay
and is supplemented by R. H. Hardin with the elements

(12,2) = 76 834ν and (13,2) = 443157ν .
In the sequence (6) the element

(10,3) = 1906 501ν is added by R. H. Hardin.

References
[1] The On-Line Encyclopedia of Integer Sequences

(OEIS). http://oeis.org/
[2] I. Bouyukliev, “About Algorithms for Isomorphism-

Free Generations of Combinatorial Objects,”
Mathematics and education in mathematics, (38), pp.
51-60, 2009.

[3] [3] H. Kostadinova, K. Yordzhev “A Representation
of Binary Matrices,” Mathematics and education in
mathematics, (39), pp. 198-206, 2010.

[4] [4] V. N. Sachkov, V. E. Tarakanov, Combinatorics
of Nonnegative Matrices of Nonnegative Matrices,
Amer. Math. Soc., 1975.

[5] [5] V. E. Tarakanov, Combinatorial problems and
(0,1)-matrices. Moscow, Nauka, 1985 (in Russian).

[6] [6] K. Yordzhev, “An example for the use of bitwise
operations in programming,” Mathematics and
education in mathematics, (38), pp. 196-202, 2009.

[7] [7] K. Yordzhev, “Bitwise Operations Related to a
Combinatorial Problem on Binary Matrices,” I. J.
Modern Education and Computer Science, (4), pp.
19-24, 2013.

[8] [8] K. Yordzhev, The Bitwise Operations Related to
a Fast Sorting Algorithm. International Journal of
Advanced Computer Science and Applications
(IJACSA), Vol. 4, No. 9, 2013, pp. 103-107.

[9] [9] K. Yordzhev, “Fibonacci sequence related to a
combinatorial problem on binary matrices,” preprint,
arXiv:1305.6790, 2013.

AUTHOR

Associate professor Dr. Krasimir
Yordzhev is a lecturer in computer
science, programming and discrete
mathematics at the Department of
Computer Science, Faculty of
Mathematics and Natural Sciences, South-
West University, Blagoevgrad, Bulgaria.
Dr. Yordzhev received his PhD degree in
the Faculty of Cybernetics, Kiev State

University, Ukraine. He is the author of more than 70 scientific
publications in the field of discrete mathematics, combinatorics,
combinatorial algorithms and programming.

http://oeis.org/

	1. Introduction
	2. Semi-canonical and canonical binary matrices
	3. Formulation of the problem

