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ON THE LATTICE PROGRAMMING GAP OF THE GROUP

PROBLEMS

ISKANDER ALIEV

Abstract. Given a full-dimensional lattice Λ ⊂ Zk and a cost vector l ∈ Qk
>0

,
we are concerned with the family of the group problems

min{l · x : x ≡ r(mod Λ), x ≥ 0} , r ∈ Zk.(0.1)

The lattice programming gap gap(Λ, l) is the largest value of the minima in
(0.1) as r varies over Zk. We show that computing the lattice programming
gap is NP-hard when k is a part of input. We also obtain lower and upper
bounds for gap(Λ, l) in terms of l and the determinant of Λ.

1. Introduction and statement of results

Consider the integer programming problem

min{c · x : Ax = b, x ≥ 0 , x is integer} .(1.1)

Gomory [11] defined a group relaxation of (1.1) as follows. Let B and N be the
index sets of basic and nonbasic variables for an optimal basic solution to the linear
programming relaxation min{c ·x : Ax = b, x ≥ 0} of (1.1). Then the problem (1.1)
can be written as

min{cB · xB + cN · xN : ABxB +ANxN = b , xB, xN ≥ 0 ,

xB , xN are integer}(1.2)

and a relaxation of (1.2) is obtained by removing the restriction xB ≥ 0:

min{cB · xB + cN · xN : ABxB +ANxN = b , xN ≥ 0 ,

xB , xN are integer} .(1.3)

Hence (1.3) is a lower bound for (1.1) and it can be used in any branch and bound
procedure.

The constraints ABxB + ANxN = b in (1.3) can be written in the equivalent
form xB = A−1

B b − (A−1
B AN )xN . Thus, given any nonnegative integral vector

xN , the vector xB is integer if and only if (A−1
B AN )xN ≡ A−1

B b(mod 1). Setting

c′N = cN − cBA
−1
B AN , we can rewrite (1.3) as

min{c′N · xN : (A−1
B AN )xN ≡ A−1

B b(mod 1) , xN ≥ 0 , xN is integer} .(1.4)

The program (1.4) is called the Gomory’s group relaxation for (1.1).
In this paper we fix a cost vector c ∈ Qn and for a matrix A ∈ Zd×n of rank d

and b ∈ Sg(A) = {Au : u ∈ Zn
≥0} consider the integer program

IPc(A, b) = min{c · x : Ax = b, x ∈ Zn
≥0} .
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For simplicity, we assume that the cone cone(A) = {Ax : x ≥ 0} is pointed and
that the subspace A⊥ = {x ∈ Rn : Ax = 0}, the kernel of A, intersects the
nonnegative orthant Rn

≥0 only at the origin. This assumption guarantees that

IPc(A, b) is bounded for all b ∈ Sg(A).
Consider the (n−d)-dimensional lattice L(A) = A⊥∩Zn. The program IPc(A, b)

is equivalent to the lattice program

min{c · x : x ≡ u(mod L(A)), x ≥ 0} ,(1.5)

where u is any integer solution of the equation Ax = b.
A subset τ of {1, . . . , n} partitions x ∈ Rn as xτ and xτ̄ , where xτ consists of

the entries indexed by τ and xτ̄ the entries indexed by the complimentary set τ̄ .
Similarly, the matrix A is partitioned as Aτ and Aτ̄ . Let τ be the set of indices
of the basic variables for an optimal solution to the linear relaxation LPc(A, b) =
min{c · x : Ax = b, x ≥ 0} of the integer program IPc(A, b). Let πτ be the
projection map from Rn to Rn−d that forgets all coordinates indexed by τ and let
Λ(A) = πτ (L(A)). The lattices L(A) and Λ(A) are isomorphic (see e.g. Section 2
in [23]) and the Gomory’s group relaxation for IPc(A, b) is equivalent to the lattice

program

min{c′τ̄ · x : x ≡ uτ̄ (mod Λ(A)), x ≥ 0} ,(1.6)

where c′τ̄ = cτ̄ − cτA
−1
τ Aτ̄ . Note that the vector c′τ̄ is nonnegative. For simplicity

we will consider in this paper the generic case, when all entries of c′τ̄ are positive.
The group relaxations can be defined for various sets of variables. Wolsey [24]

introduced the extended group relaxations obtained by dropping nonnegativity re-
strictions on the variables indexed by each subset of τ . Hoşten and Thomas [16]
studied the set of all group relaxations obtained by dropping nonnegativity restric-
tions on the variables indexed by each face of a polyhedral complex associated with
A and c. For further details on the classical theory of group relaxations we refer
the reader to [17] and [2].

In this paper we will consider the group relaxations in the following general form.
For a fixed cost vector l ∈ Qk

>0, a k-dimensional lattice Λ ⊂ Zk and r ∈ Zk we are
concerned with the lattice program (also referred to as the group problem)

min{l · x : x ≡ r(mod Λ), x ≥ 0} .(1.7)

Let m(Λ, l, r) denote the value of the minimum in (1.7). We are interested in the
lattice programming gap gap(Λ, l) of (1.7) defined as

gap(Λ, l) = max
r∈Zk

m(Λ, l, r) .(1.8)

The lattice programming gaps were introduced and studied for sublattices of
all dimensions in Zk by Hoşten and Sturmfels [15]. The algebraic and algorithmic
results on the lattice programming gaps obtained in [15] have applications to the
statistical theory of multidimensional contingency tables.

For fixed k the value of gap(Λ, l) can be computed in polynomial time (see Section
3 in [15] and [8]). The first result of this paper shows that computing gap(Λ, l) is
NP-hard when k is a part of input.

Theorem 1.1. Computing gap(Λ, l) is NP-hard.

The proof of Theorem 1.1 is based on a connection between the lattice program-
ming gaps and the Frobenius numbers. Computing Frobenius numbers is NP-hard
due to the well-known result of Ramı́rez Alfonśın [21].
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Our next goal is to obtain the lower and upper bounds for gap(Λ, l) in terms of
the parameters of the lattice program (1.7). The bounds on the lattice programming
gap provide bounds on the possible objective solutions when considering Gomory’s
group relaxation type problems. We show that the obtained lower bound is optimal
and that the upper bound has the optimal order. The proofs are based on recent
results of Marklof and Strombergson [20] on the diameters of circulant graphs and
on the estimates of Fukshansky and Robins [10] for the Frobenius numbers.

For a given closed bounded convex set K with nonempty interior in Rk and
a k-dimensional lattice Λ ⊂ Rk, the covering radius of K with respect to Λ is
defined as ρ(K,Λ) = min{r > 0 : rK + Λ = Rk}. Let Xk be the set of all k-

dimensional lattices Λ ⊂ Rk of determinant one, let ∆ = {x ∈ Rk
≥0 :

∑k
i=1 xi ≤ 1}

be the standard k-dimensional simplex and let ρk = infΛ∈Xk
ρ(∆,Λ). We obtain

the following optimal lower bound for gap(Λ, l).

Theorem 1.2. (i) For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice

Λ ⊂ Zk

gap(Λ, l) ≥ ρk(det(Λ)l1 · · · lk)1/k −
k∑

i=1

li .(1.9)

(ii) For any c ∈ Qk+1
>0 , k ≥ 2, and any ǫ > 0, there exists a matrix A ∈ Z1×(k+1)

such that for all b ∈ Sg(A) the knapsack problem LPc(A, b) has a unique

solution with nonbasic variables indexed by σ = {1, . . . , k} and for l = c′σ

gap(Λ(A), l) < (ρk + ǫ)(det(Λ(A))l1 · · · lk)1/k −
k∑

i=1

li .(1.10)

Furthermore, there exists b′ ∈ Sg(A) such that the optimal value of IPc(A, b
′)

is equal to gap(Λ(A), l) + cσ̄A
−1
σ̄ b′.

The only known values of ρk are ρ1 = 1 and ρ2 =
√
3 (see [9]). It was proved in

[3], that ρk > (k!)1/k. Thus we obtain the following estimate.

Corollary 1.1. For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice Λ ⊂ Zk

gap(Λ, l) > (k! det(Λ)l1 · · · lk)1/k −
k∑

i=1

li .(1.11)

For sufficiently large k the bound (1.11) is not far from being optimal. Indeed,
ρk ≤ (k!)1/k(1 +O(k−1 log k)) (cf. [7]).

Group relaxations provide the lower bounds for integer programs IPc(A, b). From
this viewpoint, part (i) of Theorem 1.2 and Corollary 1.11 estimate the largest
possible value that such a bound can take. Part (ii) of Theorem 1.2 also shows that
the obtained result is optimal in the case of knapsack problems.

Let | · | denote the Euclidean norm and let γk be the k-dimensional Hermite
constant (see i.e. Section IX.7 in [6]). We give the following upper bound for
gap(Λ, l) (and hence for the minimum in (1.6)).

Theorem 1.3. For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice Λ ⊂ Zk

gap(Λ, l) ≤ kγ
k/2
k det(Λ)(

∑k
i=1 li + |l|)

2
−

k∑

i=1

li .(1.12)
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The known exact values of γk
k are 1, 4/3, 2, 4, 8, 64/3, 64, 256 (Sloan’s sequence

A007361 in [1]). By a result of Blichfeldt (see, e.g. [14]) γk ≤ 2
(
k+2
σk

)2/k

, where σk

is the volume of the unit k-ball; thus γk = O(k). The precision of the bound (1.12)
depends on the estimates for the covering radius of a simplex, associated with the
cost vector l, with respect to the lattice Λ. It follows from results in [4, Section 6]
that the order gap(Λ, l) = Ok,l(det(Λ)), where the constant depends on k and l,
cannot be improved.

A widely used approach (see e.g. [5]) is to consider a group relaxation induced

by a single row i:
∑

j∈N âijxj ≡ b̂i(mod 1) of the matrix constraint in (1.4).

Here we may assume that all âij and b̂i are rational numbers from [0, 1) with
common denominator D = | det(B)|. Thus, multiplying by D, we get the constraint∑

j∈N (Dâij)xj ≡ Db̂i(mod D). Set k = |N |, A = (Dâi1, . . . , Dâik, D) ∈ Z1×(k+1)

and Λ = π{k+1}(L(A)). We may assume that l = c′τ̄ ∈ Qk
>0, where τ is the set of

indices of basic variables. Then for any integer solution r ∈ Zk of r · π{k+1}(A) ≡
Db̂i(mod D) the group relaxation induced by the row i can be written in the
form (1.7). Thus all bounds derived in this paper can be applied to the group
relaxation induced by a selected row of (1.4). Note that in this special case the
lattice programming gap gap(Λ, l) can be associated with the diameter of a directed
circulant graph (see [20] for details). Furthermore, the results of [20] show that the
lower bound (1.9) is a good predictor for the value of gap(Λ, l) for a ‘typical’ Λ.

2. gap(Λ, l) and diameters of quotient lattice graphs

Assume for the rest of the paper k ≥ 2. Following notation from [20], let LG+
k =

(Zk, E) be the standard directed lattice graph with vertex set Zk. The edge set
E consists of all directed edges (x, x + ej), where x ∈ Zk and e1, . . . , ek are the
standard basis vectors. Let Λ be a k-dimensional sublattice of Zk. We define the
quotient lattice graph LG+

k /Λ as the digraph with vertex set Zk/Λ and the edge
set {(x+Λ, x+ej +Λ) : x ∈ Zk, j = 1, . . . , k}. Given cost vector l ∈ Qk

>0, we define

the distance from vertex x+ Λ to y + Λ in LG+
k /Λ as

dLG+

k
/Λ(x + Λ, y + Λ) = min

z∈(y−x+Λ)∩Z
k

≥0

l · z .

The diameter of LG+
k /Λ is given by diam (LG+

k /Λ) = maxy∈Zk/Λ dLG+

k
/Λ(0+Λ, y+

Λ). Since for any y ∈ Zk

dLG+

k
/Λ(0 + Λ, y + Λ) = min{l · x : x ≡ y(mod Λ), x ≥ 0} ,

we obtain the following expression (cf. [11]).

Lemma 2.1. gap(Λ, l) = diam(LG+
k /Λ) .

3. gap(Λ, l) and the covering radius of a simplex

Given cost vector l ∈ Qk
>0, let ∆l =

{
x ∈ Rk

≥0 : l · x ≤ 1
}
. Then the following

result holds.

Lemma 3.1. gap(Λ, l) = ρ(∆l,Λ)−
∑k

i=1 li .
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Proof. The result follows from Lemma 2.1 and results of [20]. For completeness
we give here a detailed proof. Where possible, we keep the notation from [20] for
convenience of the reader.

Let Λ be a k-dimensional sublattice of Zk. Consider the continuous torus Rk/Λ.
We can define the distance dRk/Λ between any two points x+Λ and y+Λ on Rk/Λ
as

dRk/Λ(x+ Λ, y + Λ) = min
z∈(y−x+Λ)∩R

k

≥0

l · z .

By the directed diameter ofRk/Λwe understand diam+
l (R

k/Λ) = supy∈Rk/Λ dRk/Λ(0+

Λ, y + Λ). It follows from the proof of Lemma 3 in [20] that diam (LG+
k /Λ) =

diam+
l (R

k/Λ)−
∑k

i=1 li. Then by Lemma 2.1 we can express gap(Λ, l) as

gap(Λ, l) = diam+
l (R

k/Λ)−
k∑

i=1

li .(3.1)

Next, define the lattice Γ(Λ, l) = Λdiag(Π−1/kl1, . . . ,Π
−1/klk), where Π =

det(Λ)l1 · · · lk. Then for e = (1, . . . , 1) ∈ Zk we have

diam+
l (R

k/Λ) = Π1/kdiam+
e (R

k/Γ(Λ, l)) .(3.2)

By Lemma 4 in [20],

diam+
e (R

k/Γ(Λ, l)) = ρ(∆,Γ(Λ, l)) .(3.3)

Since the linear transform defined by the matrix diag(Π−1/kl1, . . . ,Π
−1/klk) maps

∆l to Π−1/k∆, we have

ρ(∆,Γ(Λ, l)) = Π−1/kρ(∆l,Λ) .(3.4)

Combining (3.1), (3.2), (3.3) and (3.4), we complete the proof of the lemma. �

4. Proof of Theorem 1.1

We are concerned with the following problem:

Given a k-dimensional lattice Λ ⊂ Zk and l ∈ Qk, compute gap(Λ, l) .(4.1)

Here we suppose that the lattice Λ is given by its basis.
Let a be a positive integral n-dimensional primitive vector with n = k + 1, i.e.,

a = (a1, . . . , ak+1)
t ∈ Zk+1

>0 with gcd(a1, . . . , ak+1) = 1. The Frobenius number

F(a) is the largest number which cannot be represented as a nonnegative integral
combination of the ai’s. The problem of computing F(a) has been traditionally
referred to as the Frobenius problem. This problem is NP-hard when n is a part of
input (Ramı́rez Alfonśın [21]).

Set la = (a1, . . . , ak)
t and Λa = {x ∈ Zk : a1x1 + · · · + akxk ≡ 0 (mod ak+1)}.

By a celebrated result of Kannan [18] the Frobenius number can be expressed as

F(a) = ρ(∆la ,Λa)−
∑k+1

i=1 ai . Hence, Lemma 3.1 with l = la implies

F(a) = gap(Λa, la)− ak+1 .(4.2)

By Corollary 5.4.10 in [13], given integer vector a, a basis of Λa can be computed in
polynomial time. Therefore, the formula (4.2) provides a polynomial time Turing
reduction from the Frobenius problem to (4.1).



6 ISKANDER ALIEV

5. Proof of Theorem 1.2

Part (i). By Lemma 3.1 and (3.4) we can write

gap(Λ, l) = ρ(∆,Γ(Λ, l))Π1/k −
k∑

i=1

li .(5.1)

Since Γ(Λ, l) ∈ Xk, the inequality (1.9) now follows from the definition of ρk.

Part (ii). There exists u = (p1/q, . . . , pk+1/q) ∈ Qk+1
>0 with p1, . . . , pk+1, q ∈

Z>0, such that for any b ∈ Sg(qut) the linear relaxation LPc(qu
t, b) has a unique

optimal solution with nonbasic variables indexed by σ = {1, . . . , k}. Let F =
{x ∈ Rk+1 : 0 < x1 < . . . < xk+1}. Changing the order of coordinates and
perturbing u, if needed, we may assume that u ∈ F. For ǫ > 0 let Cǫ = {x ∈ Rk+1 :
|u/|u| − x/|x|| < ǫ}. One can choose sufficiently small ǫ0 > 0 such that Cǫ0 ⊂ F

and for any v ∈ Cǫ0 ∩ Zk+1 the linear relaxation LPc(v
t, b) has a unique optimal

solution with nonbasic variables indexed by σ for any b ∈ Sg(vt).

Set D = Cǫ0∩[0, 1]k+1, l = c′σ and N̂k+1 be the set of integral vectors in Rk+1 with
positive coprime coefficients (i.e., the greatest common divisor of all coefficients is
one). We can view Γ(Λ(at), l) as an Xk-valued random variable defined by taking

a uniformly at random in N̂k+1 ∩ TD for some T > 0. Let µ0 be the SL(k,R)
invariant probability measure on Xk. It was shown in Section 2.5 of [20] that, as
T → ∞, Γ(Λ(at), l) converges in distribution to a random variable L ∈ Xk, taken
according to µ0 (note that in notation of [20], Γ(Λ(at), l) corresponds to Ln,a,l).
Furthermore, following Section 2.5 of [20], the function L → ρ(∆, L) is continuous
on Xk and hence, by the continuous mapping theorem,

ρ(∆,Γ(Λ(at), l))
d−→ ρ(∆, L) as T → ∞ ,(5.2)

where X
d−→ Y denotes convergence in distribution.

Consider the complementary distribution function Pk(R) = µ0({Λ ∈ Xk :
ρ(∆,Λ) > R}) of ρ(∆, L). Then (5.2) is equivalent with the statement that for
any R ≥ 0 we have

lim
T→∞

1

#(N̂k+1 ∩ TD)
#{a ∈ N̂k+1 ∩ TD : ρ(∆,Γ(Λ(at), l)) < R}

= 1− Pk(R) .

(5.3)

It was proved in [19] that Pk(R) is continuous for any fixed k ≥ 2. It was also
noticed in [20], Remark 1.2 (see also [22], p. 86) that

Pk(R) = 1 for 0 ≤ R ≤ ρk, and Pk(R) < 1 for R > ρk.(5.4)

By (5.4) for any ǫ > 0 we have Pk(ρk + ǫ) < 1. Hence, by (5.3), for sufficiently

large T there exists a vector a ∈ N̂k+1 ∩ TD such that ρ(∆,Γ(Λ(at), l)) < ρk + ǫ.
As TD ⊂ Cǫ0 , the linear relaxation LPc(a

t, b) has a unique optimal solution with
nonbasic variables indexed by σ for any b ∈ Sg(at). By (5.1), the inequality (1.10)
holds for A = at.

Finally, we will show that for some b′ ∈ Sg(A) the optimal value of IPc(A, b
′)

is equal to gap(Λ(A), l) + cσ̄A
−1
σ̄ b′. Suppose gap(Λ(A), l) = m(Λ(A), l, r0) and the

latter minimum is attained at some x0 ∈ Zk
≥0. Then we can equivalently write

gap(Λ(A), l) = m(Λ(A), l, x0). Let us take any vector u ∈ Zk+1
≥0 with uσ = x0. By

Theorem 3 in [12], b′ = Au satisfies the desired property.
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6. Proof of Theorem 1.3

Let us find the inradius of the simplex ∆l. The volume vol k(∆l) = 1/(k!
∏k

i=1 li)
and the surface area

Ak−1(∆l) =

k∑

i=1

1

(k − 1)!
∏k

j=1 ,j 6=i lj
+

|l|
(k − 1)!

∏k
i=1 li

=

∑k
i=1 li + |l|

(k − 1)!
∏k

i=1 li
.

All facets of ∆l are touched by the insphere. Hence, the inradius r(∆l) of the
simplex ∆l is given by

r(∆l) =
k vol k(∆l)

Ak(∆l)
=

1
∑k

i=1 li + |l|
.(6.1)

Let Bk(r, x) denote the ball in Rk of radius r centered at x. Then, as the covering
radius is independent of translation, we have

ρ(∆l,Λ) ≤ ρ(Bk(r(∆l), 0),Λ)) = (r(∆l))
−1ρ(Bk(1, 0),Λ) .(6.2)

Let λ1, . . . , λk be Minkowski’s successive minima of Bk(1, 0) with respect to the
lattice Λ. Since Λ ⊂ Zk, we have λi ≥ 1 for each i. By Jarnik’s inequalities (see
e.g. [14])

ρ(Bk(1, 0),Λ) ≤ kλk

2
.(6.3)

In the geometry of numbers it is customary to use the Hermite constant γk
defined as the lower bound of the constants γ′

k such that every positive definite

quadratic form
∑

fijxixj in k variables represents a number ≤ γ′
k| det(fij)|1/k. It

is known (see e.g. Section IX.7. in [6]) that the critical determinant of Bk(1, 0)

is equal to γ
−k/2
k . Therefore, by Minkowski’s second theorem for spheres (cf. [14,

§18.4, Theorem 3]), we get

λk ≤ λ1 · · ·λk−1λk ≤ γ
k/2
k det(Λ) .(6.4)

By Lemma 3.1, gap(Λ, l) = ρ(∆l,Λ) −
∑k

i=1 li. Therefore, combining (6.2), (6.1),
(6.3) and (6.4) we obtain the upper bound (1.12).
Acknowledgement. The author is grateful to Professor Martin Henk and to the
reviewer for useful comments and suggestions.
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