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Abstract. On the basis of our numerical computations, we make many new

observations on primitive roots modulo primes. For example, we conjecture that

for any odd prime p there is a primitive root g < p modulo p which is the sum of
the first n primes for some n > 0, and that for any prime p > 3 there is a prime

q < p with the Bernoulli number Bq−1 a primitive root modulo p. We also make

related observations on primitive prime divisors of many combinatorial sequences
and quadratic nonresidues modulo primes. For example, based on heuristic

arguments we conjecture that for any prime p > 3 there exists a Fibonacci
number Fk < p/2 which is a quadratic nonresidue modulo p. This implies

that there is a deterministic polynomial time algorithm to find square roots of

quadratic residues modulo an odd prime p.

1. Introduction

Let p be any prime. It is well known that Fp = Z/pZ = {ā = a+pZ : a ∈ Z}
is a field and F∗

p = Fp \ {0} is a cyclic group of order p − 1. A rational p-adic
integer g is called a primitive root modulo p if ḡ = g mod p is a generator of
F∗
p. The standard proof of the existence of a primitive root modulo p (cf. [IR,

p. 40]) is nonconstructive, and it provides no way to find an explicit primitive
root modulo p.

The most famous unsolved problem on primitive roots modulo primes is the
following conjecture posed by E. Artin in 1927 (see [M] for a survey of results
towards Artin’s conjecture).

Artin’s Conjecture. If g ∈ Z is neither −1 nor a square, then there are

infinitely many primes p such that g is a primitive root modulo p.

Let p be an odd prime. It is well known that the set

G(p) := {g ∈ {1, . . . , p− 1} : g is a primitive root modulo p}| (1.1)
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has cardinality ϕ(p − 1), where ϕ denotes Euler’s totient function. According
to [Gu, p. 377], P. Erdös ever asked the following open question.

Erdős’ Problem. Whether for any sufficiently large prime p there exists a

prime q < p which is a primitive root modulo p?

Let q > 1 be a prime power. For the finite field Fq of order q, the multiplica-
tive group F∗

q = Fq \{0} is a cyclic group of order q−1 and any generator of this
group is called a primitive root (or primitive element) of the field Fq. In 1971
E. Vegh [V] guessed that if q > 61 then any element of Fq can be written as a
difference of two primitive roots of Fq. In 1984 S. W. Golomb [G] conjectured
that any nonzero element of Fq can be expressed as a sum of two primitive roots
of Fq. After many earlier efforts to prove Vegh’s and Golomb’s conjectures and
their linear extensions , it is now known that if q > 61 and a, b, c ∈ F∗

q then
there always exist primitive roots g and h of Fq with a = bg + ch (see the
introduction part of the recent paper [COT]). In particular, this implies that
for any prime p > 61 the set G(p) defined in (1.1) contains two consecutive
integers. In contrast, the twin prime conjecture still remains unsolved despite
the recent breakthrough on prime gaps made by Y. Zhang [Z].

In 1989 W. B. Han [H] studied extensions of Vegh’s and Golomb’s conjectures
to polynomials over finite fields. Using Weil’s theorem on character sums, he
established the following general theorem.

Theorem 1.1 (Han [H]). Let q > 1 be a prime power. Let f(x) and g(x) be

polynomials over the finite field Fq such that none of g(x) and f(x)g(x)k (k =
0, 1, 2, . . . ) can be written in the form ch(x)d with c ∈ Fq, 1 < d | (q − 1) and

h(x) ∈ Fq[x]. Let m be the number of distinct zeroes of f(x) in the splitting

field of f(x), and let n be the number of distinct zeroes of g(x) in the splitting

field of g(x). If
√
q > (m+ n− 1)4ω(q−1), then for some a ∈ Fq both f(a) and

g(a) are primitive roots of Fq, where ω(q − 1) denotes the number of distinct

prime divisors of q − 1.

As a consequence of his theorem, Han noted that for any a, b, c ∈ Fq with
ac(b2−4ac) 6= 0, if q > 266 then there is a primitive root g ∈ Fq with ag2+bg+c
also a primitive root of Fq (cf. [H, Corollary 3]). In particular, for any prime
p > 266 there is a primitive root g modulo p such that g2+1 is also a primitive
root modulo p. In contrast, it is unproven that there are infinitely many primes
of the form x2 + 1 with x ∈ Z.

In view of Erdős’ problem, Han’s above work and various problems on primes
of special forms, we are led to consider whether primitive roots modulo primes
can take certain special forms. In Section 3 we will pose various conjectures
in this direction based on our computation checks. Since any primitive root
modulo an odd prime p must be a quadratic nonresidue modulo p, in Section
2 we will investigate quadratic nonresidues modulo primes of certain special
forms armed with heuristic arguments.
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Let (an)n>1 be a sequence of integers. If no term of the sequence (an)n>1

has a prime divisor greater than a given number N , then we should not expect
that the sequence contains quadratic nonresidues modulo any sufficiently large
prime p. If a prime p divides the n-th term an but it does not divide any
previous term ak with 0 < k < n, then p is called a primitive prime divisor

of the term an. For our purposes, we are interested in those sequences with
infinitely many terms having primitive prime divisors.

In 1886 A. S. Bang [B] proved that for any integer n > 1 with n 6= 6 the
number 2n−1 has a prime divisor not dividing any 2k−1 with k ∈ {1, . . . , n−1}.
In 1892 K. Zsigmondy [Zs] extended this as follows: If a and b are relatively
positive integers with a > b, then for any integer n > 2 the number an− bn has
a prime divisor not dividing any ak − bk with 0 < k < n except for the case
a = 2, b = 1 and n = 6.

Recall that the Fibonacci numbers are given by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . . ).

Carmichael’s theorem (cf. [C]) asserts that for any integer n > 12 the n-th
Fibonacci number Fn has a prime divisor p which does not divide any previous
Fibonacci number Fk with 0 < k < n. For A,B ∈ Z with B 6= 0 and A2 6= 4B,
the Lucas sequence un = un(A,B) (n = 0, 1, 2, . . . ) is defined by

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 for n = 1, 2, 3, . . . .

In 2001 Y. Bilu, G. Hanrot and P. M. Voutier [BHV] finally proved that for any
integer n > 30 the term un(A,B) has prime divisor not dividing any previous
term uk(A,B) with 0 < k < n.

In Section 4 we look at various combinatorial sequences of integers or ra-
tionals to see whether larger terms have primitive prime divisors. This leads
us to generate some tables on primitive prime divisors and formulate various
conjectures in this direction.

Throughout this paper, we set N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.

2. On Fibonacci quadratic residues modulo primes

Let p be an odd prime and a be any quadratic residue modulo p. How to
solve the congruence x2 ≡ a (mod p) quickly? By the Tonelli-Shanks Algorithm
(cf. R. Crandall and C. Pomerance [CP, pp. 93-95]), if we know a quadratic
nonresidue d ∈ Z modulo p then one can solve x2 ≡ a (mod p) efficiently as
follows:

Write p−1 = 2st with s, t ∈ Z+ and 2 ∤ t, and find even integers m1, . . . , ms

with (admi)2
s−it ≡ 1 (mod p) for all i = 1, . . . , s in the following way: m1 :=

0, and after those m1, . . . , mi (with 1 6 i < s) have been chosen we se-

lect mi+1 ∈ {mi, mi + 2i} such that (admi+1)2
s−i−1t ≡ 1 (mod p). Note
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that ((admi)2
s−i−1t)2 ≡ 1 (mod p) and hence (admi)2

s−i−1t ≡ ±1 (mod p).

If (admi)2
s−i−1t ≡ −1 (mod p), then

(admi+2i

)2
s−1−it ≡ −d2

s−1t = −d(p−1)/2 ≡ 1 (mod p).

As (adms)t ≡ 1 (mod p), we have x2 ≡ a (mod p) with x = ±a(t+1)/2(dt)ms/2.
However, there is no known deterministic, polynomial time algorithm for

finding a quadratic nonresidue d modulo the odd prime p. According to [CP,
pp. 93-95], under the Extended Riemann Hypothesis for algebraic fields, it can
be shown that there is a positive quadratic nonresidue d < 2 log2 p; and so an
exhaustive search to this limit succeeds in finding a quadratic nonresidue in
polynomial time. Thus, on the ERH, one can find square roots for quadratic
residues modulo the prime p in deterministic, polynomial time.

As Fibonacci numbers grow exponentially, part (i) of our following conjecture
is particularly interesting since it implies that we can find square roots for
quadratic residues modulo any odd prime p in deterministic, polynomial time.

Conjecture 2.1. (i) For any integer n > 4, there is a Fibonacci number f <
n/2 with x2 ≡ f (mod n) for no integer x.

(ii) For any odd prime p, let f(p) be the least Fibonacci number with ( f(p)p ) =

−1. Then f(p) = o(p0.7) as p → ∞. Moreover, we have f(p) = O(pc) for any

c > c0 = log2
1+

√
5

2
≈ 0.694.

(iii) For any prime p, there exists a positive integer k 6
√
p+ 2+2 such that

Fk + 1 is a primitive root modulo p.

Conjecture 2.1(i) can be reduced to the case when n is prime. In fact, if
n = 3 or 4 | n, then no square is congruent to F3 = 2 modulo n. If n > 4 has
an odd prime divisor p, and there is a positive Fibonacci number Fk < p with
x2 6≡ Fk (mod p) for all x ∈ Z, then Fk < p 6 n/2 and also x2 6≡ Fk (mod n)
for all x ∈ Z. We have verified part (i) for all primes p with 3 < p < 3 × 109.
For data and graphs related to Conjecture 2.1(i), one may consult [S, A241568,
A241604 and A241675].

As for part (ii) of Conjecture 2.1, we don’t have a rigorous proof but it seems
reasonable in view of the following heuristic arguments.

Heuristic Arguments for Conjecture 2.1(ii). In light of Carmichael’s
theorem on primitive prime divisors of Fibonacci numbers, we may think that
a positive Fibonacci number not exceeding pc is a quadratic residue modulo p
with ‘probability’ 1/2. Roughly speaking, there are about

log2 p
c

log2
1+

√
5

2

=
c

c0
log2 p

positive Fibonacci numbers not exceeding pc. So we might expect that all
positive Fibonacci numbers not exceeding pc are quadratic residues modulo p
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with probability
(

1

2

)(log2 p)c/c0

=
1

pc/c0
.

As
∑

p p
−c/c0 converges, it seems reasonable to think that there are finitely

many primes p for which all positive Fibonacci numbers not exceeding pc are
quadratic residues modulo p. So the guess f(p) = O(pc) probably holds.

We have verified Conjecture 2.1(iii) for all primes p < 5× 106, and observed
that no Fibonacci number is a primitive root modulo the prime 3001. Note that
for any integer n > 1 there is a Fibonacci number Fk with Fk+1 ≡ 0 (mod n).
In fact, by the Pigeonhole Principle, there are 0 6 i < j 6 n2 such that Fi ≡ Fj

(mod n) and Fi+1 ≡ Fj+1 (mod n), and hence Fj−i ≡ F0 = 0 (mod n) and
Fj−i+1 ≡ F1 = 1 (mod n). Clearly k = j − i − 2 > 0 since F1 = F2 = 1 6≡ 0
(mod n), and

Fk = Fk+2− (Fk+3−Fk+2) = 2Fk+2−Fk+3 = 2Fj−i−Fj−i+1 ≡ −1 (mod n).

Recall that the Lucas numbers L0, L1, L2, . . . are defined by

L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . . ).

It is well known that

Ln =

(

1 +
√
5

2

)n

+

(

1−
√
5

2

)n

for all n ∈ N.

Our following conjecture is similar to Conjecture 2.1.

Conjecture 2.2. (i) For any integer n > 2, there is a Lucas number Lk < n
such that x2 6≡ Lk (mod n) for all x ∈ Z.

(ii) For any odd prime p, let ℓ(p) be the least Lucas number with ( ℓ(p)p ) = −1.

Then ℓ(p) = o(p0.7) as p → ∞. Moreover, we have ℓ(p) = O(pc) for any

c > log2
1+

√
5

2
≈ 0.694.

(iii) For any prime p, there exists a positive integer k <
√
p + 2 such that

Lk + 1 is a primitive root modulo p.

We have verified Conjecture 2.2(iii) for all primes p < 107. Note that no
Lucas number is a primitive root modulo the prime 28657. Also, for any integer
n > 1 there is a positive integer j < n2 such that Lj ≡ L0 = 2 (mod n) and
Lj+1 ≡ L1 = 1 (mod n), and hence Lj−1 = Lj+1 − Lj ≡ 1− 2 = −1 (mod n).

The following conjecture similar to Conjectures 2.1 and 2.2 is concerned
with cubic nonresidues modulo primes. For a prime p ≡ 1 (mod 3), it seems
reasonable to think that 2k−1 is a cubic nonresidue modulo p with probability
2/3 = 1/1.5.
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Conjecture 2.3. Let p be any prime with p ≡ 1 (mod 3). Then, there is a

positive integer k with 2k − 1 < p/2 such that 2k − 1 is a cubic nonresidue

modulo p. Moreover, for any c > log 1.5/ log 2 ≈ 0.585 we have s(p) = O(pc),
where s(p) denotes the least positive cubic nonresidue modulo p in the form

2k − 1 with k ∈ Z+.

We have verified the first assertion in Conjecture 2.3 for all primes below
5 × 106; for example, the least positive cubic nonresidue modulo the prime
p = 4667629 in the form 2k − 1 is 215 − 1 = 32767. The second assertion in
Conjecture 2.3 sounds reasonable by heuristic arguments.

To conclude this section, we pose one more conjecture.

Conjecture 2.4. For each prime p > 5, there exists a prime q < p such that

2q + 1 is a quadratic nonresidue modulo p.

Note that for the prime p = 2089 there is no prime q < p with 2q + 1 a
primitive root modulo p. We have verified Conjecture 2.4 for all primes p with
5 < p < 108; see [S, A235712] for related data and graphs.

3. On primitive roots of special forms

As we mentioned in Section 1, it is known that for any sufficiently large
prime p there is a primitive root modulo p in the form x2 +1 with x ∈ Z. Part
(i) of our following conjecture is stronger than this.

Conjecture 3.1. (i) Every prime p has a primitive root g < p modulo p of

the form k2 + 1. In other words, for any prime p, there is a primitive root

0 < g < p modulo p with g − 1 a square.

(ii) For any prime p > 3, there is a triangular number g < p which is a

primitive root modulo p. Also, every prime p > 11 has a primitive root g < p
modulo p which is a product of two consecutive integers.

Remark 3.1. We have verified Conjecture 3.1(i) for all primes below 107. For
data and graphs concerning Conjecture 3.1, one may consult [S, A239957,
A241476, A239963 and A241492].

Table 3.1: Primes p with unique primitive root g of the form k2 + 1 < p

p 2 3 5 7 11 13 31 71 79 151

k 1 1 1 2 1 1 4 8 6 9

g = k2 + 1 2 2 2 5 2 2 17 65 37 82

In 2000 D.K.L. Shiu [Sh] proved that if a andm > 0 are relatively prime then
for any positive integer k there is a positive integer n such that pn+1 ≡ pn+2 ≡
. . . ≡ pn+k ≡ a (mod m), where pj denotes the j-th prime. This remarkable
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result implies that the set {Sn =
∑n

k=1 pk : n = 1, 2, 3, . . .} contains a com-
plete system of residues modulo any positive integer m. In [S13a] the author
conjectured that the set {sn =

∑n
k=1(−1)n−kpk : n = 1, 2, 3, . . .} also contains

a complete system of residues modulo any positive integer m. Motivated by
these we pose the following conjecture.

Conjecture 3.2. (i) For any odd prime p, there is a primitive root g < p
modulo p in the form Sn =

∑n
k=1 pk with n ∈ Z+.

(ii) For any integer n > 1, there is a number k ∈ {1, . . . , n} such that

sk =
∑k

j=1(−1)k−jpj is a primitive root modulo pn.

Remark 3.2. We have verified part (i) for all odd primes p < 107, and part (ii)
for all n = 2, . . . , 250000. See [S, A242266 and A242277] for related data and
graphs.

Table 3.2: Primes p with unique primitive root g of the form
∑n

k=1 pk < p

p 3 5 7 11 13 31 71 127 241

n 1 1 2 1 1 4 5 7 10

g =
∑n

k=1 pk 2 2 5 2 2 17 28 58 129

Conjecture 3.3. (i) For any prime p > 3, there exists a prime q < p/2 such

that the Mersenne number Mq = 2q − 1 is a primitive root modulo p.
(ii) For any prime p > 7, there exists a prime q < p/2 such that q! is a

primitive root modulo p.
(iii) For any prime p > 3, there exists a positive integer g < p such that g,

2g − 1 and (g − 1)! are all primitive roots modulo p.

Remark 3.3. (a) We have verified Conjecture 3.3(i) for all primes p < 107; see
[S, A236966] for related data and graphs. For each prime p with 3 < p < 107,
the least prime q < p/2 with 2q − 1 a primitive root modulo p is at most 193.
For the prime p = 5336101, the least prime q < p/2 with 2q−1 a primitive root
modulo p is 193. For related data and graphs concerning Conjecture 3.3(ii) 1.3,
one may visit [S, A237112].

(b) Conjecture 3.3(iii) is very strong! We have verified it for all primes below
106; see [S, A242248 and A242250] for related data and graphs.

Table 3.3: Primes p with unique 0 < g < p such that
g, 2g − 1 and (g − 1)! are all primitive roots mod p

p 5 7 11 13 19 23 31 43 67 79

g 3 5 8 11 13 21 12 34 41 53

2g − 1 mod p 2 3 2 6 2 11 3 20 11 30

(g − 1)! mod p 2 3 2 6 10 11 22 29 44 47
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The following conjecture is much stronger than Erdős’ Problem mentioned
in Section 1.

Conjecture 3.4. For any odd prime p, there exists a prime q < p such that

both q and 2q − q are primitive roots modulo p.

Remark 3.4. We have verified this conjecture for all odd primes below 106; see
[S, A242345] for related data and graphs.

Table 3.4: Primes p with unique prime q < p such that
both q and 2q − q are primitive roots modulo p

p q < p 2q − q mod p

3 2 2

5 2 2

7 3 5

11 2 2

13 2 2

19 2 2

23 19 7

29 2 2

31 11 22

43 3 5

61 2 2

71 67 13

73 31 58

79 59 29

97 71 74

127 43 86

151 71 14

Recall that the Bernoulli numbers B0, B1, B2, . . . are rational numbers de-
fined by

B0 = 1 and

n
∑

k=0

(

n+ 1

k

)

Bk = 0 for all n = 1, 2, 3, . . . ,

and the Euler numbers E0, E1, E2, . . . are integers defined by

E0 = 1 and

n
∑

k=0
2|n−k

(

n

k

)

Ek = 0 for all n = 1, 2, 3, . . . .
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It is well known that B2n+1 = E2n−1 = 0 for all n = 1, 2, 3, . . . . For any prime
p > 3 it is well known that all the Bernoulli numbers

B2k

(

k = 1, . . . ,
p− 3

2

)

are p-adic integers (this follows from the recurrence for Bernoulli numbers or
Kummer’s theorem on Bernoulli numbers.

Conjecture 3.5. (i) For any prime p > 3, there exists a prime q < p such

that the Bernoulli number Bq−1 is a primitive root modulo p.
(ii) For any prime p > 13, there exists a prime q < p such that the Euler

number Eq−1 is a primitive root modulo p.

Remark 3.5. We have verified part (i) for all primes p with 3 < p < 6× 106; see
[S, A242210 and A242213] for related data and graphs. We have also checked
part (ii) for all primes p with 13 < p < 106.

Table 3.5: Primes p with unique prime q < p such that
Bq−1 is a primitive root modulo p

p 5 11 19

q < p 2 3 17

Bq−1 −1/2 1/6 −3617/510

Bq−1 mod p 2 2 15

Recall that those rational numbers Hn =
∑

0<k6n 1/k (n = 0, 1, 2, . . . ) are
called harmonic numbers. The second-order harmonic numbers are those ra-
tionals H

(2)
n =

∑

0<k6n 1/k2 with n ∈ N.

Conjecture 3.6. Let p > 5 be a prime.

(i) There exists a prime q 6 (p + 1)/2 such that Hq−1 is a primitive root

modulo p.

(ii) There exists a prime q 6 (p − 1)/2 such that H
(2)
q−1 is a primitive root

modulo p.

Conjecture 3.7. (i) For any prime p > 3, there exists a prime q < p/2 such

that the Catalan number Cq =
(

2q
q

)

/(q + 1) is a primitive root modulo p.

(ii) For any prime p > 3, there exists a prime q < p/2 such that the Bell

number bq is a primitive root modulo p, where bq denotes the number of ways

to partition a set of cardinality q.
(iii) For any prime p > 3, there exists a prime q < p/2 such that the Franel

number fq =
∑q

k=0

(

q
k

)3
is a primitive root modulo p.

Remark 3.7. For related data and graphs concerning parts (i)-(ii) of Conjecture
3.7, one may visit [S, A236308 and A237594].
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4. Primitive prime divisors of some combinatorial sequences

Conjecture 4.1. For any integer n > 1 with n 6= 5, 16, the number 2n−n has

a prime divisor p not dividing any 2k − k with 0 < k < n.

Remark 4.1. See [S, 242292] for related data.

Conjecture 4.2. For any integer n > 4, there is a prime p for which B2n ≡ 0
(mod p) but B2k 6≡ 0 (mod p) for all 0 < k < n. Also, for any integer n > 1,
the Euler number E2n has a prime divisor p which does not divide any E2k with

0 < k < n.

Remark 4.2. For related numerical data, one may see [S, A242193 and A242194].
In Table 4.1, pB(n) denotes the least prime p for which B2n ≡ 0 (mod p) but
B2k 6≡ 0 (mod p) for all 0 < k < n, similarly pE(n) represents the least prime
divisor of p2n which does not divide any E2k with 0 < k < n.

Conjecture 4.3. (i) For any integer n > 1 with n 6= 7, there is a prime p for

which Hn ≡ 0 (mod p) but Hk 6≡ 0 (mod p) for all 0 < k < n.

(ii) For any integer n > 1, there is a prime p for which H
(2)
n ≡ 0 (mod p)

but H
(2)
k 6≡ 0 (mod p) for all 0 < k < n.

Remark 4.3. For related numerical data, see [S, A242223 and A242241]. In
Table 4.2, pH(n) denotes the least prime p for which Hn ≡ 0 (mod p) but

Hk 6≡ 0 (mod p) for all 0 < k < n, and p
(2)
H (n) represents the least prime p for

which H
(2)
n ≡ 0 (mod p) but H

(2)
k 6≡ 0 (mod p) for all 0 < k < n.

Conjecture 4.4. For the sequence {fn}n>1 of Franel numbers, each term fn

with n ∈ Z+ has a primitive prime divisor. For the sequence {f (4)
n }n>1 of the

fourth-order Franel numbers with f
(4)
n =

∑n
k=0

(

n
k

)4
, each term f

(4)
n with n ∈ Z+

has a primitive prime divisor. In general, for any integer r > 2, if n ∈ Z+ is

large enough then f
(r)
n =

∑n
k=0

(

n
k

)r
has a prime divisor p not dividing any f

(r)
k

with 0 < k < n.

For each n ∈ N the central trinomial coefficient

Tn =

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

is the coefficient of xn in the expansion of (x2 + x+ 1)n.

Conjecture 4.5. For the sequence {Tn}n>1 of central trinomial coefficients,

each term Tn with n > 1 has a primitive prime divisor.

We have many other conjectures similar to Conjectures 4.1-4.5.
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Table 4.1: Least primitive divisors pB(n) of B2n and pE(n) of E2n

n pB(n) pE(n)

2 5

3 61

4 277

5 5 19

6 691 13

7 7 47

8 3617 17

9 43867 79

10 283 41737

11 11 31

12 103 2137

13 13 67

14 9349 29

15 1721 15669721

16 37 930157

17 17 4153

18 26315271553053477373 37

19 19 23489580527043108252017828576198947741

20 137616929 41

21 1520097643918070802691 137

22 59 587

23 23 285528427091

24 653 5516994249383296071214195242422482492286460673697

25 417202699 5639

26 577 53

27 39409 2749

28 113161 5303

29 29 1459879476771247347961031445001033

30 2003 6821509

31 31 101

32 1226592271 25349
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Table 4.2: Least primitive divisors pH(n) of Hn and pH(2)(n) of H
(2)
n

n pH(n) pH(2)(n)

2 3 5

3 11 7

4 5 41

5 137 11

6 7 13

7 266681

8 761 17

9 7129 19

10 61 178939

11 97 23

12 13 18500393

13 29 40799043101

14 1049 29

15 41233 31

16 17 619

17 37 601

18 19 8821

19 7440427 86364397717734821

20 11167027 421950627598601

21 18858053 2621

22 23 295831

23 583859 47

24 577 2237

25 109 157

26 34395742267 53

27 521 307

28 375035183 7741

29 4990290163 6823

30 31 61

31 2667653736673 205883

32 2917 487
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