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HECKE ALGEBRAS WITH INDEPENDENT PARAMETERS

JIA HUANG

Asstract. We study the Hecke algeb#d(q) over an arbitrary field of a Coxeter system\, S) with independent parameters
g = (gs € F: se S) for all generators. This algebra is always linearly spanmgeelements indexed by the Coxeter gratip
This spanning set is indeed a basis if and only if every pajesierators joined by an odd edge in the Coxeter diagramveecei
the same parameter. In general, the dimensioh/(f) could be as small as 1. We construct a basisHgqg) when (. S)

is simply laced. We also characterize whgffq) is commutative, which happens only if the Coxeter diagrdr(V¢S) is
simply laced and bipartite. In particular, for type A we abta tower of semisimple commutative algebras whose dinoessi
are the Fibonacci numbers. We show that the representatomyt of these algebras has some features in analmgyection
with the representation theory of the symmetric groups hadtHecke algebras.

1. INTRODUCTION

LetW:=(S: (st)™ =1, Vst € S) be a Coxeter group. THéwvahori-)Hecke algebraf the Coxeter systenW S)
is a one-parameter deformation of the group algebfd/pfvhich has significance in many areas, such as algebraic
combinatorics, knot theory, quantum groups, represematieory ofp-adic groups, and so on. We generalize the
definition of the Hecke algebra of\( S) from a single parameter to multiple independent paramaeter

Definition 1.1. Let F be an arbitrary field. Thélecke algebraiH(q) = Hs(q) of the Coxeter systeifw, S) with
independent parametegs= (gs € F : s € S) is the (associativej-algebra generated {¥s : s € S} with

e quadratic relationslis— 1)(Ts+qs) = 0forallse S,

o braid relations TsTiTs: - )mg, = (Tt TsTt -+ )m, forall s;te S.
Here @ba- - - ), is an alternating product ofi terms.

The algebraH(q) can be represented by the Coxeter diagramVWoB|) with extra labelgy for all verticess € S.
For simplicity we only draw the labels of the vertices but tiat vertices themselves. For example, we draw

1=0—1—-0—-1—-0—1-0
for the usual Coxeter system of typBg whose Coxeter diagram is
S = —S— U —S5S—S5—55— %
with independent parametags= (g5 : 1 <i <8)=(1,0,1,0,1,0,1,0).

The quadratic relations fok(q) can be rewritten a§2 = (1-qs)Ts+Qsforall se S. If gs # 0 thenTs s invertible
andT;l = q;lTS +1- q;l. For anyw € W with a reduced expressiam = st---r wherest,...,r € S, the element
Tw = TsTy--- T, is well defined thanks to the word property\af(see e.g.[[3, Theorem 3.3.1]).

If gs = g for all s e S thenH(q) is the usual Hecke algebra oA{S) with parameteq. If one only insisty)s = g
whenevemg; is odd, thern/(q) is theHecke algebra with unequal parameténsthe sense of Lusztig [7]. Now we

allowq = (gs € F : s€ S) to be arbitrary. The following result may be well known t@ tbxperts, and we include a
proof for it in the end of Sectidnl 3 for completeness.

Theorem 1.2. The algebraH(q) is always spanned byl : w € W}, which is indeed a basis if and onlyH(q) is a
Hecke algebra with unequal parameters, i.e =0g; whenever g is odd.

In general, we show that the algelsf§q) could be much smaller than the group algefvé

Theorem 1.3. If there exist st € S with m; odd such that gand q are distinct nonzero parameters, then one has
Hs(q) = Hs\r(q) where R consists of all elementsrS connected to s via some path with odd edge weights and
nonzero vertex labels in the Coxeter diagranf\f S).

Key words and phrased-ecke algebra, independent parameters, Fibonacci nuinbdependent set, Grothendieck group.
The author is grateful to Pasha Pylyavskyy and Victor Refoemsking inspiring questions which lead to this work. Hgoathanks Victor
Reiner for partial support from NSF grant DMS-1001933.
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Thus we always assume without loss of generality tHé&d) is collapse-fregi.e. if mg is odd andys # g; then at
least one ofjs andgq; is 0. We next characterize whéti(q) is commutative.

Theorem 1.4. The algebraH(q) is collapse-free and commutative if and onlyW, S) is simply laced and exactly
one of g and q is O for any pair of elements, e S with m; = 3.

We construct a basis fot(q) (not necessarily commutative) when/S) is simply laced (Theorem 4.3). It implies
the dimension a commutati(q), giving one motivation for our study of the commutativeeas

Corollary 1.5. Let G be the underlying graph of the Coxeter diagranMifS), and letZ (G) be the set of all indepen-
dent sets in G. I#{(q) is collapse-free and commutative then its dimensigf(S)| (the Merrifield-Simmons index of
the graph G). In particular, ifW, S) is of type A then the dimension &% (q) is the Fibonacci number f».

Example 1.6. Let F be a field with at least 3 distinct elements 0, 1, and c.Hé4) be given by the diagram below.
0 cl=—=1—0—1
N e
CO-E-E
c=1=[c]—

Removing the boxed elements gives 3 connected components-91, and 1— 0— 1. Thus the dimension of
H(q)is 2-8-5 =80 by Theoreri 113, Theordm 1.4, and Corol[ary 1.5.

Theoreni 1} shows that {(q) is collapse-free and commutative then the Coxeter diagrbfil S) must be a
simply laced bipartite graph. ComputationdMiagma suggest the following conjecture, which is verified for type
(Theoreni 5.4). This gives another motivation for our stufithe commutative case.

Conjecture 1.7. If the Coxeter diagram oW, S) is a simply laced bipartite graph G, then a collapse-fiéq) has
minimum dimension equal {6(G)|, which is attained whef{(q) is commutative.

For the irreducible simply laced Coxeter systems of typeD, A, and D, the dimensions of collapse-free and
commutative Hecke algebraq) are given below, which all happen to satisfy the Fibonagcurrence.

Coxeter diagran Dimensions Known as OEIS entry
Ay(n>1) 2,3,5,8,13,... Fibonacci numberE,,> | A000045
Dh(n=2) 4,5,9,14,23,... ? A000285
A (n>3) 4,7,11,18,29,... Lucas numberg, A000032
D, (n > 5) 17,24, 41,65,106,..| ? A190996

Note that the Coxeter diagram Af, is a cycle of lengtin, which is bipartite if and only ifi if even. However, the
dimensions given above fé, make sense for all integens> 1. This is because we can define a commutative algebra
H (G, R) whose dimension i (G)| for any (unweighted) simple graghwith vertex seV/(G) and edge s€E(G) and
for anyR € V(G), such that a collapse-free and commutative Hecke algAftfeg is isomorphic toH (G, R) whereG
is the Coxeter diagram of the simply lacaf §) andR = {s€ S : gs = —1}. This algebraH (G, R) is defined as the
guotient of the polynomial algebigx, : v € V(G)] by its ideal generated by

2 :reRUPE—x:VveV(G)\RIU (XX : uve E(G)).

Itis also a quotient of th8tanley-Reisner ring of the independence complex[5] G

We show the following results on the representation thedm (G, R). The projective indecomposablé¢(G, R)-
modules are indexed b§(G — R), whereG — Ris the graph obtained for@ by deletingR and all edges incident .
The simpleH (G, R)-modules are all one-dimensional and also indexed (@&/— R). The Cartan matrix of{(G, R) is
a diagonal matrix. The algebt#d(G, R) is semisimple if and only iR = 0.

We next apply the above results to typeletG = P,,_; be a path wittn — 1 vertices. One sees that the dimension
of the algebraH (P,-1, R) is equal to the Fibonacci numbEfp, 1. We further assume that this algebra is semisimple,
i.,e. R = 0, and writeH, := H(Pn-1,0). If char(F) # 2 thenH, is isomorphic to the Hecke algebvd(q) of the
Coxeter system of typA,_; with independent parametegs= (0,1,0,1,...)orq = (1,0,1,0,...). We summarize our
results on the algebr#, below. The reader who is familiar with the representati@otly of the symmetric grou@,,
andor the 0-Hecke algebr&l,(0) can see certain features of our results in analogy @jtlndor H,(0).

The semisimple commutative algebt4, has Fn.; many non-isomorphic simple modules, which are all one-
dimensional and indexed by compositionsroWith internal parts larger than 1. Therothendieck group &Hn)
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of finite dimensional representations#f, is a free abelian group on these simptg-modules. The tower of algebras
H, : Ho — H1 — H, — --- has aGrothendieck group

Go(H.) := (P Go(Hr)
n>0
with a product and a coproduct given by the induction andicgtn along the embeddingd, ® Hn < Hmyn.

Althoughnota bialgebraGo(H.) has a self-dual basis consisting of simffg-modules for alh > 0. We provide
explicit formulas for the structure constants of the prdadurd coproduct 06q(#.) in terms of this self-dual basis,
which are naturally all positive. This result conneGig(#.) to the Grothendieck groups of the finite dimensional
(projective) representations of the 0-Hecke algel#a®), or equivalently, the dual Hopf algebrdSym of noncom-
mutative symmetric functiom®d QSym ofjuasisymmetric function# turns out thaGo(H.) is a quotient algebra of
NSymand a subcoalgebra of QSym, but its antipode satisfiefereint rule than the antipodes of QSym aifslym.
TheBratteli diagramof the towerH, is a binary tree on compositions with internal parts larpant1.

This paper is structured as follows. We first provide pretianies in Sectiofl2. Then we discuss whHi(q)
collapses or becomes commutative in Secfibn 3. We studylgeb@a(q) of a simply laced Coxeter system in
Sectior[#, and investigate the simply laced bipartite casgeictio 5. We provide more results on the commutative
case in Sectionl6, and give the type A specialization in 8e@i Finally we give remarks and questions in Sedfion 8.

2. PRELIMINARIES
2.1. Coxeter groups and Hecke algebrasA Coxeter groups a group with the following presentation
W:=(S:&=1 (sts-)m, = (tst---)n,, VSTES, S£1)

where the generating s8tis finite, mg € {2,3,...} U {o0}, and @ba- - - ), is an alternating product oh terms. By
convention no relation is imposed betwesandt if mg = co. The pair (/ S) is called aCoxeter system

The Coxeter diagram of/| S) is an edge-weighted graph whose vertices are the eleme8tamnd whose edges
are the unordered paifs, t} with weightmg for all s;t € S such thaimg; > 3, s # t. An edge with weightng < o is
often drawn asns; — 2 many multiple edges betwesrandt. An edge issimply lacedf its weight is 3. If every edge
is simply laced then the Coxeter systeWd §) and its Coxeter diagram are both calkdhply laced

An elementw in W can be written as a product of element$sinAmong all such expressions the shortest ones are
calledreduced and the length of a reduced expressioma$ called thdengthof w and denoted by(w). A nil-move
deletess” and abraid-movereplaces §ts: - - )m, With (tst- - - )m, in the expressions of € W as products of elements
in S. By [3, Theorem 3.3.1)WV satisfies the following word property.

Word Property. Any expression of w W as a product of elements in S can be transformed into a rebexqaression
of w by braid-moves and nil-moves, and every pair of redugpdessions for w can be connected via braid-moves.

A subsetl C S generates parabolic subgroup W:= (l) of W. The pair (M, |) is a Coxeter system whose Coxeter
diagram is the edge-weighted subgraph of the Coxeter diagfa(\\, S) induced by the vertex subsktc S. If
Si1,..., Sk are the vertex sets of the connected components of the Cakaggam of (| S) thenW = Ws, x- - - x W, .
Thus W, S) is irreducibleif its Coxeter diagram is connected.

There is a well known classification for finite irreduciblex@ter groups, among which type A is of particular
interest. The symmetric grou, is the Coxeter group of typA,_1 with generating se$ consisting of the adjacent
transpositions; := (i,i + 1) fori = 1,...,n— 1. The Coxeter diagram &, is the paths) — s, — -+ — s_1 .

The(lwahori-)Hecke algebrg{s(q) of a Coxeter system\| S) is a one-parameter deformation of the group algebra
of W. LetF be a field and let] € F. Then?s(q) is defined as th&-algebra generated K¥ s : s< S} with

e quadratic relationsTs— 1)(Ts+q) = 1, Yse S,
o braid relations: TsTiTs -+ )mg = (TtTsTt -+ )my VS TES, sS#t.
The specialization of the Hecke algelst&(q) atq = 1 gives the group algebiV, and the specialization gt= 0
gives the0-Hecke algebraHs(0). If (W, S) is of typeAn_1 then we writeH,(q) := Hs(q) andH,(0) = Hs(0).
If we W has a reduced expressian= st---r, wherest,...,r € S, thenT,, := TsT;--- T, is well defined thanks
to the word property ofV. Itis well known thaf{T,, : w € W} is a basis forHs(qg). One has

TTo = (1-a)Tw+qTsw £(sW) < (W),
ST N Tom £(sw) > £(w),

for all se S andw € W. This gives theegular representationf Hs(q).

(2.1)
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2.2. Representation theory of associative algebraswWe review some general results on the representation tledory
associative algebras; see e€.g.§1, Let F be a field and leA be a finite dimensional (unital associatifealgebra. Let

M be a (left)A-module. IfM has no submodules except 0 and itself theis simple If M is a direct sum of simple
A-modules theM is semisimpleThe algebra is semisimpleéf it is semisimple as a\-module. Every module over
a semisimple algebra is also semisimpleMIftannot be written as a direct sum of two nonzArsubmodules, then
M is indecomposabldf M is a direct summand of a freemodule, therM is projective

The (Jacobson) radicatad(M) of M is the intersection of all maxima&l-submodules oM, which turns out to be
the smallest submodulé of M such thatM/N is semisimple. One has radd{ ® M;) = radM,) ® rad(M,) if M; and
M, are twoA-modules. The radical of the algebtas defined as rad() with A itself viewed as am\-module. IfA
happens to be commutative then all nilpotent elemens form an ideal ofA, called thenilradical of A, which is
always contained in raé\). Thetop of M is the quotient module toM) := M/rad(M). Thesoclesoc(M) of M is the
sum of all minimal submodules &fl, which is the largest semisimple submodulévbf

Every A-module can be written as a direct sum of indecomposatdebmodules. Lef itself as anA-module be
a direct sum of indecomposabdemodulesP,, . .., Px. AlthoughP; is not simple in general, its top; is. Moreover,
every projective indecomposabfemodule is isomorphic to son®, and every simplé-module is isomorphic to
someC;. Suppose without loss of generality thH&%, ..., P,} and{C4,...,C,} are complete lists of non-isomorphic
projective indecomposabkemodules and simplA-modules, respectively, whefe< k. Then theCartan matrixof A
is [aj];,jejq Wherea;; is the multiplicity of C; among the composition factors Bf.

TheGrothendieck group &A) of the category of finitely generated A-modutedefined as the abelian gro&pR,
whereF is the free abelian group on the isomorphism clastsdf finitely generatedA-modulesM, andR is the
subgroup of generated by the elementd] —[L] — [N] corresponding to all exact sequencessL. - M —- N — 0
of finitely generatedd-modules. TheGrothendieck group A) of the category of finitely generated projective A-
modulesis defined similarly. We often identify a finitely generatgudjective) A-module with the corresponding
element in the Grothendieck gro@y(A) (Ko(A)). It turns out thaiGy(A) and Ko(A) are free abelian groups with
baseqCi,...,C,} and{P,..., P/}, respectively. IfL, M, N are all projectiveA-modules, then the exact sequence
0> L—> M —> N — 0is equivalent to the direct sum decompositidn= L & N. If A is semisimple then
Go(A) = Ko(A) sinceP; = C; for all i.

Let B be a subalgebra o&. Theinduction N 7 é of a B-moduleN from B to A is the A-moduleA ®g N. The
restriction M | Q of anA-moduleM from Ato B is M itself viewed as @8-module. The induction and restriction are
well defined for isomorphic classes of modules.

2.3. Representation theory of symmetric groups and 0-Hecke aldras. The (complex) representation theory of
the symmetric group is fascinating and has rich connectigtiissymmetric function theory. The simpl&S,,-modules

S, are indexed by partitiong of n, and everyCS,-module is a direct sum of simpléS,-modules, i.e.C&, is
semisimple. Thus the Grothendieck grd@p(CSp) = Ko(C&y) is a free abelian group on the isomorphism classes
[S.] for all partitionsA of n. The tower of group€. : Sy — &; — S, — --- has a Grothendieck group

Go(CS.,) = @ Go(CSy).

n>0

Using the natural embeddirgm, x S, — Sm.n, One can define the product 8f andS, as the induction 0§, ® S,
from G, X &, to Gy for all partitionsu - mandv + n, and define the coproduct 8f; as the sum of its restriction to
Gix Gnj fori =0,1,...,n, for all partitionsa + n. This givesGy(CS.) a self-dual graded Hopf algebra structure, as
the product and coproduct share the same structure cosigtantely the ittlewood-Richardson cggcients

TheFrobenius characteristic magh sends a simpl8, to the Schur functios,, giving a Hopf algebra isomorphism
between the Grothendieck gro@(CS,) and Sym, theing of symmetric functiongee Stanley [11, Chapter 7]).

The 0-Hecke algebréf,(0) has analogous representation theory as the symmetupgr,. We first review some
notation. Acompositionis a sequence = (aa,.. ., a,) of positive integers. Let; := a1 +---+ ¢ fori =1,...,¢.
Thesize|a| of the composition is the sum of all itpartsay, ..., a, i.e. |a| = o¢. If |@| = nthen we say that is a
composition ofh and writea E n. Thedescent sedf « is D(«) := {01, ...,0,-1}. Sendingx to D(a) gives a bijection
between compositions afand subsets of- 1].

Now recall from Norton|[[8] that the 0-Hecke algelst&(0) has the following decompaosition

Hn(0) = P Pa(0)

akEn
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where theP,(0)'s are pairwise non-isomorphic indecomposat}g0)-modules. The top d?,(0) is one-dimensional
and denoted b, (0). Thus the two Grothendieck grou@s(#,(0)) andKq(#Hn(0)) are free abelian groups on the
isomorphism classes &, (0) andP,(0), respectively, for all compositiors Associated with the tower of algebras
H,(0) : Ho(0) — H1(0) — H>(0) — - - - are two Grothendieck groups
Go(H.(0)) = () Go(Hn(0)) and Ko(H.(0)) = € Ko(Hn(0)).
n>0 n>0
They are dual graded Hopf algebras with product and coptayain given by induction and restriction of represen-
tations along the natural embedding,(0) ® H,(0) — Hm:n(0) of algebras. The duality is given by the pairing
(P,(0), C5(0)) := 8, for all compositionsy andp.
For later use we review the explicit formulas for the prodofcKqo(#.(0)) and the coproduct dbo(#H.(0)). Let
a = (ay,...,ar) andB = (B, ..., Bx) be compositions afn andn, respectively. We write

af = (a1,...,@,B1,...,8) and avpB:=(ag,...,ar1,a +B1,62,---,PK)-
For anyi € {0,1,...,m}, letr be the largest integer such that:= a1 + - - - + a; is no more tham, and write
aq = (aq,...,q,i—0y) and asj:=(ors1—i,ar2,...,a0)
where we ignore — o~ if it happens to be 0.
Proposition 2.1(Krob and Thibonl[[6]) For anye E m andB E n one has

P.(0)&P5(0) = (Pu(0) @ Py(0)) 1 e, o) = Pas(0) & Puss(0),

ACo(0) = X" CalO) L 57 6= D, Cau(0)® Ca, (0).
i=0 i=0

For example, one hd&13(0) ® P223(0) = P2132240) ® P215240). Letd be the empty composition of= 0. Then
A(C121(0)) = Cyp(0) ® C121(0) + C1(0) ® C21(0) + C11(0) ® C11(0) + C12(0) ® C1(0) + C121(0) ® Cy(0).

The representation theory of the 0-Hecke algebras is coathetith the dual graded Hopf algebras QSym of
guasisymmetric functiorend NSym of noncommutative symmetric functionBhere are dual bases for QSym and
NSym consisting of thdundamental quasisymmetric functiong &d thenoncommutative ribbon Schur functiogs
for all compositionsyr. Krob and Thibon[[5] introduced two Hopf algebra isomorpings

Ch : Go(H.(0)) = QSym and ch: Ko(H.(0)) = NSym

defined by ChC,(0)) = F, andch(P,(0)) = s, for all compositionsy. There is an injection Sym> QSym of Hopf
algebras given by inclusion, as well as a surjechtBym - Sym of Hopf algebras by taking commutative image.

3. COLLAPSE AND COMMUTATIVITY

Let (W, S) be a Coxeter system and [ébe a field. In this section we study when the Hecke algébf@) = Hs(q)
of (W S) with independent parametegs= (gs € F : s€ S) collapses or becomes commutative.

We first study theparabolic subalgebrasf H(q). We know that any subs&C S generates a Coxeter subsystem
(Wr, R) of (W, S). However, the subalgebra @{(q) generated byT, : r € R} is not necessarily isomorphic to the
Hecke algebrg+r(q) of the Coxeter system\Ng, R) with independent parameters ( r € R). For example, if there
exist two elements andt in S such thatgs andg; are distinct nonzero parameters ang is odd, then the algebra
H;5(q) is 2-dimensional, but Theorem 8.2 below giles= 1 in H(q). To guarantee an isomorphism between these
two algebras we assume tHRit S is admissiblei.e. if mg is odd fors € Randt € S\ Rthen eithegs = 0 org; = 0.

If Ris admissible then one sees tika{ R is also admissible. We denote the generating séfg(fy) by {T, : r € R},
which satisfies the relation¥ (- 1)(T; + g) = 0and T/T/T; - - )m, = (T{T,T{ -+ )m, forallr,t e R

Proposition 3.1. For any RC S there is an algebra surjection frofir(q) to the subalgebra of{(q) generated by
{Tr : r € R} by sending Tto T, for all r € R, which is an isomorphism when R is admissible.

Proof. SendingT; to T, for all r € Rgives an algebra map: Hr(q) — H(g) whose image is the subalgebrafg{q)
generated byT; : r € R}. Suppose thaR is admissible and define
T, ifseR
Y(T) =11, ifseS\R gs#0,
0, ifseS\R gs=0.
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One sees that the quadratic relations are preserved e next check the braid relations. Lt € S with mgt = m.
If sandt are both inRtheny(Ts) = T; andy(T:) = T/ satisfy the same braid relation &gandT;.
If se Randt € S\ R, theny(T;) € {0, 1}. Whenmis even one has

WTHUTITY - In = GTWATINT - I
Whenmis odd andg; = 0 one hag/(T;) = 0 and the above quality still holds. Whemis odd andy; # O one has
Y(T:) = 1 and the admissibility oR impliesgs = 0. Thus
WTTIW(TY -~ Jm = (TY™H2 = (T2 = (YT (TI(T) - m.
It follows thaty is a well defined algebra map. Restricted to the imagg tie mapy is nothing but the inverse of
¢. Thus the result holds. m]

We say that a path in the Coxeter diagram\Wf§) is oddif all its edges have odd weights, andnzeraif all its
vertices, including the two end vertices, correspond tazeom parameters. Thmllapsed subseif S consists of all
elements e S that are connected to some other vedédepend om) with gs # g; via an odd nonzero path.

Theorem 3.2.1f Ris the collapsed subset of S then (i)F'1, ¥r € R, (ii) Ts ¢ F, Vs € S\R, and (i) H(q) = Hs\r(Q).

Proof. By definition, for anyr € Rthere exists an odd nonzero pathy(...,t) fromr to somet € S such thaty, # q;.
We show (i) by induction on the length of the path. First assihat the length is 1, i.e. there is an edge between
andt with an odd weight := my;. The braid relation betweeh andT; implies that

T (T T)m= (T T(Tr - T)mer = (Te T Te e Todm T
Using the quadratic relations fa¢ andT; one obtains
G (TeTeTe - )ma + (A=) (T T T+ )m = G(TeTe T )mea + (L= A)(TeTe T )me
Hence

@ = )M T Te)ms = (@ = G)(Tr TeTe - Te)m = (O — A)(TeTe T - - - T

Sinceq, # 0, q: # 0, andqg, # g, one can apply the inverses®f, T;, and € — o) to getT, = T; = 1.

Now suppose that the path §,...,t) has length at least two. H; # gsthenT, = 1 by the above argument.
Otherwiseqr = s # g and one ha3s = 1 by induction, sinceg...,t) is an odd nonzero path of smaller length.
Then applyingT,; ! to the braid relation betweéh andTs givesT, = 1. This proves (i).

To show (ii), we assum@&; € F for somes € S. If gs = 0 then{s} is admissible and thus the subalgebraf)
generated byfs is 2-dimensional by Propositidn 3.1, which is absurd. Tfeeeqs # 0. LetU be the set of all
elements irS that are connected ®via odd nonzero paths, includirggjtself. Thenq, # 0 for allu € U. One sees
thatU is admissible and hence the subalgebraf@f) generated byT, : u € U} is isomorphic to the algebral, (q)
by Propositiod 311. If{q, : u € U}| = 1 thenHg(q) has a basis indexed W, and hencf s ¢ F, a contradiction.
Thereforg{qy : u € U}| > 2. This forcess € Rand establishes (ii).

Finally, one sees tha& \ Ris admissible. By Propositidn 3.%s\r(q) is isomorphic to the subalgebra f(q)
generated byTs : s€ S\ R}. Hence (iii) follows from (i). m|

By Theoreni 3.2, we may always assume without loss of gemethtit(q) is collapse-freei.e. if ms;is odd and
gs # Ot then eitheigs or g; is 0. We next develop some lemmas in order to characterize #i(g) is commutative.

Lemma 3.3. If S = {s,t}, gs = 0 # q;, and m:= mg is odd, ther{(q) has dimensio2m - 3 and a basis
{(TsTiTs )k, (TeTsTt---)k:k=0,1,2,...,m-2}.
Proof. Sinceqs = 0 # g: andmis odd, it follows from the defining relations f@#(q) that
(TsTiTs - Tom = (TsTeTs - T)mea = (TeTsTe- - TdmTe = Ge(TeTsTe - Im-a + (L= A)(TeTsTe- - )m
which implies [(TsTt- - )m-1 = (T{TsTt - - )mand thus [sTTs - - )m2 = (TsTtTs- - - )m-1. Similarly,
(TsTiTs  )m = (TiTsTe - Tomer = Te(TiTsTe - )m = G(TsTeTs - )Jm1 + (1= G)(TeTsTe -+ )m.

Thus TsTiTs - T)me1 = (T{TsTt - T)m and TsTiTs - )mz2 = (TtTsTt- - )m-1. It follows that?H(q) is spanned by
the desired basis. Then it remains to show that the dimemsi®f(q) is at least tn— 3.
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To achieve this, we define & (qg)-action on theé-span ofZ := {(sts- - - )k, (tst--- )k : k=0,1,2,...,m-2} where
(sts-+)o = (tst---)o = 1 by convention. The dimension BY is by definition|Z| = 2m - 3. Define

Ts(tst--- )k = (sts: - - Js1, 0O<k<m-3
Ti(sts -+ )k = (tst- - i1, O<ksm-3
Ts(sts -+ )k = (sts: -+ )k, l<k<m-2

Ty(tst- - )k = qe(Sts - - Je-a + (L—q)(tst--- ), 1<k<m-2
Ts(tst: - )m-z = Te(sSts - - Jm-2 = (StS - - )Jm-2-
One sees that the quadratic relationsfgandT; are both satisfied by this action, and so is the braid reldtemause
(TsTiTs - Im(@ = (TiTsTe - Im(2) = (StS - - )2, VYzeZ
HenceFZ becomes a cyclig{(q)-module generated by 1. This forces the dimensiok/ @) to be at least@—-3. O

Lemma 3.4. Suppose that there exists a péth= s, 51, S, . . ., Sk = t) consisting of simply laced edges in the Coxeter
diagram of(W, S), where k> 1. If g5 # Oand mg < 3foralli € [K], and g = O, then TsT; = TiTs = Ts.

Proof. We showTsT; = T;Ts = T¢ by induction ork. If k = 1 then
TSTtTS = TtTSTtTS = TtZTSTt = thsTt + (1 - qt)TthTt~

Sinceq # 0, one hag Ty = TyTsT; and thusTs = T;Ts. ThenTsT; = TsTiTs= T2 = Ts.
Now assume > 2. If mg; = 3 thenTsT; = T;Ts = Ts by the above argument. Assumg; = 2, i.e. TsT; = T;Ts.
Letr = 5_1. ThenT,Ts = TsT; = T5 by induction hypothesis. Thus

Tth = TsTthTr = TsTtTth = thTs = Qth + (1 - QI)Tth-
This impliesTsT; = T;Ts = Ts which completes the proof. O

Now we provide a characterization for whéf(q) is commutative. It implies that there exigise FS such that
H(q) is collapse-free and commutative if and only if the Coxeliagram of \ S) is simply laced and bipartite.

Theorem 3.5. Suppose that{(q) is collapse-free. Thef{(q) is commutative if and only if the Coxeter diagram of
(W S) is simply laced and exactly one of q; is O for any pair of elements s S with m; = 3.

Proof. We first assume that{(q) is commutative. Let t € S with mg > 3. We need to show thag, = 3 and
exactly one ofgs andq; is 0. To attain this we first show ths, t} is admissible. By symmetry, it flices to show
thatg,gs = O for anyr € S\ {s t} with ms odd. Suppose to the contrary tltptjs # 0. Theng, = gs since(q) is
collapse-free. LeR be a maximal subset & containings such thaty, = g, wheneveia, b € Randmyy, is odd. Then
r € R The maximality force®R to be admissible. By Propositidn BHg(q) is isomorphic to a subalgebra &f(q)
and thus commutative. It also has a bd3ig: w € Wr} by Theoreni IR. Hena®s < 2, a contradiction.
Therefore(s, t} is admissible. Thefts(g) is isomorphic to a subalgebra f(q), and hence commutative. Since
mg > 3, Theoreni 112 implies thah; is odd andgs # q:.. Then exactly one ofls andg; must be 0 sincé-(q) is
collapse-free. By Lemnia3.3, the dimensior#qt(q) is 2m— 3 and henceng; = 3. This proves one direction of the
theorem. The other direction follows from Lemmal3.4. m]

Finally, using the results in this section we obtain a praosfTheoreni.I2. One can check thaf, : w € W}
spansH(q) using the word property oV and the defining relations of(q). If gs = g whenevemy, is odd, then
{Tw : w € W} is a basis forH(q) by Lusztig [, Proposition 3.3]. Conversely, suppose ffigt: w € W} is a basis
for H(q). Letst € S with m := mg;odd. The dimensiod of the subalgebra of{(q) generated bys andT; equals
the cardinality of the subgrougs, ty of W, which is 2n by the word property ofV. On the other hand, ifis # o
then eithed = 1 < 2mwhengsg; # 0 by Theoreni 312, od < 2m - 3 < 2mwhenqgsg; = 0 by Propositiol 3]1 and
Lemmd3.8. Hencgs = q.

4. THE SIMPLY LACED CASE

In this section we study a collapse-free Hecke algété(g) with independent parametegs= (gs € F: s€ S) of a
simply laced Coxeter systeriS). We first give some lemmas in order to construct a basig-#y).

Lemma 4.1. If (W S) is simply-laced then S decomposes into a disjoint union of.S, Sk such that
(i) the elements of each $ceive the same parameters and are connected in the Cakategam of(W, S),
(i) if s € §;, t€ S, i # j, then either ng = 2 or exactly one of gand g is 0.
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Proof. We remove from the Coxeter diagram &/S) all the edges whose two end vertices correspond to distinct
parameters. LeB,, ..., Sk be the vertex sets of the connected components of the reggltaph.

If st e S;then there exists a path frosto t, whose vertices have the same parameter. Thus (i) holds.

If se S, teSj, i+ j,andmg = 3, then one hags # g and thus exactly one afs andg; is O sinceH(q) is
collapse-free. Hence (ii) holds. m]

LetW = (S;j) foralli = 1,...,k. We say an element; € W dominates $if i # j and there exiss € S; and
t € S; such thaigs = 0, mg; = 3, ands occurs in some reduced expressiomaf Let W(q) be the set of all elements
(Wi, ..., W) € Wy X - - x Wi such thaiv; = 1 whenever some; dominatesS;. We need to define af(qg)-action on
FW(q). Let sbe an arbitrary element i. Thens € S; for somei € [K]. Letw = (wa,...,W) € W(q). We define
To(W) 1= (T(W)g, ..., Ts(w)y) € FW(q) as follows.

If Sj is dominated by some;, thenTs actstrivially onw, meaning thal s(w) := w. OtherwiseT s actsnontrivially
onw: if £(sw) < £(w;) thenTs(w); = (L-g)wi+qgsw andTs(w); = w;j forall j # i; if £(sw) > £(w) thenTs(w); = sw,
Ts(w)j = 1 forall j # i such thats dominatesS;, andTs(w); = w; for all j # i such thats does not dominateS;. In
other words, ifS; is not dominated byy; for all j # i thenTs acts on théth component oiv in the same way as the
regular representation of the Hecke algebfga(qs) (seel(2.11)), and for alj # i one has

wj, if sdoes notdominats;,
1, if sdominatesS;.

Ts(W)j = {

Lemma 4.2. One has a well define#i{(g)-action onFW(q) such that every elemefws, . .., wy) in W(q) is equal to
Twy - Tw (1)

Proof. Let s e S; and letw = (w, ..., W) € W(q). We first show thaT s(w) € FW(q). We may assume thdi; acts
nontrivially onw, i.e. S; is not dominated byy; for all j #i. If £(sw) < £(w) thenw € W(q) implies

Ts(W) = (1 - q)w + q(Wa, . . ., Wi_1, SW, Wiy, . . ., Wk) € W(Q).

If £(sw) > £(w;) thenTs(w) € W(Q) sinceTs(w); = sw andTs(w); = 1 wheneves dominatess;.

Next we verify the quadratic relation for the actionTaf If Ts acts trivially onw thenT2 = (1 - gs)Ts + gs Clearly
holds. Assume thaks acts nontrivially orw and applyTs again toTg(w). For thei-th component this is the same as
the regular representation #fs, (qs) (se€ 2.11). Henc&2 = (1 - gs)Ts + gs holds for thei-th component. Lef # i. If
sdoes not dominateS; thenTs(w); = w;j is fixed by Ts. If sdominatesS; thenTg(w;) = 1 is also fixed byTs, and
gs = 0. Hencel?2 = (1 - g¢)Ts + gs also holds for thg-th component for alf # i.

Next we verify the braid relation betwedn andT; for anyt € S; \ {s}. If one of Ts andT; acts trivially onw
then so does the other. Thus we may assumeTthahdT; both act nontrivially orw. Then they both act on theth
component ofv by the regular representation s, (qs) and hence the braid relation holds for this component. Let
j # iand letT(s t) be any product ofs andT; that contains both of them. If eitharor t dominatesS; thenT (s, t)
sendsw; to 1. If neither ofs andt dominatesS; thenT (s, t) fixesw;. Hence the braid relation betwe@&gandT; also
holds for thej-th component for alj # i.

Next assume thdte S; andi # j. First consider the case whemlominatesS;. Sincegs = 0, one hag s(w); = w;
if £(sw) < €(w;) andTg(w); = sw if £(sw) > £(w;). In either casdl; acts trivially onTg(w), i.e. Ti(Tg(w)) = Tg(w).
On the other hand, sinag # 0, one sees thdt dominates nothing and thus fixes all components ekcept thej-th
one. SincesdominatesS;, one also ha$s(Ty(w)); = Ts(w);j = 1. HenceTs(Ty(w)) = Ts(w).

Similarly if t dominatesS; then one ha3sTi(w) = Ty(w) = T;Ts(w). For the remaining case, that is, whedoes
not dominateS; andt does not dominateS;, one hasng; = 2 by Lemmd 4.1 (ii). We need to show that both actions
of TsTy andT;Ts onw are the same. One sees for both actionsThandT; act separately ow; andw; by the regular
representations offs,(qs) andHs, (), respectively. Leh € [K] \ {i, j}. If Sy is dominated by eithes or t then both
TsTy andTTs sendsw, to 1. Otherwise botfsT; and T, Ts fixesw;. HenceTsTy(w) = Ty Ts(w).

Therefore one has a well defined actionfé{g) on FW(q). One sees that every element. .., wy) in W(q) is
equal toTy, - - - Tw (1) by induction ort(w;) + - - - + £(wy). This completes the proof. m|

Theorem 4.3. Assume thafW, S) is simply-laced andH(q) is collapse-free. The#{(q) has a basis
B(a) := {Twy -~ Tw + (Wa,..., W) € W()}

Proof. Theoren_LR shows thatf(q) is spanned byT, : w € W}. Letse S;,t € Sj, andi # j. If mg = 2
thenTsT; = TiTs. If mg = 3 then we may assumef gs # g by Lemmd 4.1l and it follows from Lemnia_3.4 that
TsTy =Ts =T Tsforallr € S;. Hence for anyv € W one can writ€ly, = Ty, - - - Ty, Wherew = (wy, ..., W) € W(Q).
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This shows thaB(q) is a spanning set faf{(q). On the other hand, it follows from Lemnha #.2 tH(g) is also
linearly independent. ThuB(q) is a basis forH(q). m]

Corollary 4.4. Suppose that\, S) is simply-laced and let S. . ., Sk be given by Lemnia4.1.

(i) A collapse-freeH(q) is finite dimensional if and only if W= (S;) is finite for all i € [K].

(i) There existg) € FS such thatH(q) is collapse-free and finite dimensional if and only if thexestss RC S such
that the parabolic subgroup®) and(S \ R) are finite.

Proof. (i) By Theoren{4.B, a collapse-fre(q) is finite dimensional if and only i¥V(q) is finite. For anyi € [K],
there are injectiong/ — W(q) — W x - - - x Wk. HenceW(q) is finite if and only if W is finite for alli € [K].

(i) Suppose that(q) is collapse-free and finite dimensional. [Rt= {s€ S : gs = 0}. By Lemmd4.1, we may
assumeR = S; U --- U Sj. Then(R) = (S1) x --- x(Sj) and(S \ R) = (Sj;1) X --- X (Sx) are both finite groups
by (i). Conversely, if there exists a sub&t S such thafR) and(S \ R) are both finite groups, theH (q) is finite
dimensional by (i), wherq is defined bygs = O for all se Randqgs = 1 foralls¢ R. m|

Example 4.5. (i) It is well known that the Coxeter group offne typeA is infinite and so is the associated Hecke
algebra with a single parameter. However, if one takes s@ranpeters to be 0 and others to be 1, the resulting algebra
is finite dimensional, since all th&/’s given in the above theorem are of finite type

(i) Let the Coxeter diagram oW, S) be the complete grapls with 5 vertices. Assume thatf(q) is collapse-
free. There can be at most twoffdirent parameters 0 amd+ 0. BothR := {s € S : gs = 0} and its complement
S\R={se S: gs = q} are admissible subsets 8f the larger one of which contains at least 3 elements andjikias
a copy of the infinite dimensional Hecke algebra fifree typeAs with a single parameter as a subalgebrafy).
ThereforeH(q) is never finite dimensional in such cases.

5. THE SIMPLY LACED BIPARTITE CASE

By Theoreni 35 there exists € FS such thatH(q) is collapse-free and commutative if and only if the Coxeter
diagram of W, S) is simply laced and bipartite. We give more results for scase in this section. L&t := []ig Ti
forall | € 7(G), whereZ(G) consists of independent sets in the underlying g@uii the Coxeter diagram ofy, S).

Corollary 5.1. A collapse-free and commutativé(q) has a basigT, : | € 7(G)}. In particular, if (W, S) is of type
A then the dimension off(q) equals the Fibonacci number,E.

Proof. By Theoreni 3.5, the Coxeter diagram @, S) is a simply laced and bipartite graghwith all edges between
the two subset§s € S : gs = 0} and{t € S : gt # 0}. Hence the subsef3,,..., Sk given by Lemma4]1 are all
singleton sets. Then the ba&&) for (q) given in Theorerh 413 consists of the eleméeRtsor all | € 7(G).

Now suppose thaW{, S) is of typeA,, i.e. its Coxeter diagram is isomorphic to the pBthwith n vertices. If an
independent sdtin P, contains one end vertex 8, then removing this end point froirgives an independent set of
Pn_2; otherwisel is an independent set 8f,_1. Thus|Z(Pp)| = |7 (Pn-1)| + |7 (Pn-2)|- One also sees thgi(P;)| =i+ 1
if i =0,1. ThusgZ(Pp)| = Fpy2 foralln > 0. O

Computations irMagma suggest the following conjecture.

Conjecture 5.2. Suppose that the Coxeter diagram(dl S) is a simply laced and bipartite graph G. The minimum
dimension of a collapse-fred(q) is |Z(G)|, which is attained when it is commutative.

We will verify this conjecture for typé\,. We first need a lemma on ttké&onacci numberswhich are defined as
Fo=0,F1=1,andF, =F,_1 + Fpoforalln> 2.

Lemma5.3. Ifk > 4then K > Fy,3 + 2. Also, ifa> 1 and b> 0then R,y = FaFpi1 + Fa_1Fp < FaFpeo.

Proof. The first result follows easily by induction. It is well knovimat F,,, = FaFp.1 + Fa_1Fp (See Example712).
HenceFap < Fa(Fpi1 + Fp) = FaFpse. O

Theorem 5.4. LetH(q) be a collapse-free Hecke algebra of typewfith independent parameters. Then its dimension
is at least the Fibonacci numberE, and the equality holds if and only#i(q) is commutative.

Proof. We prove the result by induction an The Coxeter diagram for typh, is the paths; — s, —--- — 5, . We
write g := s for alli € [n]. Let Sy,..., Sk be the subsets & given by Lemma4l1. The§; is a path of length
n; > 1 for everyj € [K]. We may assume, without loss of generality, that

sz{s:nl+"'+nj*1<iSnl+”'+nj}’ vje[k]
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If all parameters irg are the same, theH (q) has dimensionn(+ 1)! > Fp,». Thus we may assume that there exists
j € [Klsuchthaigs=q#0forallse Sj. Leta=ny+---+nj_1, b =nj,andc = nj.1 +-- -+ nk. By conventiora = 0
if j =1,andc=0if j = k. One sees tha, andsa.p.1 both dominates;.

By TheorenT4.B7(q) has dimensionW(q)|. We need to count the elements, (..., wy) in W(q). If w; # 1
then any reduced word of;_; cannot contairs, and any reduced word @¥j.; cannot contairs..p.1. It follows that
(wa,...,wj_1) and @Wj.1,..., W) are arbitrary elements W(g : 1 <i <a-1)andW(qg : a+b+2 <i <n),
respectively. Then the number of choices fag (. . ., wy) in this case is at lea$t,;1((b + 1)! — 1)F¢,1, by induction
hypothesis. Note that this still holds everaif 0 orc = 0, sinceF; = 1.

Similarly, if wj = 1 the number of choices fowg, . .., wi) is at leasta.2F¢. by induction hypothesis.

Thus the dimension of{(q) is at leastf (a, b, ¢) := Fa,1((b+ 1)! — 1)F¢i1 + Far2Fci2. By Lemmd5.B,

f(a,b,c) = Faua((b+ 1)! - 2)Fci1 + Fascra.
If b = 1 then this becomel(a, b, €) = F4.c3 = Fniz. If b =2 then Lemm&5]3 implies that
f(a,b,c) > 3Fa1Fci1 + Farcz = FaFarc + Fnor = Fo + Fryr = Fryo.
If b > 3 then Lemm&X5l3 implies that

f(a,b,c) > Far1FpiaFci1 > FaipiaFer1 = Fea.

Thereforef(a, b, ¢) > Fn,2 always holds.

Finally, assumd (a, b, ¢) = Fn.2. By the above argument, this equality is possible only# 1 and the dimensions
of H(qQu,...,0a) andH(Qar2, - .-, qn) are Fa2 and Fe,o, respectively. ThetH (s, . .., da) and H(as2, - - -, 0n) are
commutative by induction hypothesis. The definitiondipb, andc impliesg, = 0, ga41 # 0, andga,2 = 0. It follows
from Theoreni 315 thag; = 0 wheni = a mod 2 andg # 0 otherwise. Hencé&f(q) must be commutative. On the
other hand, ifH(q) is commutative then its dimensionfs,, by Corollary[5.1. This completes the proof. m|

Next we explain the connection between a collapse-free andrutative/{(q) and theMobius algebra AL) of a
finite latticeL. According to Stanley [10§3.9], the Mobius algebrA(L) is the monoid algebra df overF with the
meet operation, and it is a direct sum|/bfmany one-dimensional subalgebras.

Now letZ be a finite rank two poset. S¥t:= {x € Z : x> yfor somey € Z} andY = Z \ X. By abuse of notation
we denote by the underlying graph df. LetL be the distribute latticd(Z) of the order ideals of ordered by reverse
inclusion (so that the meet operation is the union of ide&sippose thati/ S) is a Coxeter system whose Coxeter
diagram coincides witZ. Denote byH (Z) the Hecke algebra{(q) of (W, S) with parameterg = (gs : S€ S) given
bygs=0forallse Xandqgs=1forallseY.

Proposition 5.5. Whenchar §) # 2 the algebraiH(Z) is isomorphic the Mdbius algebra of2).
Proof. By definition, the algebré{(Z) is generated byT, : x € X} U {Ty : y € Y} with relations

ngTX,Tyzzl, ¥xeX, YyeY,
Tsz/ = Tz/Tz, VZ Z € Z?
TyTy =Ty, if x>yinZ (by Lemmd3})

One has a basig : | € 7(2)} for H(Z) by Corollary(5.1.

When chark) # 2 one can replace the generatgmwith T;, := (Ty + 1)/2, which is now an idempotent, for every
y € Y. One checks that all other relations given above remain s&¥fige T; = Ty for all x € X. Then the algebra
H(Z) is generated byT} : x € X} U{Tj 1y € Y} and has a basiS| : | € 7(Z)} whereT'(l) := [ T;.

Any independent sdtin 7(Z) is an antichain irZ, generating an order ided(l) consisting of all elements weakly
below some element df Conversely, an order ideal @f corresponds to an independent ket 7(Z) consisting of
all maximal elements in this order ideal. Hence sending) to the order ideall(l) for all | € 7(Z) gives a vector
space isomorphisH(Z) = A(J(Z)). To see this isomorphism preserves multiplicationsljleindl, be two elements
in 7(Z2). ThenT’(11)T’(I2) = T’(I1012) wherel; o |5 is obtained from, U I, by removing all the elements that are less
than some element of U I,. On the other hand, the order ide}l;) U J(I2) has maximal elements given lyo I,
and thus equald(l1 o I2). This completes the proof. m]
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6. THE COMMUTATIVE CASE

By Theoreni 35 and Corollafy 8.1, %(q) is collapse-free and commutative, then the Coxeter diagria(W, S)
is simply laced with a bipartite underlying gra@h and the dimension of((q) is |Z(G)|. In this section we define and
study a more general commutative algebra for any (unweiljisienple grapt, whose dimension is still' (G)|.

6.1. Basic results. Let G be a simple graph with vertex sé{G) and edge seE(G), and letR € V(G). We define an
algebraH (G, R) to be the quotient of the polynomial algelitfa, : v € V(G)] by the ideal generated by

(X :reRUP-x:veV(G)\ R U (XX :uve EG)).

The image of, in the quotient algebré((G, R) is still denoted by, for all v € V. This algebraH (G, R) generalizes
the commutative algebr& (q) by the following result.

Proposition 6.1. If H(q) is collapse-free and commutative then it is isomorphig#(i, R) as an algebra, where G
is the underlying graph of the Coxeter diagram(df S) and R:= {s€ S : qs = —-1}.

Proof. The algebraH(qg) has another generating 4&t : s € S} given by

Ts, 0s =0,
Xs = Ts - 1, qS = —1’
(1-Ts)/(1+qs), otherwise

If H(q) is collapse-free and commutative then one can check teaelations foTs : s € S} are equivalent to the
relations for{xs : s € S} in the definition ofH (G, R) using Lemma314. Thus the result holds. ]

Remark6.2 (i) The setR = {se S : gqs = —1} associated witlH{(g) depends on chaF}. For example, an element
s € S with gs = 1 belongs taR if and only if char F) = 2. However, onc& is chosen for the algebr# (G, R), our
results onH (G, R) do not depend on chdr) any more.

(i) By Theorenl3.b, ifH(q) is collapse-free and commutative ther- {s € S : qs = —1} must be an independent
set of G. But the commutative algebfd (G, R) is well defined for any simple grapgh and any subsd® C V(G).

(iii) The Stanley-Reisner ring of the independence complexisftdéfined as the quotient of the polynomial algebra
Flyy : v € V(G)] by the edge idealgenerated byy(yy : uv € E(G)). See e.g.[[5]. The algeb® (G, R) is a further
quotient of the Stanley-Reisner ring of the independenogbex ofG.

Now we study the algebr#/ (G, R) and our results will naturally apply to the commutativesddgpH (q) by Propo-
sition[6.1. We first need some notation. For &hyg V(G) we write

Xu :=l_[xu and X :=1_[x(J

ueU ueU

wherex; := 1 - x, for all ve V(G). One sees thafy + 0 if and only ifU belongs taZ (G), the set of all independent
sets inG. We define théengthof a nonzero monomia{, to be the cardinalityl| of the independent sét We partially
order the nonzero monomials by their lengths. We denotbltwy) the set of all vertices that are adjacent to some
vertexu € U in G. We will often identify a subsdt) of V(G) with the subgraph o induced byU, whose vertex set

is U and whose edge set{i1, v} € E(G) : u,v € U}. We will also write “+” and "-" for set union and dterence. For
example, we writé&s — Rfor the subgraph o& induced byV(G) — R, and hencd (G — R) consists of all independent

sets ofG — R. We give two bases foH (G, R) in the following proposition, which generalizes Corojl&.1.
Proposition 6.3. The algebraH (G, R) has dimensiof (G)| and two base§X : | € 7(G)} and
(6.1) {Xi+aXop 1 €T(G-R), Je I(R-N(I))}.

Proof. The defining relations foH (G, R) immediately imply that it is spanned B, : | C 1(G)}. LetFZ(G) be the
vector space ovef with a basis? (G). We define an action of{(G, R) onF1(G) by

% (1) = 0, if vel nRorl U{v} ¢ 1(G),
YT lu{v, otherwise

It is not hard to check that this action satisfies the defingtations forH (G, R). For anyl € 7(G), one hasX(0) = I.

This forces the spanning sgf; : | C 1(G)} to be a basis fofH(G, R).

One sees that any independent séafin be written uniquely ds+ J for somel € 7(G-R) andJ € 7(R- N(l)),
and the shortest term X, 3X5_g_, iS Xi4+3. Thus[6.1) is also a basis féf(G). O



12 JIA HUANG

Let G’ be a subgraph db induced by’ C V(G), and letR" = V' n R. The following corollary allows us to study
the induction ofH(G’, R)-modules toH (G, R) and the restriction of{(G, R)-modules taH(G', R)).
Corollary 6.4. The subalgebra oH (G, R) generated byx, : v € V’} is isomorphic toH (G', R)).

Proof. There is an injectiow : H(G’,R’) — H(G, R) of algebras defined by sending the generatpfer H(G’, R)
to the generators, for H(G, R) for all v € V’. By Propositio 6.3, the algeb#(G’, R’) admits a basis consisting of
the elementX| := [], X, forall | € 7(G’). The mapp sends this basis to the bagi§ : | € 7(G’)} for the subalgebra
of H(G, R) generated byx, : v € V’}, giving the desired isomorphism. m]

6.2. Projective indecomposable modules and simple moduledVe first decompose the algebf#(G, R) into a
direct sum of indecomposable submodules.

Theorem 6.5. There is anH (G, R)-module decomposition

(62) HG.R= (D PGR

1cT(G-R)
where eaclP| (G, R) := H(G, R X X5_g_, is an indecomposablg/ (G, R)-module with a basis
(6.3) (X1 10XG gy : J € I(R-N(1))

and hence has dimensi@fi(R — N(I))|. The top ofP, (G, R), denoted byC, (G, R), is one-dimensional and admits an
H (G, R)-action by
{1, if vel,
Xv =

0, ifveG-I.
Proof. Letl € 7(G - R). Sincex,x; = 0 foranyve G- R- I, andx,x, = 0 whenevew € | andu € N(v), one has

(6.4) X3 Xe ) = {())('”XGRP 1191 € TR-NO),

for anyJ € 7(G). Hencel(6.B) spar® (G, R). By Propositio 6 3+ (G, R) has a basig (6l.1) which is the union of the
spanning set$ (6.3) for dlle 7(G — R). This implies the direct sum decompositién {6.2)/({G, R) and forces the
spanning sef(613) to be a basis R(G, R). The dimension oP, (G, R) is then clear.

Now we prove thaP; (G, R) is indecomposable and find its top. Sine= 0 for anyr € R, the elements i (6l3)
are all nilpotent excepX; X;_g_,. The sparN; of these nilpotent elements is contained in the nilradi€ahgG, R),
and hence in the radical & (G, R). By (6.4), the quotien®, (G, R)/N; is isomorphic to the one-dimensiod|(G, R)-
moduleC, (G, R). It follows that the radical oP, (G, R) equalsN,;, and the top oP, (G, R) is isomorphic toC, (G, R).
ThenP, (G, R) must be indecomposable as its top is simple. m|

By Theoren{65,P,(G,R) : | € I(G - R)} and{C|(G,R) : | € I(G - R)} are complete lists of pairwise-
nonisomorphic projective indecomposa#éG, R)-modules and simplé{(G, R)-modules, respectively. The proof
of Theoreni 6.6 shows that the radicalR{G, R) is spanned byX.;Xs r, : 0 # J € 7(R- N(l))} and hence the
radical of H(G, R) is the ideal generated Hy; : r € R}. This ideal coincides with the nilradical (G, R), showing
thatH(G, R) is aJacobson ring Some other consequences of Thedrerh 6.5 are listed below.

Corollary 6.6. Theorenf 65 implies the following results.
(i) The algebraH (G, R) is semisimple if and only if R 0.
(i) For any | € 7(G - R) one has, (G, R) = H(G, R) ®c-rg) Ci(G - R 0).
(iii) The socle o (G, R) is the direct sum df X, 3X5_r_, = Ci(G, R) for all maximal J inZ7(R— N(1)).
(iv) The Cartan matrix ofH (G, R) is the diagonal matrixdiag{|Z(R— N(I))| : | € (G - R)}.
(v) A complete set of primitive orthogonal idempotents (BHs given by{X| X5, : | € I(G - R)}.
Proof. (i) An algebra is semisimple if and only if its radical is 0. &hadical of H(G, R) is generated byx, : r € R},
which is 0 if and only ifR = 0.

(i) There is a bilinear magH(G,R) x C,(G - R, 0) — P;(G, R) defined by sendingXj, z) to X;X; Xg_g_, for all
J € I(G), wherez is an element spanning, (G — R, 0). This induces an algebra surjection

¢ H(G,R) @xi-ro) CI(G-R0) » P(G,R)

which sendsX;®c-re) 2z 10 XX Xg_g_, forall J € 7(G). One sees thatl (G, R)®4c-ro)C1 (G—R, 0) is spanned by
{Xs®n-r0) 2z : J € I(R-N(1))}, which is sent by to the basid (6]13) foP, (G, R). Hencep must be an isomorphism.
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(iii) If Jis maximal inZ(R - N(I)) thenFX,3X5_g_, admits the same action of((G,R) asC,(G,R). Thus
FXi4+3X5_g_, is @ simple submodule % (G, R) and must be contained in the socleRy(G, R). Conversely, we need
to show that any simple submodul¢ of P;(G, R) is contained in the direct sum &, Xz ,_, for all maximal
J € I(R—- N(I)). Using the basig (61 3) fd?, (G, R) one writes an arbitrary element bf as

Z= Z CJX|+JX6_R_|, cyeF.
Jer(R-N(1))

Let K be a minimal independent set ii{R — N(I)) such thatck # 0. It sufices to show thaK is also maximal in
T (R-N(1)). If not, then there existse R— K such thaK +r € 7(R— N(I)). For anyJ € 7(R- N(I)), one sees that
0, if re JUN(IUJ),

X34 Xg_r # 0, otherwise

XrXI+.]xé_R_| = {

Thus in the expansion ofz in terms of the basig (6.3), the d@eients of X,k Xg_g_, and Xk« Xs_g_, are 0 and
ck # 0, respectively. It follows that,z ¢ FzandM is at least 2-dimensional. This contradicts the simplioityv.

(iv) Let| € 7(G - R). We order the elemeni$ ;X5 __, by [J| forall J € 7(R— N(I)). This induces a filtration for
P (G, R), under which

X|+JX&7R7|, vel,

Hence every simple composition factor®fG, R) is isomorphic taC, (G, R). The Cartan matrix follows.
(v) This follows from the decomposition & (G, R) given in Theoreri 615 and the equality

Z XX R = Z Z(—l)lJ\”XJ =1
1eI(G-R) JeI(G-R) 1]
The reader who is not familiar with primitive orthogonalidpotents can find more details In [,4]. m]

6.3. Induction and restriction. Let G’ be an induced subgraph &f and letR = G’ n R. By Corollary[6.4, the
following induction and restriction are well defined for msorphism classes of modules:

e the inductionM 7 &% = H(G, R) & ry M of an'H(G’, R)-moduleM to H(G, R),
o the restrictiorN | &%, of anH(G, R)-moduleN to H(G', R).

Proposition 6.7. Assume R= 0, and hence R= 0. Write (G, R) = (G) and(G’,R) = (G’). Then for any 1€ 1(G’),
C@)1g= (P CE)

1T (G)ING =I"
Proof. Suppose that (G") = Fz Using the universal property of the tensor product oneinbtan algebra sujection
¢ : H(G) @y Fz» H(G)X X/
which sendsX; ® ) zto X;X Xg,_,, for all J € 7(G). One sees that{(G) ®(e) Fzis spanned by
X ®n@)z:1 € I(G), ING =)
sincex,z = 0 forallve G’ — I’. This spanning set is sent Byto
XiXg_y i1 €I(G), ING =1}

which is a basis fofH(G) X Xg,_,, since it is a spanning set triangularly relatedXp : | € 7(G), I NG = I'},
a linearly independent set ik{(G). Thusg¢ is an isomorphism. Using the length filtration induced|kyfor all |
appearing in the above basis, one sees that the composititm$ of H(G)X,- X;,_,, areC(G) for all I € 7(G) with
I NG’ = I, each appearing exactly once. This completes the propf(& is semisimple by Corollafy 66 (i). O
Proposition 6.8. Let | € 7(G - R) and Je (G’ - R). ThenC,(G.R) | &' = Cine (G, R) and

PG.RI1SH= P PGR.

KeI(G-R:KNG'=J
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Proof. The restriction ofC, (G, R) follows easily from the definition. By Corollafy 8.6 (ii) drPropositiof 6.7,

PyG.R)T SR = CyG -R.0)T SR, 1T SR

G-R,0
CJ(G/ - R”Q)) T ng/,@

CJ(G, - R”Q)) T gT_Ré?,m T g’_RRQ

G,R
CK(G - Rv 0) T G-R0
KeI(G-R), KNG'=J

D PGR.

KeI(G-R), KNG'=J

R

R

R

IR

IR

This completes the proof. m|

Remark6.9. Itis not hard to obtain the simple composition factors ofitiguction of a simpleH(G’, R)-module to
H(G, R). But the restriction of a projective indecomposabléG, R)-module toH(G’, R) is not always projective.

7. CoMMUTATIVE HECKE ALGEBRAS OF TYPE A

We apply the previous results to commutative Hecke algeatfragpe A with independent parameters.

7.1. Decomposition of Fibonacci numbers.Let (W, S) be the Coxeter system of ty@g whose Coxeter diagram is
the paths; — s, — --- — s, . We often identifys with i and writeq := (g, ..., 0n) € F". Let#(q) be a collapse-free
and commutative Hecke algebra ¥¥S) with independent parametegsThen Theoreri 315 implies that eithggr= 0
for all oddi € [n] andq; # O for all eveni € [n], or the other way around. Propositibn6.1 provides an akgeb
isomorphismH(q) = H(Pn, R), whereR ;= {i € [n] : g = —1}. Note that the seR obtained fron/(q) depends on
char F). Forexample, iff = (1,0,1,0,1,...) thenR = 0 andH(Pp, R) is semisimple if chaF # 2, butR= {1, 3,5,.. .}
andH(Pn, R) is not semisimple if chai{) = 2. However, the algebr#{(Pn, R) is defined for any subs& C [n] and
our results do not depend on ch&).(We first give decompositions of the Fibonacci numbers.

Proposition 7.1. Let RC [n]. Then
Fro= >, H(R-NQ)).

leI(Ph—R)

Proof. Let G be a simple graph and I& < V(G). By Propositior 6.3, the dimension @{(G,R) is [Z(G)|. By
Theoren 6bH (G, R) is the direct sum of,(G,R) for all | € 7(G - R), and the dimension of ead? (G, R) is
|7(R- N(I))]. Hence

@)= >, IIR-N(@).

1e7(G-R)
Now takeG = P,. We know thatZ(P,)| = Fy.2 by Corollary(5.1. Thus the result holds. m]
Example 7.2. Let R := [m] for somem € [n — 1]. Then the subgraph d?, induced byR is the pathPn. If

| € 7(Py—[m+1]) thenI(R— N(I)) = 7(R). If | € 7(P,— R) containan+ 1 thenl — {m+ 1} € 7(P, — [m+ 2]) and
I(R-N(I) = I(Im-1]). Thus we recover a well known identiBp.2 = Fn2Fn-mi1 + FmeaFoem.

Example 7.3. Let X andY be the subsets of odd and even numbersjjrgspectively. Then

Frio = Z 2IY=N)I — Z 2IX=NQ)I

IcX Jcy

This writes a Fibonacci number as a sum &f @ 2Y! many powers of 2. Some small examples are provided below.

n=1 2=1+1=2 n=2 3=2+1
n=3 5=2+1+1+1=4+1 n=4 8=4+2+1+1
n=5| 13=4+2+2+1+1+1+1=1=8+2+2+1 || n=6 | 21 = 8+4+2+2+2+1+1+1
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7.2. The semisimple commutative caseNow we study the representation theory of the semisimplencotative
algebraH, := H(Pn-1,0), whereHy := F by convention. We writer < nif @ = (a4, ..., a,) iS a composition of
with all internal parts larger than 1, i.e; > 1 whenever ki < ¢.

Proposition 7.4. The algebrat,, decomposes into a direct sum of,Fmany 1-dimensional simple submodulgs
indexed byr « n, with thetH,-action onC,, given by x= 1ifi € D(a) or x = 0 otherwise.

Proof. For any compositiom of n, one sees thdd(«) is an independent set &,_; if and only if @ has no internal
parts equal to 1. Thus the result follows from Theofem 6.5. |

SinceH,, is semisimple, its two Grothendieck groupg(H,) andKy(H,,) are the same. Given nonnegative integers
mandn, the subalgebra off,,., generated by, . .., Xm_1, Xmi1, - - - » Xmsn_1 IS iSOMorphic toH,&H.,, giving a natural
embeddingH, ® H,, — Hmin. Thus there is a towek, : Hy — Hi — H, — --- of algebras, whose Grothendieck
groupGo(H.) := @nzo Go(Hn) has a product and a coproduct defined by

Ca®Cpi=(Ca®Cp) Timn,  and A(Ca):= > Coljim,
O<i<m
for all @ « mandg « n. One sees that the produgt and the coproduck are well defined, with uniti sending 1 to
Cy, and counite sendingCy to 1 andC, to 0 for alla « n, n > 1. Applying Propositiofi 618 immediately gives the
following explicit formulas for the product and coprodueidw. See§Z.3 for the notatioms, a > B, a«j, andas,.

Proposition 7.5. For anya « m andg « n, one has
CO,@Cﬁ _ {Calg ®Cosp, If @focm+n,

and A(C,) = Co, ®C,,.
Caosp otherwise () Z . 7

O<i<m
For example, one ha313,® Ca1 = C13241® Ca361, C121® Ca2 = C1242 and
A(Clzz) =Cp®C120+C1®C0+C110C12+C120Co + C121®9 C1 + C12o® Cy.

Corollary 7.6. (i) The graded algebra and coalgebra structures @{8.) are dual to each other via the pairing
defined by C,, Cg) := 6,5 for all @ o« m andg « n, with a self-dual basitC, : @ « n, ¥n > 0}.

(i) There is a surjectionr : Ko(H.(0)) » Go(H.) of graded algebras and an injectian Go(H.) — Go(H.(0)) of
graded coalgebras such that the two maps are dual to each.othe

Proof. The first assertion holds since it follows from Proposifioh that
(7.1) (Co®Cp,C,) =(C, ®Cgs,A(C,)), (Cy,C,) = €(Cy).

For the second assertion, first recall the representat@nrytof the 0-Hecke algebid,(0) from §2.3. We define the
surjectiono by

C,, ifa@xn,
0, otherwise.

(7.2) o(P.(0)) = {

We define the injectionby sendingC, to C,(0) for all @ < n. One sees that and: are maps of graded algebras and
coalgebras, respectively, by comparing Propositioh 7tb ®roposition 2J1. It is not hard to check that

(0 (Po(0)), Cp) = (Po(0), (Cp)) = 60,5, YarEM, ¥Boxn.
This shows that- and. are dual maps. Hence (ii) holds. m]

Remark7.7. (i) Comparing the definitions faH, and,(0) one sees that the former is a quotient of the latter by the
relationsT;T;;; = 0foralli = 1,...,n— 2. Thus anyH,-module is automatically a#f,(0)-module. This induces the
injection: : Go(H.) — Go(H.(0)) given in the previous proposition. On the other haBg0) = top(P,(0)) admits
anHy-action and is hence isomorphic@, if and only if the compositiom has all internal parts larger than 1. This
induces the surjection : Ko(H.(0)) - Go(H.) defined in[[Z.R).

(i) It is well known that the number of partitions afis no more than the Fibonacci numbgy, ;. One may suspect
that the surjectiofo(H,.(0)) = NSym -» Sym= Gy(CG&,) factors through the surjectian : Ko(H.(0)) - Go(H.).
This is not true since the commutative image of the noncommutativeorib®chur functiors, is the ribbon schur
function s,, but f(P,(0)) = 0 if @ is a composition with an internal part equal to 1. Similadpe sees that the
injectionGp(CS,) = Sym — QSym = Gy(H.(0)) does not factor through the injection Go(H.) — Go(H.(0)),
since the image of the injectians spanned b, (0) for all @ «< n, n > 0, butF, € Sym wherrx = 1", n > 3.
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(iii) Unfortunately,Go(#.) is not a bialgebra: one checks tidC11® C1) # A(C11) ® A(C1) where the product on
the right hand side is tensor-component-wise. Thus it dogfitrinto Zelevinsky’s theory opositive self-dual Hopf
algebras[12]. One also checks th&p(H.) is not aweak bialgebrgc.f. [4]), nor aninfinitesimal bialgebrec.f. [1]).

Next we consider thBratteli diagramof the tower of algebra&fy — H; — H>, — ---. It has vertices at leved
indexed bya « n, forn=0,1,2,..., and it has an edge betweenx nandB « n -1 if and only ifC, | ﬁ:l = Cg.
One can draw this diagram using Proposifiod 7.5. The first&ldeare illustrated below.

4\\ 31 22 13 121
| N
3i1 21 12
-
2 11
N,
1
|
0

7.3. Antipode. We consider the antipode & (#.). In general, lefA be an algebra with produgtand unitu, and let
C be a coalgebra with coprodustand counite. Theconvolution producof two mapsf, g € Homg(C, A) is defined
asf xg:=puo(f ®Q)oA. One can check thato ¢ is the two-sided identity element for this convolution puotd

Let (A, i/, U") be another algebra an@’( A’, €’) be another coalgebra such that there exists an algebextar
o : A » A and a coalgebra injection: C' — C. Thenu = oo u, € = € o, and the following diagram is
commutative, wherd’ ;= oo f orandg :=ocogo..

(7.3) c—2.coc— . ppA—t oA

Lj\ L®Lj\ &0’@0’ &(r
N ey ¥
C——CoC —AQA —A

Theantipode Sof a Hopf algebrad is nothing but the 2-sided inverse of the identity mapuhder the convolution
product for the endomorphism algebra Efid). In other wordsS is defined by the commutative diagram below.

HeH —2" _ HgH

NN
-~ -

HoH——>HoH
14®S

Note that the definition for the antipo&eonly requiresH to be simultaneously an algebra and a coalgebra. Moreover,
if the antipodeS of H exists, and if there is an algebra surjection H -» H’ and a coalgebra injectian H' — H,
then one sees frorh (7.3) that := oo S o ¢ is the antipode oH’.

The antipodes of the dual graded Hopf algebras QSyniNSyim are well known to the experts. &f = (a1, . . ., @)
is a composition oh then itsreverseis the composition rew) := (ay, ..., 1) and itsconjugateis the composition
w(a) = (rev(@))® = rev(@®). For example, ifx = 21321 then revf) = 12312 andu(a) = 22131. The antipodes of
QSym andNSym are defined bys(F,) = (—=1)"Fu@) andS(s,) = (—1)"sy) forall @ E n, n > 0, where{F,} and{s,}
are dual bases for QSym ahbym.

However, the same rule does not work @4(#,). To give the antipodes @y(H.) we introduce a fre&-module
Comp with a basis consisting of all compositions. By Proposiifl, we can define a produet®s = o + a >
and a coproduch(a) = Yoy @<i ® @5 for all compositionsy andg, such that there is an algebra isomorphism
Comp = Ko(#H.(0)) and a coalgebra isomorphigbamp = Go(H.(0)). The basis of all compositions féomp is
self-dual under the pairingy, 8) := 6, 4. There is an algebra surjection: Comp - Go(H.) defined by

C(l’ a < n’
= Y n, vyn>0
(@ {O, otherwise @k

and a coalgebra injectian: Go(H.) — Comp sendingC, to a for all @ « n, n > 0. They are dual to each other by
Corollary[Z.6 (ii). One can check th@bmp is not a bialgebra, but its antipode exists, giving the attepofGo(FH, ).
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Proposition 7.8. The map S sendingto (-1)"a® for all @ = n, n> 0, is the antipode o€omp. Consequently, the
antipode of G(H.) is o o S o ¢, which send€,, to (—1)"C,c if botha « n ande® « n hold for some e 0, that is, if
a€f{22---2,122-.-2,22---21,122---21}, or send<C,, to 0 otherwise.

Proof. If Sis the antipode ofomp theno o S o« is the antipode o6Go(H.). Thus it sdfices to show that
n n
Z S(a<) ®asi = Uo e(a) = Z < ®S(asi), Yaln.
i=0 i=0

We only show the first equality and one can check that the sagusreent works for the second equality. It is trivial
whena = 0. Assumen > 1 below. Theru o ¢(a) = 0. For anyB « n, it follows the self-duality of£omp that

(7.4) <Z S(asi) ®a>i,ﬁ> = > (S(e<) ® @i, AB)y = Y (Sas),fai) - (@is Boi)-
i=0 i=0 i—0

Thus it sdfices to show that the sum bf := (S(a;), B<i) - (@i, B>i) fori = 0,1,...,nequals 0. One sees that

L = (_1)i’ if (a<i)® = B<i, asi = B>i,
"o, otherwise

Let N be the setof ali € {0, 1,...,n} such thal; # 0. Itis trivial if N = 0.

Suppose thate N. One sees thd(e<j) = D(@)N[j—-1]andD(esj) = D(@)N{j+1,...,n—-1} for any j; similarly
for 8. Hence &<)® = B< implies (<)) = B<j for all j < i, anda,; = B.i impliesa,; = B, for all j > i.

Since @<)° = B<i, the number — 1 must belong to exactly one @f(a) andD(B). This forcesw.; # B for all
j < i—1. Similarly, sinceas; = Bsi, the numbei + 1 belongs to both or neither @(a) and D(B). This forces
(a<j)© # B<j forall j > i+ 1. HenceN C {i — 1,i,i + 1}.

If i belongs to exactly one d@(a) andD(B), thenN = {i,i + 1} since @«i;+1)° = B<i+1 andasi_1 # Bi-1.

If i belongs to both or neither @(«) andD(B), thenN = {i — 1,i} since (<ij;1)® # B<i+1 andasi_1 = Bi_1.

In either case above the equatibn{7.4) equaisll= 0. This completes the proof. m|

8. QUESTIONS AND REMARKS

8.1. Dimension. If the Coxeter system\{, S) is simply laced then using the basis f&i(q) provided in Theorem 413
one can obtain recursive formulas for the dimensiofH@f|). Is there anything else (e.g. closed formula and combi-
natorial interpretation) one can say about this dimensidio?e generally, how to write down a basis fid(q) of an
arbitrary Coxeter system?

8.2. Type A. Intype A we know that the dimension of a collapse-free androomativeH(q) is a Fibonacci number;
for example, one can talge= (0,1,0,1,...)orq =(1,0,1,0,...). What if H(q) is not commutative?

For instance, let] be a sequence ofi — 1 zeros followed byr — 1 ones. Thert(q) is a quotient oH,(0) ® FS,
and has dimensiom{— 1)!(n! + m- 1), by Theoremh 413. How does the representation theory sfilgiebra connect
to the representation theory Hf,(0) andS,?

Here is another example. dfconsists ofa many copies of 0 followed bly many copies of] # 0 and therc many
copies of 0, one can use Theorem 4.3 to show that

dmH(q) = cl(a((b+21)!+a)+((@+1)c).
If g consists ofa many copies o€ # 0 followed byb many copies of 0 and themmany copies off # 0, then
dimH(q) = bl((a+1)!+b)+(b-1)((a+1)+b-1)(c+1)-1).

What is the representation theory#f(q) in these two cases?
A final remark for type A: the tower of algebrd¢, — H; — H, — --- are diferent from the tower of algebras
defined by Okada [9], whose dimensions arand whose Bratteli diagram is the Young-Fibonacci poset.
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8.3. Other types. Our results on the commutative algelG, R) applies to &ine type A. LetG be the cycleC,
with vertices 1...,nand edge$l, 2}, ..., {n—1,n}, {n, 1}. We know thatH(C,, R) has a basis indexed B{(C,). One
checks that ih > 3 thenZ (Cp) = 7(Pn-1) U Z7(Pn-3), which is the shadow of the decomposition

H(Cn, R) = H(Pn-1, RN [N - 1]) & H(Pn-1, RN [N = 1]) Xn.

Hence forn > 3 one hasZ(C,)| = Fny1 + Fno1 = Ln, Wherel,, is then-th Lucas numberWhenR = 0 the algebra
H(Ch, 0) is semisimple and has all simple modules 1-dimensionalottimately, we do not have a tower of algebras
H(Cy, 0), since there is no natural embeddidg— C,.1, and thus have no further result in this direction.

One can also také to be the Coxeter diagram of finite tyf (n > 2) or afine typeD, (n > 5). The dimension
of H(G,R)is 4,5,9,14,23,... (OEIS entry A000285) or 124,41,65,106 ... (OEIS entry A190996) in these cases.

8.4. Power series realization.In Sectior ¥ we defined an algebra and coalgebra structuted@rothendieck group
Go(H.) of the tower of algebrag{, : Hy — H; — H, — ---, with a self-dual basis consisting of the simple
modules, which are indexed by compositions with internatgpbarger than 1. This is further extended®omp
with a basis indexed by all compositions. Is there a Froletipe of characteristic map f@o(H.), or in other
words, is there a power series realizatiorg{7,) as both an algebra and a coalgebra, similar@#CS,) = Sym,
Go(H.(0)) = QSym, andKo(#.(0)) = NSym? And how abou€omp?
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