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HECKE ALGEBRAS WITH INDEPENDENT PARAMETERS

JIA HUANG

Abstract. We study the Hecke algebraH(q) over an arbitrary fieldF of a Coxeter system (W,S) with independent parameters
q = (qs ∈ F : s ∈ S) for all generators. This algebra is always linearly spanned by elements indexed by the Coxeter groupW.
This spanning set is indeed a basis if and only if every pair ofgenerators joined by an odd edge in the Coxeter diagram receive
the same parameter. In general, the dimension ofH(q) could be as small as 1. We construct a basis forH(q) when (W,S)
is simply laced. We also characterize whenH(q) is commutative, which happens only if the Coxeter diagram of (W,S) is
simply laced and bipartite. In particular, for type A we obtain a tower of semisimple commutative algebras whose dimensions
are the Fibonacci numbers. We show that the representation theory of these algebras has some features in analogy/connection
with the representation theory of the symmetric groups and the 0-Hecke algebras.

1. Introduction

Let W := 〈S : (st)mst = 1, ∀s, t ∈ S〉 be a Coxeter group. The(Iwahori-)Hecke algebraof the Coxeter system (W,S)
is a one-parameter deformation of the group algebra ofW, which has significance in many areas, such as algebraic
combinatorics, knot theory, quantum groups, representation theory ofp-adic groups, and so on. We generalize the
definition of the Hecke algebra of (W,S) from a single parameter to multiple independent parameters.

Definition 1.1. Let F be an arbitrary field. TheHecke algebraH(q) = HS(q) of the Coxeter system(W,S) with
independent parametersq = (qs ∈ F : s ∈ S) is the (associative)F-algebra generated by{Ts : s ∈ S} with

• quadratic relations (Ts− 1)(Ts+ qs) = 0 for all s ∈ S,
• braid relations (TsTtTs · · · )mst = (TtTsTt · · · )mst for all s, t ∈ S.

Here (aba· · · )m is an alternating product ofm terms.

The algebraH(q) can be represented by the Coxeter diagram of (W,S) with extra labelsqs for all verticess ∈ S.
For simplicity we only draw the labels of the vertices but notthe vertices themselves. For example, we draw

1 0 1 0 1 0 1 0

for the usual Coxeter system of typeB8 whose Coxeter diagram is

s1 s2 s3 s4 s5 s6 s7 s8

with independent parametersq = (qsi : 1 ≤ i ≤ 8) = (1, 0, 1, 0, 1, 0, 1, 0).
The quadratic relations forH(q) can be rewritten asT2

s = (1−qs)Ts+qs for all s ∈ S. If qs , 0 thenTs is invertible
andT−1

s = q−1
s Ts + 1− q−1

s . For anyw ∈ W with a reduced expressionw = st · · · r wheres, t, . . . , r ∈ S, the element
Tw := TsTt · · ·Tr is well defined thanks to the word property ofW (see e.g. [3, Theorem 3.3.1]).

If qs = q for all s ∈ S thenH(q) is the usual Hecke algebra of (W,S) with parameterq. If one only insistsqs = qt

whenevermst is odd, thenH(q) is theHecke algebra with unequal parametersin the sense of Lusztig [7]. Now we
allow q = (qs ∈ F : s ∈ S) to be arbitrary. The following result may be well known to the experts, and we include a
proof for it in the end of Section 3 for completeness.

Theorem 1.2. The algebraH(q) is always spanned by{Tw : w ∈W}, which is indeed a basis if and only ifH(q) is a
Hecke algebra with unequal parameters, i.e. qs = qt whenever mst is odd.

In general, we show that the algebraH(q) could be much smaller than the group algebraFW.

Theorem 1.3. If there exist s, t ∈ S with mst odd such that qs and qt are distinct nonzero parameters, then one has
HS(q) � HS\R(q) where R consists of all elements r∈ S connected to s via some path with odd edge weights and
nonzero vertex labels in the Coxeter diagram of(W,S).

Key words and phrases.Hecke algebra, independent parameters, Fibonacci number,Independent set, Grothendieck group.
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Thus we always assume without loss of generality thatH(q) is collapse-free, i.e. if mst is odd andqs , qt then at
least one ofqs andqt is 0. We next characterize whenH(q) is commutative.

Theorem 1.4. The algebraH(q) is collapse-free and commutative if and only if(W,S) is simply laced and exactly
one of qs and qt is 0 for any pair of elements s, t ∈ S with mst = 3.

We construct a basis forH(q) (not necessarily commutative) when (W,S) is simply laced (Theorem 4.3). It implies
the dimension a commutativeH(q), giving one motivation for our study of the commutative case.

Corollary 1.5. Let G be the underlying graph of the Coxeter diagram of(W,S), and letI(G) be the set of all indepen-
dent sets in G. IfH(q) is collapse-free and commutative then its dimension is|I(G)| (the Merrifield-Simmons index of
the graph G). In particular, if(W,S) is of type An then the dimension ofH(q) is the Fibonacci number Fn+2.

Example 1.6. Let F be a field with at least 3 distinct elements 0, 1, and c. LetH(q) be given by the diagram below.

0
■■

■ c 1 0 1

1 1 c
❍❍

❍

✈✈

1

✈✈

c 1 c 1

Removing the boxed elements gives 3 connected components 0,c 1, and 1 0 1. Thus the dimension of
H(q) is 2 · 8 · 5 = 80 by Theorem 1.3, Theorem 1.4, and Corollary 1.5.

Theorem 1.4 shows that ifH(q) is collapse-free and commutative then the Coxeter diagramof (W,S) must be a
simply laced bipartite graph. Computations inMagma suggest the following conjecture, which is verified for typeA
(Theorem 5.4). This gives another motivation for our study of the commutative case.

Conjecture 1.7. If the Coxeter diagram of(W,S) is a simply laced bipartite graph G, then a collapse-freeH(q) has
minimum dimension equal to|I(G)|, which is attained whenH(q) is commutative.

For the irreducible simply laced Coxeter systems of typeA, D, Ã, and D̃, the dimensions of collapse-free and
commutative Hecke algebrasH(q) are given below, which all happen to satisfy the Fibonacci recurrence.

Coxeter diagram Dimensions Known as OEIS entry
An (n ≥ 1) 2,3,5,8,13,. . . Fibonacci numbersFn+2 A000045
Dn (n ≥ 2) 4,5,9,14,23,. . . ? A000285

Ãn (n ≥ 3) 4,7,11,18,29,. . . Lucas numbersLn A000032

D̃n (n ≥ 5) 17, 24, 41,65,106,. . . ? A190996

Note that the Coxeter diagram of̃An is a cycle of lengthn, which is bipartite if and only ifn if even. However, the
dimensions given above for̃An make sense for all integersn ≥ 1. This is because we can define a commutative algebra
H(G,R) whose dimension is|I(G)| for any (unweighted) simple graphG with vertex setV(G) and edge setE(G) and
for anyR ⊆ V(G), such that a collapse-free and commutative Hecke algebraH(q) is isomorphic toH(G,R) whereG
is the Coxeter diagram of the simply laced (W,S) andR = {s ∈ S : qs = −1}. This algebraH(G,R) is defined as the
quotient of the polynomial algebraF[xv : v ∈ V(G)] by its ideal generated by

{x2
r : r ∈ R} ∪ {x2

v − xv : v ∈ V(G) \ R} ∪ {xuxv : uv∈ E(G)}.

It is also a quotient of theStanley-Reisner ring of the independence complex of G[5].
We show the following results on the representation theory of H(G,R). The projective indecomposableH(G,R)-

modules are indexed byI(G−R), whereG−R is the graph obtained formG by deletingRand all edges incident toR.
The simpleH(G,R)-modules are all one-dimensional and also indexed byI(G−R). The Cartan matrix ofH(G,R) is
a diagonal matrix. The algebraH(G,R) is semisimple if and only ifR= ∅.

We next apply the above results to typeA. LetG = Pn−1 be a path withn− 1 vertices. One sees that the dimension
of the algebraH(Pn−1,R) is equal to the Fibonacci numberFn+1. We further assume that this algebra is semisimple,
i.e. R = ∅, and writeHn := H(Pn−1, ∅). If char (F) , 2 thenHn is isomorphic to the Hecke algebraH(q) of the
Coxeter system of typeAn−1 with independent parametersq = (0, 1, 0, 1, . . .) or q = (1, 0, 1, 0, . . .). We summarize our
results on the algebraHn below. The reader who is familiar with the representation theory of the symmetric groupSn

and/or the 0-Hecke algebraHn(0) can see certain features of our results in analogy withSn and/or Hn(0).
The semisimple commutative algebraHn has Fn+1 many non-isomorphic simple modules, which are all one-

dimensional and indexed by compositions ofn with internal parts larger than 1. TheGrothendieck group G0(Hn)
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of finite dimensional representations ofHn is a free abelian group on these simpleHn-modules. The tower of algebras
H• : H0 →֒ H1 →֒ H2 →֒ · · · has aGrothendieck group

G0(H•) :=
⊕

n≥0

G0(Hn)

with a product and a coproduct given by the induction and restriction along the embeddingsHm⊗ Hn →֒ Hm+n.
Althoughnot a bialgebra,G0(H•) has a self-dual basis consisting of simpleHn-modules for alln ≥ 0. We provide

explicit formulas for the structure constants of the product and coproduct ofG0(H•) in terms of this self-dual basis,
which are naturally all positive. This result connectsG0(H•) to the Grothendieck groups of the finite dimensional
(projective) representations of the 0-Hecke algebrasHn(0), or equivalently, the dual Hopf algebrasNSymof noncom-
mutative symmetric functionsand QSym ofquasisymmetric functions. It turns out thatG0(H•) is a quotient algebra of
NSym and a subcoalgebra of QSym, but its antipode satisfies a different rule than the antipodes of QSym andNSym.
TheBratteli diagramof the towerH• is a binary tree on compositions with internal parts larger than 1.

This paper is structured as follows. We first provide preliminaries in Section 2. Then we discuss whenH(q)
collapses or becomes commutative in Section 3. We study the algebraH(q) of a simply laced Coxeter system in
Section 4, and investigate the simply laced bipartite case in Section 5. We provide more results on the commutative
case in Section 6, and give the type A specialization in Section 7. Finally we give remarks and questions in Section 8.

2. Preliminaries

2.1. Coxeter groups and Hecke algebras.A Coxeter groupis a group with the following presentation

W := 〈S : s2 = 1, (sts· · · )mst = (tst · · · )mst, ∀s, t ∈ S, s, t〉

where the generating setS is finite, mst ∈ {2, 3, . . .} ∪ {∞}, and (aba· · · )m is an alternating product ofm terms. By
convention no relation is imposed betweensandt if mst = ∞. The pair (W,S) is called aCoxeter system.

The Coxeter diagram of (W,S) is an edge-weighted graph whose vertices are the elements in S and whose edges
are the unordered pairs{s, t} with weightmst for all s, t ∈ S such thatmst ≥ 3, s, t. An edge with weightmst < ∞ is
often drawn asmst − 2 many multiple edges betweens andt. An edge issimply lacedif its weight is 3. If every edge
is simply laced then the Coxeter system (W,S) and its Coxeter diagram are both calledsimply laced.

An elementw in W can be written as a product of elements inS. Among all such expressions the shortest ones are
calledreduced, and the length of a reduced expression ofw is called thelengthof w and denoted byℓ(w). A nil-move
deletess2 and abraid-movereplaces (sts· · · )mst with (tst · · · )mst in the expressions ofw ∈ W as products of elements
in S. By [3, Theorem 3.3.1],W satisfies the following word property.

Word Property. Any expression of w∈W as a product of elements in S can be transformed into a reduced expression
of w by braid-moves and nil-moves, and every pair of reduced expressions for w can be connected via braid-moves.

A subsetI ⊆ S generates aparabolic subgroup WI := 〈I〉 of W. The pair (WI , I ) is a Coxeter system whose Coxeter
diagram is the edge-weighted subgraph of the Coxeter diagram of (W,S) induced by the vertex subsetI ⊆ S. If
S1, . . . ,Sk are the vertex sets of the connected components of the Coxeter diagram of (W,S) thenW =WS1×· · ·×WSk.
Thus (W,S) is irreducibleif its Coxeter diagram is connected.

There is a well known classification for finite irreducible Coxeter groups, among which type A is of particular
interest. The symmetric groupSn is the Coxeter group of typeAn−1 with generating setS consisting of the adjacent
transpositionssi := (i, i + 1) for i = 1, . . . , n− 1. The Coxeter diagram ofSn is the paths1 s2 · · · sn−1 .

The(Iwahori-)Hecke algebraHS(q) of a Coxeter system (W,S) is a one-parameter deformation of the group algebra
of W. LetF be a field and letq ∈ F. ThenHS(q) is defined as theF-algebra generated by{Ts : s ∈ S} with

• quadratic relations: (Ts− 1)(Ts+ q) = 1, ∀s ∈ S,
• braid relations: (TsTtTs · · · )mst = (TtTsTt · · · )mst, ∀s, t ∈ S, s, t.

The specialization of the Hecke algebraHS(q) at q = 1 gives the group algebraFW, and the specialization atq = 0
gives the0-Hecke algebraHS(0). If (W,S) is of typeAn−1 then we writeHn(q) := HS(q) andHn(0) := HS(0).

If w ∈ W has a reduced expressionw = st · · · r, wheres, t, . . . , r ∈ S, thenTw := TsTt · · ·Tr is well defined thanks
to the word property ofW. It is well known that{Tw : w ∈W} is a basis forHS(q). One has

(2.1) TsTw =


(1− q)Tw + qTsw, ℓ(sw) < ℓ(w),

Tsw, ℓ(sw) > ℓ(w),

for all s ∈ S andw ∈W. This gives theregular representationofHS(q).
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2.2. Representation theory of associative algebras.We review some general results on the representation theoryof
associative algebras; see e.g. [2,§I]. Let F be a field and letA be a finite dimensional (unital associative)F-algebra. Let
M be a (left)A-module. IfM has no submodules except 0 and itself thenM is simple. If M is a direct sum of simple
A-modules thenM is semisimple. The algebraA is semisimpleif it is semisimple as anA-module. Every module over
a semisimple algebra is also semisimple. IfM cannot be written as a direct sum of two nonzeroA-submodules, then
M is indecomposable. If M is a direct summand of a freeA-module, thenM is projective.

The(Jacobson) radicalrad(M) of M is the intersection of all maximalA-submodules ofM, which turns out to be
the smallest submoduleN of M such thatM/N is semisimple. One has rad(M1 ⊕ M2) = rad(M1) ⊕ rad(M2) if M1 and
M2 are twoA-modules. The radical of the algebraA is defined as rad(A) with A itself viewed as anA-module. IfA
happens to be commutative then all nilpotent elements inA form an ideal ofA, called thenilradical of A, which is
always contained in rad(A). Thetop of M is the quotient module top(M) := M/rad(M). Thesoclesoc(M) of M is the
sum of all minimal submodules ofM, which is the largest semisimple submodule ofM.

EveryA-module can be written as a direct sum of indecomposableA-submodules. LetA itself as anA-module be
a direct sum of indecomposableA-modulesP1, . . . ,Pk. AlthoughPi is not simple in general, its topCi is. Moreover,
every projective indecomposableA-module is isomorphic to somePi , and every simpleA-module is isomorphic to
someCi . Suppose without loss of generality that{P1, . . . ,Pℓ} and{C1, . . . ,Cℓ} are complete lists of non-isomorphic
projective indecomposableA-modules and simpleA-modules, respectively, whereℓ ≤ k. Then theCartan matrixof A
is [ai j ] i, j∈[ℓ] whereai j is the multiplicity ofC j among the composition factors ofPi .

TheGrothendieck group G0(A) of the category of finitely generated A-modulesis defined as the abelian groupF/R,
whereF is the free abelian group on the isomorphism classes [M] of finitely generatedA-modulesM, andR is the
subgroup ofF generated by the elements [M] − [L] − [N] corresponding to all exact sequences 0→ L→ M → N→ 0
of finitely generatedA-modules. TheGrothendieck group K0(A) of the category of finitely generated projective A-
modulesis defined similarly. We often identify a finitely generated (projective)A-module with the corresponding
element in the Grothendieck groupG0(A) (K0(A)). It turns out thatG0(A) and K0(A) are free abelian groups with
bases{C1, . . . ,Cℓ} and {P1, . . . ,Pℓ}, respectively. IfL,M,N are all projectiveA-modules, then the exact sequence
0 → L → M → N → 0 is equivalent to the direct sum decompositionM � L ⊕ N. If A is semisimple then
G0(A) = K0(A) sincePi = Ci for all i.

Let B be a subalgebra ofA. The induction N ↑ A
B of a B-moduleN from B to A is theA-moduleA ⊗B N. The

restriction M ↓ A
B of anA-moduleM from A to B is M itself viewed as aB-module. The induction and restriction are

well defined for isomorphic classes of modules.

2.3. Representation theory of symmetric groups and 0-Hecke algebras. The (complex) representation theory of
the symmetric group is fascinating and has rich connectionswith symmetric function theory. The simpleCSn-modules
Sλ are indexed by partitionsλ of n, and everyCSn-module is a direct sum of simpleCSn-modules, i.e.CSn is
semisimple. Thus the Grothendieck groupG0(CSn) = K0(CSn) is a free abelian group on the isomorphism classes
[Sλ] for all partitionsλ of n. The tower of groupsS• : S0 →֒ S1 →֒ S2 →֒ · · · has a Grothendieck group

G0(CS•) :=
⊕

n≥0

G0(CSn).

Using the natural embeddingSm × Sn →֒ Sm+n, one can define the product ofSµ andSν as the induction ofSµ ⊗ Sν

fromSm×Sn toSm+n for all partitionsµ ⊢ mandν ⊢ n, and define the coproduct ofSλ as the sum of its restriction to
Si × Sn−i for i = 0, 1, . . . , n, for all partitionsλ ⊢ n. This givesG0(CS•) a self-dual graded Hopf algebra structure, as
the product and coproduct share the same structure constants, namely theLittlewood-Richardson coefficients.

TheFrobenius characteristic mapch sends a simpleSλ to the Schur functionsλ, giving a Hopf algebra isomorphism
between the Grothendieck groupG0(CS•) and Sym, thering of symmetric functions(see Stanley [11, Chapter 7]).

The 0-Hecke algebraHn(0) has analogous representation theory as the symmetric groupSn. We first review some
notation. Acompositionis a sequenceα = (α1, . . . , αℓ) of positive integers. Letσi := α1 + · · · + αi for i = 1, . . . , ℓ.
Thesize|α| of the compositionα is the sum of all itspartsα1, . . . , αℓ, i.e. |α| = σℓ. If |α| = n then we say thatα is a
composition ofn and writeα |= n. Thedescent setof α is D(α) := {σ1, . . . , σℓ−1}. Sendingα to D(α) gives a bijection
between compositions ofn and subsets of [n− 1].

Now recall from Norton [8] that the 0-Hecke algebraHn(0) has the following decomposition

Hn(0) =
⊕

α|=n

Pα(0)
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where thePα(0)’s are pairwise non-isomorphic indecomposableHn(0)-modules. The top ofPα(0) is one-dimensional
and denoted byCα(0). Thus the two Grothendieck groupsG0(Hn(0)) andK0(Hn(0)) are free abelian groups on the
isomorphism classes ofCα(0) andPα(0), respectively, for all compositionsα. Associated with the tower of algebras
H•(0) :H0(0) →֒ H1(0) →֒ H2(0) →֒ · · · are two Grothendieck groups

G0(H•(0)) :=
⊕

n≥0

G0(Hn(0)) and K0(H•(0)) :=
⊕

n≥0

K0(Hn(0)).

They are dual graded Hopf algebras with product and coproduct again given by induction and restriction of represen-
tations along the natural embeddingsHm(0) ⊗ Hn(0) →֒ Hm+n(0) of algebras. The duality is given by the pairing
〈Pα(0),Cβ(0)〉 := δα, β for all compositionsα andβ.

For later use we review the explicit formulas for the productof K0(H•(0)) and the coproduct ofG0(H•(0)). Let
α = (α1, . . . , αℓ) andβ = (β1, . . . , βk) be compositions ofm andn, respectively. We write

αβ := (α1, . . . , αℓ, β1, . . . , βk) and α ⊲ β := (α1, . . . , αℓ−1, αℓ + β1, β2, . . . , βk).

For anyi ∈ {0, 1, . . . ,m}, let r be the largest integer such thatσr := α1 + · · · + αr is no more thani, and write

α≤i := (α1, . . . , αr , i − σr ) and α>i := (σr+1 − i, αr+2, . . . , αℓ)

where we ignorei − σr if it happens to be 0.

Proposition 2.1(Krob and Thibon [6]). For anyα |= m andβ |= n one has

Pα(0) ⊗̂Pβ(0) :=
(
Pα(0)⊗ Pβ(0)

)
↑
Hm+n(0)
Hm(0)⊗Hn(0) = Pαβ(0)⊕ Pα⊲β(0),

∆(Cα(0)) :=
m∑

i=0

Cα(0) ↓ Hm(0)
Hi (0)⊗Hm−i (0) =

m∑

i=0

Cα≤i (0)⊗ Cα>i (0).

For example, one hasP213(0) ⊗̂P223(0) = P213223(0)⊕ P21523(0). Let∅ be the empty composition ofn = 0. Then

∆(C121(0)) = C∅(0)⊗ C121(0)+ C1(0)⊗ C21(0)+ C11(0)⊗ C11(0)+ C12(0)⊗ C1(0)+ C121(0)⊗ C∅(0).

The representation theory of the 0-Hecke algebras is connected with the dual graded Hopf algebras QSym of
quasisymmetric functionsandNSym of noncommutative symmetric functions. There are dual bases for QSym and
NSymconsisting of thefundamental quasisymmetric functions Fα and thenoncommutative ribbon Schur functionssα
for all compositionsα. Krob and Thibon [6] introduced two Hopf algebra isomorphisms

Ch : G0(H•(0)) � QSym and ch : K0(H•(0)) � NSym

defined by Ch(Cα(0)) = Fα andch(Pα(0)) = sα for all compositionsα. There is an injection Sym֒→ QSym of Hopf
algebras given by inclusion, as well as a surjectionNSym։ Sym of Hopf algebras by taking commutative image.

3. Collapse and commutativity

Let (W,S) be a Coxeter system and letF be a field. In this section we study when the Hecke algebraH(q) = HS(q)
of (W,S) with independent parametersq = (qs ∈ F : s ∈ S) collapses or becomes commutative.

We first study theparabolic subalgebrasofH(q). We know that any subsetR ⊆ S generates a Coxeter subsystem
(WR,R) of (W,S). However, the subalgebra ofH(q) generated by{Tr : r ∈ R} is not necessarily isomorphic to the
Hecke algebraHR(q) of the Coxeter system (WR,R) with independent parameters (qr : r ∈ R). For example, if there
exist two elementss andt in S such thatqs andqt are distinct nonzero parameters andmst is odd, then the algebra
H{s}(q) is 2-dimensional, but Theorem 3.2 below givesTs = 1 inH(q). To guarantee an isomorphism between these
two algebras we assume thatR⊆ S is admissible, i.e. if mst is odd fors ∈ Randt ∈ S \R then eitherqs = 0 orqt = 0.
If R is admissible then one sees thatS \ R is also admissible. We denote the generating set ofHR(q) by {T′r : r ∈ R},
which satisfies the relations (T′r − 1)(T′r + q) = 0 and (T′r T

′
t T
′
r · · · )mrt = (T′t T

′
r T
′
t · · · )mrt for all r, t ∈ R.

Proposition 3.1. For any R⊆ S there is an algebra surjection fromHR(q) to the subalgebra ofH(q) generated by
{Tr : r ∈ R} by sending T′r to Tr for all r ∈ R, which is an isomorphism when R is admissible.

Proof. SendingT′r to Tr for all r ∈ Rgives an algebra mapφ : HR(q)→ H(q) whose image is the subalgebra ofH(q)
generated by{Tr : r ∈ R}. Suppose thatR is admissible and define

ψ(Ts) =



T′s, if s ∈ R,

1, if s ∈ S \ R, qs , 0,

0, if s ∈ S \ R, qs = 0.
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One sees that the quadratic relations are preserved byψ. We next check the braid relations. Lets, t ∈ S with mst = m.
If sandt are both inR thenψ(Ts) = T′s andψ(Tt) = T′t satisfy the same braid relation asTs andTt.
If s ∈ Randt ∈ S \ R, thenψ(Tt) ∈ {0, 1}. Whenm is even one has

(ψ(Ts)ψ(Tt)ψ(Ts) · · · )m = (ψ(Tt)ψ(Ts)ψ(Tt) · · · )m.

Whenm is odd andqt = 0 one hasψ(Tt) = 0 and the above quality still holds. Whenm is odd andqt , 0 one has
ψ(Tt) = 1 and the admissibility ofR impliesqs = 0. Thus

(ψ(Ts)ψ(Tt)ψ(Ts) · · · )m = (T′s)
(m+1)/2 = (T′s)

(m−1)/2 = (ψ(Tt)ψ(Ts)ψ(Tt) · · · )m.

It follows thatψ is a well defined algebra map. Restricted to the image ofφ, the mapψ is nothing but the inverse of
φ. Thus the result holds. �

We say that a path in the Coxeter diagram of (W,S) is odd if all its edges have odd weights, andnonzeroif all its
vertices, including the two end vertices, correspond to nonzero parameters. Thecollapsed subsetof S consists of all
elementsr ∈ S that are connected to some other vertexs (depend onr) with qs , qr via an odd nonzero path.

Theorem 3.2. If R is the collapsed subset of S then (i) Tr = 1, ∀r ∈ R, (ii) Ts < F, ∀s ∈ S\R, and (iii)H(q) � HS\R(q).

Proof. By definition, for anyr ∈ R there exists an odd nonzero path (r, s, . . . , t) from r to somet ∈ S such thatqr , qt.
We show (i) by induction on the length of the path. First assume that the length is 1, i.e. there is an edge betweenr
andt with an odd weightm := mrt . The braid relation betweenTr andTt implies that

Tr (TrTtTr · · ·Tr )m = (TrTtTr · · ·Tt)m+1 = (TtTrTt · · ·Tt)mTt.

Using the quadratic relations forTr andTt one obtains

qr (TtTrTt · · · )m−1 + (1− qr)(TrTtTr · · · )m = qt(TtTrTt · · · )m−1 + (1− qt)(TtTrTt · · · )m.

Hence

(qr − qt)(TtTrTt · · ·Tr )m−1 = (qr − qt)(TrTtTr · · ·Tr)m = (qr − qt)(TtTrTt · · ·Tt)m.

Sinceqr , 0, qt , 0, andqr , qt, one can apply the inverses ofTr , Tt, and (qr − qt) to getTr = Tt = 1.
Now suppose that the path (r, s, . . . , t) has length at least two. Ifqr , qs thenTr = 1 by the above argument.

Otherwiseqr = qs , qt and one hasTs = 1 by induction, since (s, . . . , t) is an odd nonzero path of smaller length.
Then applyingT−1

r to the braid relation betweenTr andTs givesTr = 1. This proves (i).
To show (ii), we assumeTs ∈ F for somes ∈ S. If qs = 0 then{s} is admissible and thus the subalgebra ofH(q)

generated byTs is 2-dimensional by Proposition 3.1, which is absurd. Therefore qs , 0. Let U be the set of all
elements inS that are connected tos via odd nonzero paths, includings itself. Thenqu , 0 for all u ∈ U. One sees
thatU is admissible and hence the subalgebra ofH(q) generated by{Tu : u ∈ U} is isomorphic to the algebraHU(q)
by Proposition 3.1. If|{qu : u ∈ U}| = 1 thenHR(q) has a basis indexed byWU , and henceTs < F, a contradiction.
Therefore|{qu : u ∈ U}| ≥ 2. This forcess ∈ R and establishes (ii).

Finally, one sees thatS \ R is admissible. By Proposition 3.1,HS\R(q) is isomorphic to the subalgebra ofH(q)
generated by{Ts : s ∈ S \ R}. Hence (iii) follows from (i). �

By Theorem 3.2, we may always assume without loss of generality thatH(q) is collapse-free, i.e. if mst is odd and
qs , qt then eitherqs or qt is 0. We next develop some lemmas in order to characterize whenH(q) is commutative.

Lemma 3.3. If S = {s, t}, qs = 0 , qt, and m:= mst is odd, thenH(q) has dimension2m− 3 and a basis

{(TsTtTs · · · )k, (TtTsTt · · · )k : k = 0, 1, 2, . . . ,m− 2}.

Proof. Sinceqs = 0 , qt andm is odd, it follows from the defining relations forH(q) that

(TsTtTs · · ·Ts)m = (TsTtTs · · ·Tt)m+1 = (TtTsTt · · ·Tt)mTt = qt(TtTsTt · · · )m−1 + (1− qt)(TtTsTt · · · )m

which implies (TtTsTt · · · )m−1 = (TtTsTt · · · )m and thus (TsTtTs · · · )m−2 = (TsTtTs · · · )m−1. Similarly,

(TsTtTs · · · )m = (TtTsTt · · ·Ts)m+1 = Tt(TtTsTt · · · )m = qt(TsTtTs · · · )m−1 + (1− qt)(TtTsTt · · · )m.

Thus (TsTtTs · · ·Tt)m−1 = (TtTsTt · · ·Tt)m and (TsTtTs · · · )m−2 = (TtTsTt · · · )m−1. It follows thatH(q) is spanned by
the desired basis. Then it remains to show that the dimensionofH(q) is at least 2m− 3.
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To achieve this, we define anH(q)-action on theF-span ofZ := {(sts· · · )k, (tst · · · )k : k = 0, 1, 2, . . . ,m−2}where
(sts· · · )0 = (tst · · · )0 = 1 by convention. The dimension ofFZ is by definition|Z| = 2m− 3. Define



Ts(tst · · · )k = (sts· · · )k+1, 0 ≤ k ≤ m− 3,

Tt(sts· · · )k = (tst · · · )k+1, 0 ≤ k ≤ m− 3,

Ts(sts· · · )k = (sts· · · )k, 1 ≤ k ≤ m− 2,

Tt(tst · · · )k = qt(sts· · · )k−1 + (1− qt)(tst · · · )k, 1 ≤ k ≤ m− 2,

Ts(tst · · · )m−2 = Tt(sts· · · )m−2 = (sts· · · )m−2.

One sees that the quadratic relations forTs andTt are both satisfied by this action, and so is the braid relationbecause

(TsTtTs · · · )m(z) = (TtTsTt · · · )m(z) = (sts· · · )m−2, ∀z ∈ Z.

HenceFZ becomes a cyclicH(q)-module generated by 1. This forces the dimension ofH(q) to be at least 2m−3. �

Lemma 3.4. Suppose that there exists a path(s= s0, s1, s2, . . . , sk = t) consisting of simply laced edges in the Coxeter
diagram of(W,S), where k≥ 1. If qsi , 0 and mssi ≤ 3 for all i ∈ [k], and qs = 0, then TsTt = TtTs = Ts.

Proof. We showTsTt = TtTs = Ts by induction onk. If k = 1 then

TsTtTs = TtTsTtTs = T2
t TsTt = qtTsTt + (1− qt)TtTsTt.

Sinceqt , 0, one hasTsTt = TtTsTt and thusTs = TtTs. ThenTsTt = TsTtTs = T2
s = Ts.

Now assumek ≥ 2. If mst = 3 thenTsTt = TtTs = Ts by the above argument. Assumemst = 2, i.e. TsTt = TtTs.
Let r = sk−1. ThenTrTs = TsTr = Ts by induction hypothesis. Thus

TtTs = TsTrTtTr = TsTtTrTt = T2
t Ts = qtTs + (1− qt)TtTs.

This impliesTsTt = TtTs = Ts which completes the proof. �

Now we provide a characterization for whenH(q) is commutative. It implies that there existsq ∈ FS such that
H(q) is collapse-free and commutative if and only if the Coxeterdiagram of (W,S) is simply laced and bipartite.

Theorem 3.5. Suppose thatH(q) is collapse-free. ThenH(q) is commutative if and only if the Coxeter diagram of
(W,S) is simply laced and exactly one of qs, qt is 0 for any pair of elements s, t ∈ S with mst = 3.

Proof. We first assume thatH(q) is commutative. Lets, t ∈ S with mst ≥ 3. We need to show thatmst = 3 and
exactly one ofqs andqt is 0. To attain this we first show that{s, t} is admissible. By symmetry, it suffices to show
thatqrqs = 0 for anyr ∈ S \ {s, t} with mrs odd. Suppose to the contrary thatqrqs , 0. Thenqr = qs sinceH(q) is
collapse-free. LetR be a maximal subset ofS containings such thatqa = qb whenevera, b ∈ R andmab is odd. Then
r ∈ R. The maximality forcesR to be admissible. By Proposition 3.1,HR(q) is isomorphic to a subalgebra ofH(q)
and thus commutative. It also has a basis{Tw : w ∈WR} by Theorem 1.2. Hencemrs ≤ 2, a contradiction.

Therefore{s, t} is admissible. ThenH{s,t}(q) is isomorphic to a subalgebra ofH(q), and hence commutative. Since
mst ≥ 3, Theorem 1.2 implies thatmst is odd andqs , qt. Then exactly one ofqs andqt must be 0 sinceH(q) is
collapse-free. By Lemma 3.3, the dimension ofH{s,t}(q) is 2m− 3 and hencemst = 3. This proves one direction of the
theorem. The other direction follows from Lemma 3.4. �

Finally, using the results in this section we obtain a proof for Theorem 1.2. One can check that{Tw : w ∈ W}
spansH(q) using the word property ofW and the defining relations ofH(q). If qs = qt whenevermst is odd, then
{Tw : w ∈ W} is a basis forH(q) by Lusztig [7, Proposition 3.3]. Conversely, suppose that{Tw : w ∈ W} is a basis
forH(q). Let s, t ∈ S with m := mst odd. The dimensiond of the subalgebra ofH(q) generated byTs andTt equals
the cardinality of the subgroup〈s, t〉 of W, which is 2m by the word property ofW. On the other hand, ifqs , qt

then eitherd = 1 < 2m whenqsqt , 0 by Theorem 3.2, ord ≤ 2m− 3 < 2m whenqsqt = 0 by Proposition 3.1 and
Lemma 3.3. Henceqs = qt.

4. The simply laced case

In this section we study a collapse-free Hecke algebraH(q) with independent parametersq = (qs ∈ F : s ∈ S) of a
simply laced Coxeter system (W,S). We first give some lemmas in order to construct a basis forH(q).

Lemma 4.1. If (W,S) is simply-laced then S decomposes into a disjoint union of S1, . . . ,Sk such that
(i) the elements of each Si receive the same parameters and are connected in the Coxeterdiagram of(W,S),
(ii) if s ∈ Si , t ∈ S j , i , j, then either mst = 2 or exactly one of qs and qt is 0.
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Proof. We remove from the Coxeter diagram of (W,S) all the edges whose two end vertices correspond to distinct
parameters. LetS1, . . . ,Sk be the vertex sets of the connected components of the resulting graph.

If s, t ∈ Si then there exists a path froms to t, whose vertices have the same parameter. Thus (i) holds.
If s ∈ Si , t ∈ S j , i , j, andmst = 3, then one hasqs , qt and thus exactly one ofqs andqt is 0 sinceH(q) is

collapse-free. Hence (ii) holds. �

Let Wi := 〈Si〉 for all i = 1, . . . , k. We say an elementwi ∈ Wi dominates Sj if i , j and there exists ∈ Si and
t ∈ S j such thatqs = 0, mst = 3, ands occurs in some reduced expression ofwi . Let W(q) be the set of all elements
(w1, . . . ,wk) ∈W1 × · · · ×Wk such thatw j = 1 whenever somewi dominatesS j . We need to define anH(q)-action on
FW(q). Let s be an arbitrary element inS. Thens ∈ Si for somei ∈ [k]. Let w = (w1, . . . ,wk) ∈ W(q). We define
Ts(w) := (Ts(w)1, . . . ,Ts(w)k) ∈ FW(q) as follows.

If Si is dominated by somew j , thenTs actstrivially onw, meaning thatTs(w) := w. OtherwiseTs actsnontrivially
onw: if ℓ(swi) < ℓ(wi) thenTs(w)i = (1−q)wi+qswi andTs(w) j = w j for all j , i; if ℓ(swi) > ℓ(wi) thenTs(w)i = swi ,
Ts(w) j = 1 for all j , i such thats dominatesS j , andTs(w) j = w j for all j , i such thats does not dominatesS j . In
other words, ifSi is not dominated byw j for all j , i thenTs acts on theith component ofw in the same way as the
regular representation of the Hecke algebraHSi (qs) (see (2.1)), and for allj , i one has

Ts(w) j =


w j , if sdoes not dominateS j ,

1, if sdominatesS j .

Lemma 4.2. One has a well definedH(q)-action onFW(q) such that every element(w1, . . . ,wk) in W(q) is equal to
Tw1 · · ·Twk(1).

Proof. Let s ∈ Si and letw = (w1, . . . ,wk) ∈ W(q). We first show thatTs(w) ∈ FW(q). We may assume thatTs acts
nontrivially onw, i.e. Si is not dominated byw j for all j , i. If ℓ(swi) < ℓ(wi) thenw ∈W(q) implies

Ts(w) = (1− q)w + q(w1, . . . ,wi−1, swi ,wi+1, . . . ,wk) ∈W(q).

If ℓ(swi) > ℓ(wi) thenTs(w) ∈W(q) sinceTs(w)i = swi andTs(w) j = 1 whenevers dominatesS j .
Next we verify the quadratic relation for the action ofTs. If Ts acts trivially onw thenT2

s = (1− qs)Ts+ qs clearly
holds. Assume thatTs acts nontrivially onw and applyTs again toTs(w). For thei-th component this is the same as
the regular representation ofHSi (qs) (see 2.1). HenceT2

s = (1− qs)Ts + qs holds for thei-th component. Letj , i. If
s does not dominatesS j thenTs(w) j = w j is fixed byTs. If s dominatesS j thenTs(w j) = 1 is also fixed byTs, and
qs = 0. HenceT2

s = (1− qs)Ts+ qs also holds for thej-th component for allj , i.
Next we verify the braid relation betweenTs andTt for any t ∈ Si \ {s}. If one of Ts andTt acts trivially onw

then so does the other. Thus we may assume thatTs andTt both act nontrivially onw. Then they both act on thei-th
component ofw by the regular representation ofHSi (qs) and hence the braid relation holds for this component. Let
j , i and letT(s, t) be any product ofTs andTt that contains both of them. If eithers or t dominatesSi thenT(s, t)
sendsw j to 1. If neither ofs andt dominatesS j thenT(s, t) fixesw j . Hence the braid relation betweenTs andTt also
holds for thej-th component for allj , i.

Next assume thatt ∈ S j andi , j. First consider the case whensdominatesS j . Sinceqs = 0, one hasTs(w)i = wi

if ℓ(swi) < ℓ(wi) andTs(w)i = swi if ℓ(swi) > ℓ(wi). In either caseTt acts trivially onTs(w), i.e. Tt(Ts(w)) = Ts(w).
On the other hand, sinceqt , 0, one sees thatTt dominates nothing and thus fixes all components ofw except thej-th
one. SincesdominatesS j , one also hasTs(Tt(w)) j = Ts(w) j = 1. HenceTs(Tt(w)) = Ts(w).

Similarly if t dominatesSi then one hasTsTt(w) = Tt(w) = TtTs(w). For the remaining case, that is, whens does
not dominateS j andt does not dominatesSi , one hasmst = 2 by Lemma 4.1 (ii). We need to show that both actions
of TsTt andTtTs onw are the same. One sees for both actions thatTs andTt act separately onwi andw j by the regular
representations ofHSi (qs) andHS j (qt), respectively. Leth ∈ [k] \ {i, j}. If Sh is dominated by eithers or t then both
TsTt andTtTs sendswh to 1. Otherwise bothTsTt andTtTs fixesw j . HenceTsTt(w) = TtTs(w).

Therefore one has a well defined action ofH(q) on FW(q). One sees that every element (w1, . . . ,wk) in W(q) is
equal toTw1 · · ·Twk(1) by induction onℓ(w1) + · · · + ℓ(wk). This completes the proof. �

Theorem 4.3. Assume that(W,S) is simply-laced andH(q) is collapse-free. ThenH(q) has a basis

B(q) := {Tw1 · · ·Twk : (w1, . . . ,wk) ∈W(q)}.

Proof. Theorem 1.2 shows thatH(q) is spanned by{Tw : w ∈ W}. Let s ∈ Si , t ∈ S j , and i , j. If mst = 2
thenTsTt = TtTs. If mst = 3 then we may assume 0= qs , qt by Lemma 4.1 and it follows from Lemma 3.4 that
TsTr = Ts = TrTs for all r ∈ S j . Hence for anyw ∈W one can writeTw = Tw1 · · ·Twk wherew = (w1, . . . ,wk) ∈W(q).
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This shows thatB(q) is a spanning set forH(q). On the other hand, it follows from Lemma 4.2 thatB(q) is also
linearly independent. ThusB(q) is a basis forH(q). �

Corollary 4.4. Suppose that(W,S) is simply-laced and let S1, . . . ,Sk be given by Lemma 4.1.
(i) A collapse-freeH(q) is finite dimensional if and only if Wi := 〈Si〉 is finite for all i ∈ [k].
(ii) There existsq ∈ FS such thatH(q) is collapse-free and finite dimensional if and only if there exists R⊆ S such

that the parabolic subgroups〈R〉 and〈S \ R〉 are finite.

Proof. (i) By Theorem 4.3, a collapse-freeH(q) is finite dimensional if and only ifW(q) is finite. For anyi ∈ [k],
there are injectionsWi →֒ W(q) →֒ W1 × · · · ×Wk. HenceW(q) is finite if and only ifWi is finite for all i ∈ [k].

(ii) Suppose thatH(q) is collapse-free and finite dimensional. LetR := {s ∈ S : qs = 0}. By Lemma 4.1, we may
assumeR = S1 ∪ · · · ∪ S j . Then〈R〉 = 〈S1〉 × · · · × 〈S j〉 and〈S \ R〉 = 〈S j+1〉 × · · · × 〈Sk〉 are both finite groups
by (i). Conversely, if there exists a subsetR ⊆ S such that〈R〉 and〈S \ R〉 are both finite groups, thenH(q) is finite
dimensional by (i), whereq is defined byqs = 0 for all s ∈ Randqs = 1 for all s < R. �

Example 4.5. (i) It is well known that the Coxeter group of affine typeA is infinite and so is the associated Hecke
algebra with a single parameter. However, if one takes some parameters to be 0 and others to be 1, the resulting algebra
is finite dimensional, since all theWi ’s given in the above theorem are of finite typeA.

(ii) Let the Coxeter diagram of (W,S) be the complete graphK5 with 5 vertices. Assume thatH(q) is collapse-
free. There can be at most two different parameters 0 andq , 0. BothR := {s ∈ S : qs = 0} and its complement
S\R= {s ∈ S : qs = q} are admissible subsets ofS, the larger one of which contains at least 3 elements and thusgives
a copy of the infinite dimensional Hecke algebra of affine typeA3 with a single parameter as a subalgebra ofH(q).
ThereforeH(q) is never finite dimensional in such cases.

5. The simply laced bipartite case

By Theorem 3.5 there existsq ∈ FS such thatH(q) is collapse-free and commutative if and only if the Coxeter
diagram of (W,S) is simply laced and bipartite. We give more results for suchcase in this section. LetTI :=

∏
i∈I Ti

for all I ∈ I(G), whereI(G) consists of independent sets in the underlying graphG of the Coxeter diagram of (W,S).

Corollary 5.1. A collapse-free and commutativeH(q) has a basis{TI : I ∈ I(G)}. In particular, if (W,S) is of type
An then the dimension ofH(q) equals the Fibonacci number Fn+2.

Proof. By Theorem 3.5, the Coxeter diagram of (W,S) is a simply laced and bipartite graphG with all edges between
the two subsets{s ∈ S : qs = 0} and{t ∈ S : qt , 0}. Hence the subsetsS1, . . . ,Sk given by Lemma 4.1 are all
singleton sets. Then the basisB(q) forH(q) given in Theorem 4.3 consists of the elementsTI for all I ∈ I(G).

Now suppose that (W,S) is of typeAn, i.e. its Coxeter diagram is isomorphic to the pathPn with n vertices. If an
independent setI in Pn contains one end vertex ofPn, then removing this end point fromI gives an independent set of
Pn−2; otherwiseI is an independent set ofPn−1. Thus|I(Pn)| = |I(Pn−1)|+ |I(Pn−2)|. One also sees that|I(Pi)| = i + 1
if i = 0, 1. Thus|I(Pn)| = Fn+2 for all n ≥ 0. �

Computations inMagma suggest the following conjecture.

Conjecture 5.2. Suppose that the Coxeter diagram of(W,S) is a simply laced and bipartite graph G. The minimum
dimension of a collapse-freeH(q) is |I(G)|, which is attained when it is commutative.

We will verify this conjecture for typeAn. We first need a lemma on theFibonacci numbers, which are defined as
F0 = 0, F1 = 1, andFn = Fn−1 + Fn−2 for all n ≥ 2.

Lemma 5.3. If k ≥ 4 then k! ≥ Fk+3 + 2. Also, if a≥ 1 and b≥ 0 then Fa+b = FaFb+1 + Fa−1Fb ≤ FaFb+2.

Proof. The first result follows easily by induction. It is well knownthatFa+b = FaFb+1 + Fa−1Fb (see Example 7.2).
HenceFa+b ≤ Fa(Fb+1 + Fb) = FaFb+2. �

Theorem 5.4. LetH(q) be a collapse-free Hecke algebra of type An with independent parameters. Then its dimension
is at least the Fibonacci number Fn+2, and the equality holds if and only ifH(q) is commutative.

Proof. We prove the result by induction onn. The Coxeter diagram for typeAn is the path s1 s2 · · · sn . We
write qi := qsi for all i ∈ [n]. Let S1, . . . ,Sk be the subsets ofS given by Lemma 4.1. ThenS j is a path of length
n j ≥ 1 for every j ∈ [k]. We may assume, without loss of generality, that

S j = {si : n1 + · · · + n j−1 < i ≤ n1 + · · · + n j}, ∀ j ∈ [k].
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If all parameters inq are the same, thenH(q) has dimension (n+1)! ≥ Fn+2. Thus we may assume that there exists
j ∈ [k] such thatqs = q , 0 for all s ∈ S j . Let a = n1+ · · ·+ n j−1, b = n j, andc = n j+1+ · · ·+ nk. By conventiona = 0
if j = 1, andc = 0 if j = k. One sees thatsa andsa+b+1 both dominateS j .

By Theorem 4.3,H(q) has dimension|W(q)|. We need to count the elements (w1, . . . ,wk) in W(q). If w j , 1
then any reduced word ofw j−1 cannot containsa and any reduced word ofw j+1 cannot containsa+b+1. It follows that
(w1, . . . ,w j−1) and (w j+1, . . . ,wk) are arbitrary elements inW(qi : 1 ≤ i ≤ a − 1) andW(qi : a + b + 2 ≤ i ≤ n),
respectively. Then the number of choices for (w1, . . . ,wk) in this case is at leastFa+1((b+ 1)! − 1)Fc+1, by induction
hypothesis. Note that this still holds even ifa = 0 orc = 0, sinceF1 = 1.

Similarly, if w j = 1 the number of choices for (w1, . . . ,wk) is at leastFa+2Fc+2 by induction hypothesis.
Thus the dimension ofH(q) is at leastf (a, b, c) := Fa+1((b+ 1)! − 1)Fc+1 + Fa+2Fc+2. By Lemma 5.3,

f (a, b, c) = Fa+1((b+ 1)! − 2)Fc+1 + Fa+c+3.

If b = 1 then this becomesf (a, b, c) = Fa+c+3 = Fn+2. If b = 2 then Lemma 5.3 implies that

f (a, b, c) > 3Fa+1Fc+1 + Fa+c+3 ≥ F4Fa+c + Fn+1 ≥ Fn + Fn+1 = Fn+2.

If b ≥ 3 then Lemma 5.3 implies that

f (a, b, c) > Fa+1Fb+4Fc+1 ≥ Fa+b+3Fc+1 ≥ Fn+2.

Thereforef (a, b, c) ≥ Fn+2 always holds.
Finally, assumef (a, b, c) = Fn+2. By the above argument, this equality is possible only ifb = 1 and the dimensions

of H(q1, . . . , qa) andH(qa+2, . . . , qn) areFa+2 and Fc+2, respectively. ThenH(q1, . . . , qa) andH(qa+2, . . . , qn) are
commutative by induction hypothesis. The definition fora, b, andc impliesqa = 0, qa+1 , 0, andqa+2 = 0. It follows
from Theorem 3.5 thatqi = 0 wheni ≡ a mod 2 andqi , 0 otherwise. HenceH(q) must be commutative. On the
other hand, ifH(q) is commutative then its dimension isFn+2 by Corollary 5.1. This completes the proof. �

Next we explain the connection between a collapse-free and commutativeH(q) and theMöbius algebra A(L) of a
finite latticeL. According to Stanley [10,§3.9], the Möbius algebraA(L) is the monoid algebra ofL overF with the
meet operation, and it is a direct sum of|L| many one-dimensional subalgebras.

Now let Z be a finite rank two poset. SetX := {x ∈ Z : x > y for somey ∈ Z} andY = Z \ X. By abuse of notation
we denote byZ the underlying graph ofZ. Let L be the distribute latticeJ(Z) of the order ideals ofZ ordered by reverse
inclusion (so that the meet operation is the union of ideals). Suppose that (W,S) is a Coxeter system whose Coxeter
diagram coincides withZ. Denote byH(Z) the Hecke algebraH(q) of (W,S) with parametersq = (qs : s ∈ S) given
by qs = 0 for all s ∈ X andqs = 1 for all s ∈ Y.

Proposition 5.5. Whenchar (F) , 2 the algebraH(Z) is isomorphic the Möbius algebra of J(Z).

Proof. By definition, the algebraH(Z) is generated by{Tx : x ∈ X} ∪ {Ty : y ∈ Y} with relations


T2
x = Tx, T2

y = 1, ∀x ∈ X, ∀y ∈ Y,

TzTz′ = Tz′Tz, ∀z, z′ ∈ Z,

TxTy = Tx, if x > y in Z (by Lemma 3.4).

One has a basis{TI : I ∈ I(Z)} forH(Z) by Corollary 5.1.
When char (F) , 2 one can replace the generatorTy with T′y := (Ty + 1)/2, which is now an idempotent, for every

y ∈ Y. One checks that all other relations given above remain same. Write T′x = Tx for all x ∈ X. Then the algebra
H(Z) is generated by{T′x : x ∈ X} ∪ {T′y : y ∈ Y} and has a basis{T′I : I ∈ I(Z)} whereT′(I ) :=

∏
z∈I T′z.

Any independent setI in I(Z) is an antichain inZ, generating an order idealJ(I ) consisting of all elements weakly
below some element ofI . Conversely, an order ideal ofZ corresponds to an independent setI ∈ I(Z) consisting of
all maximal elements in this order ideal. Hence sendingT′(I ) to the order idealJ(I ) for all I ∈ I(Z) gives a vector
space isomorphismH(Z) � A(J(Z)). To see this isomorphism preserves multiplications, letI1 andI2 be two elements
in I(Z). ThenT′(I1)T′(I2) = T′(I1 ◦ I2) whereI1 ◦ I2 is obtained fromI1∪ I2 by removing all the elements that are less
than some element ofI1 ∪ I2. On the other hand, the order idealJ(I1) ∪ J(I2) has maximal elements given byI1 ◦ I2,
and thus equalsJ(I1 ◦ I2). This completes the proof. �
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6. The commutative case

By Theorem 3.5 and Corollary 5.1, ifH(q) is collapse-free and commutative, then the Coxeter diagram of (W,S)
is simply laced with a bipartite underlying graphG, and the dimension ofH(q) is |I(G)|. In this section we define and
study a more general commutative algebra for any (unweighted) simple graphG, whose dimension is still|I(G)|.

6.1. Basic results. Let G be a simple graph with vertex setV(G) and edge setE(G), and letR⊆ V(G). We define an
algebraH(G,R) to be the quotient of the polynomial algebraF[xv : v ∈ V(G)] by the ideal generated by

{x2
r : r ∈ R} ∪ {x2

v − xv : v ∈ V(G) \ R} ∪ {xuxv : uv∈ E(G)}.

The image ofxv in the quotient algebraH(G,R) is still denoted byxv for all v ∈ V. This algebraH(G,R) generalizes
the commutative algebraH(q) by the following result.

Proposition 6.1. If H(q) is collapse-free and commutative then it is isomorphic toH(G,R) as an algebra, where G
is the underlying graph of the Coxeter diagram of(W,S) and R:= {s ∈ S : qs = −1}.

Proof. The algebraH(q) has another generating set{xs : s ∈ S} given by

xs :=



Ts, qs = 0,

Ts− 1, qs = −1,

(1− Ts)/(1+ qs), otherwise.

If H(q) is collapse-free and commutative then one can check that the relations for{Ts : s ∈ S} are equivalent to the
relations for{xs : s ∈ S} in the definition ofH(G,R) using Lemma 3.4. Thus the result holds. �

Remark6.2. (i) The setR = {s ∈ S : qs = −1} associated withH(q) depends on char (F). For example, an element
s ∈ S with qs = 1 belongs toR if and only if char (F) = 2. However, onceR is chosen for the algebraH(G,R), our
results onH(G,R) do not depend on char (F) any more.

(ii) By Theorem 3.5, ifH(q) is collapse-free and commutative thenR= {s ∈ S : qs = −1}must be an independent
set ofG. But the commutative algebraH(G,R) is well defined for any simple graphG and any subsetR⊆ V(G).

(iii) The Stanley-Reisner ring of the independence complex of Gis defined as the quotient of the polynomial algebra
F[yv : v ∈ V(G)] by theedge idealgenerated by (yuyv : uv ∈ E(G)). See e.g. [5]. The algebraH(G,R) is a further
quotient of the Stanley-Reisner ring of the independence complex ofG.

Now we study the algebraH(G,R) and our results will naturally apply to the commutative algebraH(q) by Propo-
sition 6.1. We first need some notation. For anyU ⊆ V(G) we write

XU :=
∏

u∈U

xu and X−U :=
∏

u∈U

x−u

wherex−v := 1− xv for all v ∈ V(G). One sees thatXU , 0 if and only if U belongs toI(G), the set of all independent
sets inG. We define thelengthof a nonzero monomialXI to be the cardinality|I | of the independent setI . We partially
order the nonzero monomials by their lengths. We denote byN(U) the set of all vertices that are adjacent to some
vertexu ∈ U in G. We will often identify a subsetU of V(G) with the subgraph ofG induced byU, whose vertex set
is U and whose edge set is{{u, v} ∈ E(G) : u, v ∈ U}. We will also write “+” and ”−” for set union and difference. For
example, we writeG− R for the subgraph ofG induced byV(G) − R, and henceI(G− R) consists of all independent
sets ofG − R. We give two bases forH(G,R) in the following proposition, which generalizes Corollary 5.1.

Proposition 6.3. The algebraH(G,R) has dimension|I(G)| and two bases{XI : I ∈ I(G)} and

(6.1)
{
XI+JX−G−R−I : I ∈ I(G− R), J ∈ I(R− N(I ))

}
.

Proof. The defining relations forH(G,R) immediately imply that it is spanned by{XI : I ⊆ I (G)}. Let FI(G) be the
vector space overF with a basisI(G). We define an action ofH(G,R) onFI(G) by

xv(I ) =


0, if v ∈ I ∩R or I ∪ {v} < I(G),

I ∪ {v}, otherwise.

It is not hard to check that this action satisfies the defining relations forH(G,R). For anyI ∈ I(G), one hasXI (∅) = I .
This forces the spanning set{XI : I ⊆ I (G)} to be a basis forH(G,R).

One sees that any independent set ofG can be written uniquely asI + J for someI ∈ I(G−R) andJ ∈ I(R−N(I )),
and the shortest term inXI+JX−G−R−I is XI+J. Thus (6.1) is also a basis forH(G). �
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Let G′ be a subgraph ofG induced byV′ ⊆ V(G), and letR′ = V′ ∩ R. The following corollary allows us to study
the induction ofH(G′,R′)-modules toH(G,R) and the restriction ofH(G,R)-modules toH(G′,R′).

Corollary 6.4. The subalgebra ofH(G,R) generated by{xv : v ∈ V′} is isomorphic toH(G′,R′).

Proof. There is an injectionφ : H(G′,R′) →֒ H(G,R) of algebras defined by sending the generatorsx′v forH(G′,R′)
to the generatorsxv forH(G,R) for all v ∈ V′. By Proposition 6.3, the algebraH(G′,R′) admits a basis consisting of
the elementsX′I :=

∏
v∈I x′v for all I ∈ I(G′). The mapφ sends this basis to the basis{XI : I ∈ I(G′)} for the subalgebra

ofH(G,R) generated by{xv : v ∈ V′}, giving the desired isomorphism. �

6.2. Projective indecomposable modules and simple modules.We first decompose the algebraH(G,R) into a
direct sum of indecomposable submodules.

Theorem 6.5. There is anH(G,R)-module decomposition

(6.2) H(G,R) =
⊕

I⊆I(G−R)

PI (G,R)

where eachPI (G,R) := H(G,R)XI X−G−R−I is an indecomposableH(G,R)-module with a basis

(6.3)
{
XI+JX−G−R−I : J ∈ I(R− N(I ))

}

and hence has dimension|I(R− N(I ))|. The top ofPI (G,R), denoted byCI (G,R), is one-dimensional and admits an
H(G,R)-action by

xv =


1, if v ∈ I ,

0, if v ∈ G− I .

Proof. Let I ∈ I(G− R). Sincexvx−v = 0 for anyv ∈ G− R− I , andxuxv = 0 wheneverv ∈ I andu ∈ N(v), one has

(6.4) XJ(XI X
−
G−R−I ) =


XI+JX−G−R−I , if J − I ∈ I(R− N(I )),

0, otherwise

for anyJ ∈ I(G). Hence (6.3) spansPI (G,R). By Proposition 6.3,H(G,R) has a basis (6.1) which is the union of the
spanning sets (6.3) for allI ∈ I(G − R). This implies the direct sum decomposition (6.2) ofH(G,R) and forces the
spanning set (6.3) to be a basis forPI (G,R). The dimension ofPI (G,R) is then clear.

Now we prove thatPI (G,R) is indecomposable and find its top. Sincex2
r = 0 for anyr ∈ R, the elements in (6.3)

are all nilpotent exceptXI X−G−R−I . The spanNI of these nilpotent elements is contained in the nilradical of H(G,R),
and hence in the radical ofPI (G,R). By (6.4), the quotientPI (G,R)/NI is isomorphic to the one-dimensionalH(G,R)-
moduleCI (G,R). It follows that the radical ofPI (G,R) equalsNI , and the top ofPI (G,R) is isomorphic toCI (G,R).
ThenPI (G,R) must be indecomposable as its top is simple. �

By Theorem 6.5,{PI (G,R) : I ∈ I(G − R)} and {CI (G,R) : I ∈ I(G − R)} are complete lists of pairwise-
nonisomorphic projective indecomposableH(G,R)-modules and simpleH(G,R)-modules, respectively. The proof
of Theorem 6.5 shows that the radical ofPI (G,R) is spanned by{XI+JX−G−R−I : ∅ , J ∈ I(R− N(I ))} and hence the
radical ofH(G,R) is the ideal generated by{xr : r ∈ R}. This ideal coincides with the nilradical ofH(G,R), showing
thatH(G,R) is aJacobson ring. Some other consequences of Theorem 6.5 are listed below.

Corollary 6.6. Theorem 6.5 implies the following results.
(i) The algebraH(G,R) is semisimple if and only if R= ∅.
(ii) For any I ∈ I(G− R) one hasPI (G,R) � H(G,R) ⊗H(G−R,∅) CI (G− R, ∅).
(iii) The socle ofPI (G,R) is the direct sum ofFXI+JX−G−R−I � CI (G,R) for all maximal J inI(R− N(I )).
(iv) The Cartan matrix ofH(G,R) is the diagonal matrixdiag{|I(R− N(I ))| : I ∈ I(G− R)}.
(v) A complete set of primitive orthogonal idempotents of H(G) is given by{XI X−G−R−I : I ∈ I(G− R)}.

Proof. (i) An algebra is semisimple if and only if its radical is 0. The radical ofH(G,R) is generated by{xr : r ∈ R},
which is 0 if and only ifR= ∅.

(ii) There is a bilinear mapH(G,R) × CI (G − R, ∅) → PI (G,R) defined by sending (XJ, zI ) to XJXI X−G−R−I for all
J ∈ I(G), wherezI is an element spanningCI (G− R, ∅). This induces an algebra surjection

φ : H(G,R) ⊗H(G−R,∅) CI (G− R, ∅)։ PI (G,R)

which sendsXJ⊗H(G−R,∅) zI to XJXI X−G−R−I for all J ∈ I(G). One sees thatH(G,R)⊗H(G−R,∅)CI (G−R, ∅) is spanned by
{XJ⊗H(G−R,∅) zI : J ∈ I(R−N(I ))}, which is sent byφ to the basis (6.3) forPI (G,R). Henceφmust be an isomorphism.
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(iii) If J is maximal inI(R − N(I )) then FXI+JX−G−R−I admits the same action ofH(G,R) as CI (G,R). Thus
FXI+JX−G−R−I is a simple submodule ofPI (G,R) and must be contained in the socle ofPI (G,R). Conversely, we need
to show that any simple submoduleM of PI (G,R) is contained in the direct sum ofFXI+JX−G−R−I for all maximal
J ∈ I(R− N(I )). Using the basis (6.3) forPI (G,R) one writes an arbitrary element ofM as

z=
∑

J∈I(R−N(I ))

cJXI+JX−G−R−I , cJ ∈ F.

Let K be a minimal independent set inI(R− N(I )) such thatcK , 0. It suffices to show thatK is also maximal in
I(R− N(I )). If not, then there existsr ∈ R− K such thatK + r ∈ I(R− N(I )). For anyJ ∈ I(R− N(I )), one sees that

xr XI+JX−G−R−I =


0, if r ∈ J ∪ N(I ∪ J),

XI+J+r X−G−R−I , 0, otherwise.

Thus in the expansion ofxrz in terms of the basis (6.3), the coefficients ofXI+K X−G−R−I andXI+K+r X−G−R−I are 0 and
cK , 0, respectively. It follows thatxrz < FzandM is at least 2-dimensional. This contradicts the simplicityof M.

(iv) Let I ∈ I(G−R). We order the elementsXI+JX−G−R−I by |J| for all J ∈ I(R−N(I )). This induces a filtration for
PI (G,R), under which

xvXI+JX−G−R−I ≡


XI+JX−G−R−I , v ∈ I ,

0, v < I .

Hence every simple composition factor ofPI (G,R) is isomorphic toCI (G,R). The Cartan matrix follows.
(v) This follows from the decomposition ofH(G,R) given in Theorem 6.5 and the equality

∑

I∈I(G−R)

XI X
−
G−R−I =

∑

J∈I(G−R)

∑

I⊆J

(−1)|J\I |XJ = 1.

The reader who is not familiar with primitive orthogonal idempotents can find more details in [2,§I.4]. �

6.3. Induction and restriction. Let G′ be an induced subgraph ofG and letR′ = G′ ∩ R. By Corollary 6.4, the
following induction and restriction are well defined for isomorphism classes of modules:

• the inductionM ↑ G,R
G′ ,R′ := H(G,R) ⊗H(G′ ,R′) M of anH(G′,R′)-moduleM toH(G,R),

• the restrictionN ↓ G,R
G′ ,R′ of anH(G,R)-moduleN toH(G′,R′).

Proposition 6.7. Assume R= ∅, and hence R′ = ∅. Write (G,R) = (G) and(G′,R′) = (G′). Then for any I′ ∈ I(G′),

CI ′ (G′) ↑ G
G′ �

⊕

I∈I(G):I∩G′=I ′

CI (G).

Proof. Suppose thatCI ′ (G′) = Fz. Using the universal property of the tensor product one obtains an algebra sujection

φ : H(G) ⊗H(G′) Fz։ H(G)XI ′X
−
G′−I ′

which sendsXJ ⊗H(G′) z to XJXI ′X−G′−I ′ for all J ∈ I(G). One sees thatH(G) ⊗H(G′) Fz is spanned by

{XI ⊗H(G′) z : I ∈ I(G), I ∩G′ = I ′}

sincexvz= 0 for all v ∈ G′ − I ′. This spanning set is sent byφ to

{XI X
−
G′−I ′ : I ∈ I(G), I ∩G′ = I ′}

which is a basis forH(G)XI ′X−G′−I ′ since it is a spanning set triangularly related to{XI : I ∈ I(G), I ∩ G′ = I ′},
a linearly independent set inH(G). Thusφ is an isomorphism. Using the length filtration induced by|I | for all I
appearing in the above basis, one sees that the composition factors ofH(G)XI ′X−G′−I ′ areCI (G) for all I ∈ I(G) with
I ∩G′ = I ′, each appearing exactly once. This completes the proof asH(G) is semisimple by Corollary 6.6 (i). �

Proposition 6.8. Let I ∈ I(G− R) and J∈ I(G′ − R′). ThenCI (G,R) ↓ G,R
G′ ,R′ � CI∩G′ (G′,R′) and

PJ(G′,R′) ↑
G,R
G′ ,R′ �

⊕

K∈I(G−R):K∩G′=J

PK(G,R).
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Proof. The restriction ofCI (G,R) follows easily from the definition. By Corollary 6.6 (ii) and Proposition 6.7,

PJ(G′,R′) ↑
G,R
G′ ,R′ � CJ(G′ − R′, ∅) ↑ G′ ,R′

G′−R′,∅ ↑
G,R
G′ ,R′

� CJ(G′ − R′, ∅) ↑ G,R
G′−R′,∅

� CJ(G′ − R′, ∅) ↑ G−R,∅
G′−R′,∅ ↑

G,R
G−R,∅

�

⊕

K∈I(G−R), K∩G′=J

CK(G− R, ∅) ↑ G,R
G−R,∅

�

⊕

K∈I(G−R), K∩G′=J

PK(G,R).

This completes the proof. �

Remark6.9. It is not hard to obtain the simple composition factors of theinduction of a simpleH(G′,R′)-module to
H(G,R). But the restriction of a projective indecomposableH(G,R)-module toH(G′,R′) is not always projective.

7. Commutative Hecke algebras of type A

We apply the previous results to commutative Hecke algebrasof type A with independent parameters.

7.1. Decomposition of Fibonacci numbers.Let (W,S) be the Coxeter system of typeAn whose Coxeter diagram is
the path s1 s2 · · · sn . We often identifysi with i and writeq := (q1, . . . , qn) ∈ Fn. LetH(q) be a collapse-free
and commutative Hecke algebra of (W,S) with independent parametersq. Then Theorem 3.5 implies that eitherqi = 0
for all odd i ∈ [n] and qi , 0 for all eveni ∈ [n], or the other way around. Proposition 6.1 provides an algebra
isomorphismH(q) � H(Pn,R), whereR := {i ∈ [n] : qi = −1}. Note that the setR obtained fromH(q) depends on
char (F). For example, ifq = (1, 0, 1, 0, 1, . . .) thenR= ∅ andH(Pn,R) is semisimple if charF , 2, butR= {1, 3, 5, . . .}
andH(Pn,R) is not semisimple if char (F) = 2. However, the algebraH(Pn,R) is defined for any subsetR ⊆ [n] and
our results do not depend on char (F). We first give decompositions of the Fibonacci numbers.

Proposition 7.1. Let R⊆ [n]. Then

Fn+2 =
∑

I∈I(Pn−R)

|I(R− N(I ))|.

Proof. Let G be a simple graph and letR ⊆ V(G). By Proposition 6.3, the dimension ofH(G,R) is |I(G)|. By
Theorem 6.5,H(G,R) is the direct sum ofPI (G,R) for all I ∈ I(G − R), and the dimension of eachPI (G,R) is
|I(R− N(I ))|. Hence

|I(G)| =
∑

I∈I(G−R)

|I(R− N(I ))|.

Now takeG = Pn. We know that|I(Pn)| = Fn+2 by Corollary 5.1. Thus the result holds. �

Example 7.2. Let R := [m] for somem ∈ [n − 1]. Then the subgraph ofPn induced byR is the pathPm. If
I ∈ I(Pn − [m+ 1]) thenI(R− N(I )) = I(R). If I ∈ I(Pn − R) containsm+ 1 thenI − {m+ 1} ∈ I(Pn − [m+ 2]) and
I(R− N(I ) = I([m− 1]). Thus we recover a well known identityFn+2 = Fm+2Fn−m+1 + Fm+1Fn−m.

Example 7.3. Let X andY be the subsets of odd and even numbers in [n], respectively. Then

Fn+2 =
∑

I⊆X

2|Y−N(I )| =
∑

J⊆Y

2|X−N(J)|.

This writes a Fibonacci number as a sum of 2|X| or 2|Y| many powers of 2. Some small examples are provided below.

n=1 2= 1+1= 2 n=2 3= 2+1
n=3 5 = 2+1+1+1= 4+1 n=4 8 = 4+2+1+1
n=5 13= 4+2+2+1+1+1+1=1= 8+2+2+1 n=6 21= 8+4+2+2+2+1+1+1
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7.2. The semisimple commutative case.Now we study the representation theory of the semisimple commutative
algebraHn := H(Pn−1, ∅), whereH0 := F by convention. We writeα ∝ n if α = (α1, . . . , αℓ) is a composition ofn
with all internal parts larger than 1, i.e.αi > 1 whenever 1< i < ℓ.

Proposition 7.4. The algebraHn decomposes into a direct sum of Fn+1 many 1-dimensional simple submodulesCα

indexed byα ∝ n, with theHn-action onCα given by xi = 1 if i ∈ D(α) or xi = 0 otherwise.

Proof. For any compositionα of n, one sees thatD(α) is an independent set ofPn−1 if and only if α has no internal
parts equal to 1. Thus the result follows from Theorem 6.5. �

SinceHn is semisimple, its two Grothendieck groupsG0(Hn) andK0(Hn) are the same. Given nonnegative integers
mandn, the subalgebra ofHm+n generated byx1, . . . , xm−1, xm+1, . . . , xm+n−1 is isomorphic toHm⊗Hn, giving a natural
embeddingHm⊗Hn →֒ Hm+n. Thus there is a towerH• : H0 →֒ H1 →֒ H2 →֒ · · · of algebras, whose Grothendieck
groupG0(H•) :=

⊕
n≥0 G0(Hn) has a product and a coproduct defined by

Cα ⊗̂Cβ :=
(
Cα ⊗ Cβ

)
↑
Hm+n

Hm⊗Hn
and ∆(Cα) :=

∑

0≤i≤m

Cα ↓
Hm

Hi⊗Hm−i

for all α ∝ m andβ ∝ n. One sees that the product⊗̂ and the coproduct∆ are well defined, with unitu sending 1 to
C∅, and counitǫ sendingC∅ to 1 andCα to 0 for all α ∝ n, n ≥ 1. Applying Proposition 6.8 immediately gives the
following explicit formulas for the product and coproduct below. See§2.3 for the notationαβ, α ⊲ β, α≤i , andα>i .

Proposition 7.5. For anyα ∝ m andβ ∝ n, one has

Cα ⊗̂Cβ =


Cαβ ⊕ Cα⊲β, if αβ ∝ m+ n,

Cα⊲β, otherwise,
and ∆(Cα) =

∑

0≤i≤m

Cα≤i ⊗ Cα>i .

For example, one hasC132 ⊗̂C41 = C13241⊕ C1361, C121 ⊗̂C32 = C1242, and

∆(C122) = C∅ ⊗ C122+ C1 ⊗ C22 + C11 ⊗ C12 + C12 ⊗C2 + C121⊗ C1 + C122⊗ C∅.

Corollary 7.6. (i) The graded algebra and coalgebra structures of G0(H•) are dual to each other via the pairing
defined by〈Cα,Cβ〉 := δα, β for all α ∝ m andβ ∝ n, with a self-dual basis{Cα : α ∝ n, ∀n ≥ 0}.
(ii) There is a surjectionσ : K0(H•(0))։ G0(H•) of graded algebras and an injectionι : G0(H•) →֒ G0(H•(0)) of
graded coalgebras such that the two maps are dual to each other.

Proof. The first assertion holds since it follows from Proposition 7.5 that

(7.1) 〈Cα ⊗̂Cβ,Cγ〉 = 〈Cα ⊗ Cβ,∆(Cγ)〉, 〈C∅,Cα〉 = ǫ(Cα).

For the second assertion, first recall the representation theory of the 0-Hecke algebraHn(0) from§2.3. We define the
surjectionσ by

(7.2) σ(Pα(0)) =


Cα, if α ∝ n,

0, otherwise.

We define the injectionι by sendingCα to Cα(0) for all α ∝ n. One sees thatσ andι are maps of graded algebras and
coalgebras, respectively, by comparing Proposition 7.5 with Proposition 2.1. It is not hard to check that

〈σ(Pα(0)),Cβ〉 = 〈Pα(0), ι(Cβ)〉 = δα, β, ∀α |= m, ∀β ∝ n.

This shows thatσ andι are dual maps. Hence (ii) holds. �

Remark7.7. (i) Comparing the definitions forHn andHn(0) one sees that the former is a quotient of the latter by the
relationsTiTi+1 = 0 for all i = 1, . . . , n− 2. Thus anyHn-module is automatically anHn(0)-module. This induces the
injection ι : G0(H•) →֒ G0(H•(0)) given in the previous proposition. On the other hand,Cα(0) = top(Pα(0)) admits
anHn-action and is hence isomorphic toCα if and only if the compositionα has all internal parts larger than 1. This
induces the surjectionσ : K0(H•(0))։ G0(H•) defined in (7.2).

(ii) It is well known that the number of partitions ofn is no more than the Fibonacci numberFn+1. One may suspect
that the surjectionK0(H•(0)) � NSym։ Sym� G0(CS•) factors through the surjectionσ : K0(H•(0))։ G0(H•).
This is not true since the commutative image of the noncommutative ribbon Schur functionsα is the ribbon schur
function sα, but f (Pα(0)) = 0 if α is a composition with an internal part equal to 1. Similarly,one sees that the
injectionG0(CS•) � Sym →֒ QSym� G0(H•(0)) does not factor through the injectionι : G0(H•) →֒ G0(H•(0)),
since the image of the injectioni is spanned byCα(0) for all α ∝ n, n ≥ 0, butFα ∈ Sym whenα = 1n, n ≥ 3.
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(iii) Unfortunately,G0(H•) is not a bialgebra: one checks that∆(C11 ⊗̂C1) , ∆(C11) ⊗̂∆(C1) where the product on
the right hand side is tensor-component-wise. Thus it does not fit into Zelevinsky’s theory onpositive self-dual Hopf
algebras[12]. One also checks thatG0(H•) is not aweak bialgebra(c.f. [4]), nor aninfinitesimal bialgebra(c.f. [1]).

Next we consider theBratteli diagramof the tower of algebrasH0 →֒ H1 →֒ H2 →֒ · · · . It has vertices at leveln
indexed byα ∝ n, for n = 0, 1, 2, . . ., and it has an edge betweenα ∝ n andβ ∝ n− 1 if and only if Cα ↓

Hn

Hn−1
� Cβ.

One can draw this diagram using Proposition 7.5. The first 5 levels are illustrated below.

· · · · · · · · ·

4 31 22 13 121

3

❊❊❊ ✈✈✈
21 12

❍❍❍ ttt

2

❍❍❍❍ ✈✈✈
11

✈✈✈

1

❍❍❍❍ ✈✈✈

∅

7.3. Antipode. We consider the antipode ofG0(H•). In general, letA be an algebra with productµ and unitu, and let
C be a coalgebra with coproduct∆ and counitǫ. Theconvolution productof two mapsf , g ∈ HomF(C,A) is defined
as f ⋆ g := µ ◦ ( f ⊗ g) ◦ ∆. One can check thatu ◦ ǫ is the two-sided identity element for this convolution product.

Let (A′, µ′, u′) be another algebra and (C′,∆′, ǫ′) be another coalgebra such that there exists an algebra surjection
σ : A ։ A′ and a coalgebra injectionι : C′ →֒ C. Thenu′ = σ ◦ u, ǫ′ = ǫ ◦ ι, and the following diagram is
commutative, wheref ′ := σ ◦ f ◦ ι andg′ := σ ◦ g ◦ ι.

(7.3) C
∆ // C ⊗C

f⊗g // A⊗ A
σ⊗σ����

µ // A
σ����

C′
?�
ι

OO

∆′ // C′ ⊗C′
?�

ι⊗ι

OO

f ′⊗g′ // A′ ⊗ A′
µ′ // A′

Theantipode Sof a Hopf algebraH is nothing but the 2-sided inverse of the identity map 1H under the convolution
product for the endomorphism algebra EndF(H). In other words,S is defined by the commutative diagram below.

H ⊗ H
S⊗1H // H ⊗ H

µ

&&▲▲
▲▲

▲▲

H

∆
&&▲▲

▲▲
▲

∆ 88rrrrrr ǫ // F
u // H

H ⊗ H
1H⊗S

// H ⊗ H
µ

88rrrrr

Note that the definition for the antipodeS only requiresH to be simultaneously an algebra and a coalgebra. Moreover,
if the antipodeS of H exists, and if there is an algebra surjectionσ : H ։ H′ and a coalgebra injectionι : H′ →֒ H,
then one sees from (7.3) thatS′ := σ ◦ S ◦ ι is the antipode ofH′.

The antipodes of the dual graded Hopf algebras QSym andNSymare well known to the experts. Ifα = (α1, . . . , αℓ)
is a composition ofn then itsreverseis the composition rev(α) := (αℓ, . . . , α1) and itsconjugateis the composition
ω(α) := (rev(α))c = rev(αc). For example, ifα = 21321 then rev(α) = 12312 andω(α) = 22131. The antipodes of
QSym andNSym are defined byS(Fα) = (−1)nFω(α) andS(sα) = (−1)nsω(α) for all α |= n, n ≥ 0, where{Fα} and{sα}
are dual bases for QSym andNSym.

However, the same rule does not work forG0(H•). To give the antipodes ofG0(H•) we introduce a freeZ-module
Comp with a basis consisting of all compositions. By Proposition2.1, we can define a productα ⊗̂ β := αβ + α ⊲ β
and a coproduct∆(α) :=

∑
0≤i≤|α| α≤i ⊗ α>i for all compositionsα andβ, such that there is an algebra isomorphism

Comp � K0(H•(0)) and a coalgebra isomorphismComp � G0(H•(0)). The basis of all compositions forComp is
self-dual under the pairing〈α, β〉 := δα,β. There is an algebra surjectionσ : Comp։ G0(H•) defined by

σ(α) =


Cα, α ∝ n,

0, otherwise,
∀α |= n, ∀n ≥ 0

and a coalgebra injectionι : G0(H•) →֒ Comp sendingCα to α for all α ∝ n, n ≥ 0. They are dual to each other by
Corollary 7.6 (ii). One can check thatComp is not a bialgebra, but its antipode exists, giving the antipode ofG0(H•).
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Proposition 7.8. The map S sendingα to (−1)nαc for all α |= n, n ≥ 0, is the antipode ofComp. Consequently, the
antipode of G0(H•) is σ ◦ S ◦ ι, which sendsCα to (−1)nCαc if bothα ∝ n andαc ∝ n hold for some n≥ 0, that is, if
α ∈ {22· · ·2, 122· · ·2, 22· · ·21, 122· · ·21}, or sendsCα to 0 otherwise.

Proof. If S is the antipode ofComp thenσ ◦ S ◦ ι is the antipode ofG0(H•). Thus it suffices to show that

n∑

i=0

S(α≤i) ⊗̂α>i = u ◦ ǫ(α) =
n∑

i=0

α≤i ⊗̂S(α>i), ∀α |= n.

We only show the first equality and one can check that the same argument works for the second equality. It is trivial
whenα = ∅. Assumen ≥ 1 below. Thenu ◦ ǫ(α) = 0. For anyβ ∝ n, it follows the self-duality ofComp that

(7.4)

〈 n∑

i=0

S(α≤i) ⊗̂α>i , β

〉
=

n∑

i=0

〈S(α≤i) ⊗ α>i ,∆(β)〉 =
n∑

i=0

〈S(α≤i), β≤i〉 · 〈α>i , β>i〉.

Thus it suffices to show that the sum ofLi := 〈S(α≤i), β≤i〉 · 〈α>i , β>i〉 for i = 0, 1, . . . , n equals 0. One sees that

Li =


(−1)i, if (α≤i)c = β≤i , α>i = β>i ,

0, otherwise.

Let N be the set of alli ∈ {0, 1, . . . , n} such thatLi , 0. It is trivial if N = ∅.
Suppose thati ∈ N. One sees thatD(α≤ j) = D(α)∩ [ j−1] andD(α> j) = D(α)∩{ j+1, . . . , n−1} for any j; similarly

for β. Hence (α≤i)c = β≤i implies (α≤ j) = β≤ j for all j < i, andα>i = β>i impliesα> j = β> j for all j > i.
Since (α≤i)c = β≤i , the numberi − 1 must belong to exactly one ofD(α) andD(β). This forcesα> j , β> j for all

j < i − 1. Similarly, sinceα>i = β>i , the numberi + 1 belongs to both or neither ofD(α) and D(β). This forces
(α≤ j)c

, β≤ j for all j > i + 1. HenceN ⊆ {i − 1, i, i + 1}.
If i belongs to exactly one ofD(α) andD(β), thenN = {i, i + 1} since (α≤i+1)c = β≤i+1 andα>i−1 , βi−1.
If i belongs to both or neither ofD(α) andD(β), thenN = {i − 1, i} since (α≤i+1)c

, β≤i+1 andα>i−1 = βi−1.
In either case above the equation (7.4) equals 1− 1 = 0. This completes the proof. �

8. Questions and Remarks

8.1. Dimension. If the Coxeter system (W,S) is simply laced then using the basis forH(q) provided in Theorem 4.3
one can obtain recursive formulas for the dimension ofH(q). Is there anything else (e.g. closed formula and combi-
natorial interpretation) one can say about this dimension?More generally, how to write down a basis forH(q) of an
arbitrary Coxeter system?

8.2. Type A. In type A we know that the dimension of a collapse-free and commutativeH(q) is a Fibonacci number;
for example, one can takeq = (0, 1, 0, 1, . . .) or q = (1, 0, 1, 0, . . .). What ifH(q) is not commutative?

For instance, letq be a sequence ofm− 1 zeros followed byn− 1 ones. ThenH(q) is a quotient ofHm(0)⊗ FSn

and has dimension (m− 1)!(n! +m− 1), by Theorem 4.3. How does the representation theory of this algebra connect
to the representation theory ofHm(0) andSn?

Here is another example. Ifq consists ofa many copies of 0 followed byb many copies ofq , 0 and thenc many
copies of 0, one can use Theorem 4.3 to show that

dimH(q) = c!(a!((b+ 1)! + a) + (a+ 1)!c).

If q consists ofa many copies ofq , 0 followed byb many copies of 0 and thenc many copies ofq′ , 0, then

dimH(q) = b!((a+ 1)! + b) + (b− 1)!((a+ 1)! + b− 1)((c+ 1)! − 1).

What is the representation theory ofH(q) in these two cases?
A final remark for type A: the tower of algebrasH0 →֒ H1 →֒ H2 →֒ · · · are different from the tower of algebras

defined by Okada [9], whose dimensions aren! and whose Bratteli diagram is the Young-Fibonacci poset.
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8.3. Other types. Our results on the commutative algebraH(G,R) applies to affine type A. LetG be the cycleCn

with vertices 1, . . . , n and edges{1, 2}, . . . , {n− 1, n}, {n, 1}. We know thatH(Cn,R) has a basis indexed byI(Cn). One
checks that ifn ≥ 3 thenI(Cn) = I(Pn−1) ⊔ I(Pn−3), which is the shadow of the decomposition

H(Cn,R) � H(Pn−1,R∩ [n− 1]) ⊕ H(Pn−1,R∩ [n− 1])xn.

Hence forn ≥ 3 one has|I(Cn)| = Fn+1 + Fn−1 = Ln, whereLn is then-th Lucas number. WhenR = ∅ the algebra
H(Cn, ∅) is semisimple and has all simple modules 1-dimensional. Unfortunately, we do not have a tower of algebras
H(Cn, ∅), since there is no natural embeddingCn →֒ Cn+1, and thus have no further result in this direction.

One can also takeG to be the Coxeter diagram of finite typeDn (n ≥ 2) or affine typeD̃n (n ≥ 5). The dimension
ofH(G,R) is 4, 5, 9, 14, 23, . . . (OEIS entry A000285) or 17, 24, 41, 65, 106, . . . (OEIS entry A190996) in these cases.

8.4. Power series realization.In Section 7 we defined an algebra and coalgebra structure forthe Grothendieck group
G0(H•) of the tower of algebrasH• : H0 →֒ H1 →֒ H2 →֒ · · · , with a self-dual basis consisting of the simple
modules, which are indexed by compositions with internal parts larger than 1. This is further extended toComp
with a basis indexed by all compositions. Is there a Frobenius type of characteristic map forG0(H•), or in other
words, is there a power series realization ofG0(H•) as both an algebra and a coalgebra, similarly toG0(CS•) � Sym,
G0(H•(0)) � QSym, andK0(H•(0)) � NSym? And how aboutComp?
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