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Abstract. Let pn be the nth prime and ppn be the nth prime-indexed prime (PIP). The
process of taking prime-indexed subsequences of primes can be iterated, and the number
of such iterations is the prime-index order. We report empirical evidence that the set
composed of finite-differenced PIP sequences of prime-index order k ≥ 1 forms a quasi-
self-similar fractal structure with scaling by prime-index order. Strong positive linear
correlation (r ≥ 0.926) is observed for all pairwise combinations of these finite-differenced
PIP sequences over the range of our sample, the first 1.3 billion primes. The structure
exhibits translation invariance for shifts in the index set of the PIP sequences. Other free
parameters of the structure include prime-index order and the order and spacing of the finite
difference operator. The structure is graphed using 8-bit color fractal plots, scaled across
prime-index orders k = 1..6 and spans the first 1.3 billion primes.

1. Overview

The search for structure amidst randomness in the distribution of the primes has been a
quest of mathematicians since antiquity. To date, three forms of structure are known to exist.
The first, local structure (c. 200 B.C.), generally refers to information that is localized on
some parameter of a given relation, rule or pattern, and includes residue classes[16, 29]
and arithmetic progressions[17, 32]. For example, in an Eratosthenes sieve, the step of
eliminating even numbers is equivalent to eliminating “local information at the 2 place” –
T. Tao.1
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1 T. Tao, Structure and randomness in the prime numbers, (2009), Blog post on
https://terrytao.wordpress.com/2009/07/20/structure-and-randomness-in-the-prime-numbers-2/.
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The second form is asymptotic (or large-scale) structure, the key result of the proof of
the Prime Number Theorem. Asymptotic structure refers to the fact that, as the primes
grow in size, the gaps between them become increasingly large and their density becomes
increasingly structured.[15]2

The third and most recent form we will call statistical structure, wherein authors have
reported empirical evidence of fractal[7], chaotic[3, 34], and other non-random[1, 18, 25,
27, 28]3,4 behavior in the distribution of the primes. However, due to the absence of an
actual source behind any of those data (e.g., some non-obvious structure or pattern in the
primes themselves), that work was generally limited to examining only the probability
distributions of functions acting on the primes.[3, 8, 27, 28] As a result of this paradox –
substantial indirect evidence of structure but no sighting of the structured object itself –
statistical structure has been generally regarded more as a mathematical curiosity than an
underlying property of the primes.5,6

In addition to the above-mentioned three existent forms of structure – local, asymptotic,
and statistical – a fourth, mythical, form was offered by Tao in 2006. He describes exotic
structure as a hypothetical property of the primes, in which, “they [the primes] could obey
some exotic structure not predicted by [the Cramér random] model, e.g., they could be
unexpectedly dense on some structured set,” while noting, “[Because] We don’t know if
they also have some additional exotic structure . . . , we have been unable to settle many
questions about primes.”[23, 30, 31]

In this manuscript, we report the first empirical observation of a possible (quasi-) exotic
structure and source of statistical structure – a global pseudorandom fractal object encoded
in distribution of the primes – located at the crossroads of the prime-indexed primes and
finite differences.

The remainder of this manuscript is organized as follows. Section 2 gives a review of previ-
ous work and introduces the family of finite-differenced prime-indexed-prime sequences
k and its quasi-self-similar behavior. In Section 3, using a sample of the first 1.3 × 109

primes, statistical analysis is performed on k, and strong positive correlation is observed
among all pairwise combinations of its sequences. In Section 4, the fractal nature of k

2 Asymptotic structure can also be considered “local information at the infinity place” – T. Tao, see
footnote 1.

3 W. Liang and H. Yan, arXiv:math/0603450v1 [math.NT] (2006).
4 T. K. Timberlake and J. M. Tucker, arXiv:0708.2567v2 [quant-ph] (2008).
5 B. Cloitre, On the fractal behavior of primes, (2011), Available from http://bcmathematics.monsite-

orange.fr/FractalOrderOfPrimes.pdf.
6 The notion that a hidden fractal structure may be embedded in the distribution of the primes has received

increased attention since Folsom, Kent and Ono (2012) showed that the values of the partition function
p(n) are `-adically fractal for primes ` ≥ 5.[6, 13]

http://arxiv.org/abs/math/0603450
http://arxiv.org/abs/0708.2567
http://bcmathematics.monsite-orange.fr/FractalOrderOfPrimes.pdf
http://bcmathematics.monsite-orange.fr/FractalOrderOfPrimes.pdf
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is presented graphically, both in its raw form and after transformation to stationarize its
variance. In Section 5, the zeros, free parameters and global nature of k are examined
before concluding.

2. Background and Introduction

2.1. Prime-Indexed Primes (PIPs). Following Dressler and Parker[9], Broughan and
Barnett[5], and others[2, 19], the prime-indexed primes (PIPs) qi are defined as follows,

“If pi is the ith prime, then we define qi to be ppi .”

Thus, for i = 1, 2, 3, . . . , we have qi =
(
pp1 , pp2 , pp3 , . . .

)
= (p2, p3, p5, . . . ) =

(3, 5, 11, . . . ).7

Several authors have noted that, “the process of taking a prime indexed subsequence [of
the primes] can be iterated.”[5] For example, taking the prime-indexed subsequence of qi

gives qpi =
(
ppp1

, ppp2
, ppp3

, . . .
)

=
(
pp2 , pp3 , pp5 , . . .

)
= (p3, p5, p11, . . . ) = (5, 11, 31, . . . ).

Let us call the number of such iterations the prime-index order.8

Here, we are interested in addressing the value of qi for any prime-index order. Thus, we
redefine qi with the augmentation of two additional parameters as follows:

qk
si = qk

s(i) =



i = 1, 2, . . . if k = 0,
pi, if k = 1,
ppi , if k = 2,
...

...

pp...pi

, if k > 2

(1)

7 To date, the terminology for the set qi has been somewhat non-standardized; besides “prime-indexed
primes” (“PIPs”) used here and previously by Broughan and Barnett[5] and Bayless et al.,[2] it has
been called “superprimes”, “higher-order primes” and “primeth primes”, just to name a few (see:
The On-Line Encyclopedia of Integer Sequences, 2012, http://oeis.org/wiki/Higher-order_
prime_numbers[Online; accessed October 01, 2012] and Wikipedia, Super-prime, 2013, http://en.
wikipedia.org/wiki/Super-prime,[Online;accessed13-December-2013].

8 Fernandez defined an “order of primeness” for the PIPs, which is not to be confused with the definition of
prime-index order used here (Fernandez, N., An order of primeness, f(p), unpublished (1999), available
at http://borve.org/primeness/FOP.html).

http://oeis.org/wiki/Higher-order_prime_numbers
http://oeis.org/wiki/Higher-order_prime_numbers
http://en.wikipedia.org/wiki/Super-prime, [Online; accessed 13-December-2013]
http://en.wikipedia.org/wiki/Super-prime, [Online; accessed 13-December-2013]
http://borve.org/primeness/FOP.html
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where i = {1, 2, . . . }, k is the prime-index order (k ∈ N0), and s, which will be discussed in
Section 5, is a shift parameter of the index set of qk

s(i). Accordingly, future references to
“PIPs” will follow our generalized definition of q.

Table 1 shows an array of the values of qk
0(i) for a domain i = 1..20 and k = 0..8.9

Table 1. Values of qk
0(i) for i = 1..20 and k = 0..8

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 2 3 5 11 31 127 709 5381
2 3 5 11 31 127 709 5381 52711
3 5 11 31 127 709 5381 52711 648391
4 7 17 59 277 1787 15299 167449 2269733
5 11 31 127 709 5381 52711 648391 9737333
6 13 41 179 1063 8527 87803 1128889 17624813
7 17 59 277 1787 15299 167449 2269733 37139213
8 19 67 331 2221 19577 219613 3042161 50728129
9 23 83 431 3001 27457 318211 4535189 77557187
10 29 109 599 4397 42043 506683 7474967 131807699
11 31 127 709 5381 52711 648391 9737333 174440041
12 37 157 919 7193 72727 919913 14161729 259336153
13 41 179 1063 8527 87803 1128889 17624813 326851121
14 43 191 1153 9319 96797 1254739 19734581 368345293
15 47 211 1297 10631 112129 1471343 23391799 440817757
16 53 241 1523 12763 137077 1828669 29499439 563167303
17 59 277 1787 15299 167449 2269733 37139213 718064159
18 61 283 1847 15823 173867 2364361 38790341 751783477
19 67 331 2221 19577 219613 3042161 50728129 997525853
20 71 353 2381 21179 239489 3338989 56011909 1107276647

2.1.1. Asymptotic Behavior of PIPs. Building on the PNT, progress has been made in
deriving the asymptotic form for PIPs where prime-index order k = 2.10 Broughan and
Barnett [5] derived an upper bound of

q2
0(n) = q2

0,n = nlog2n + 3nlognloglogn + O(nlogn) ∼ nlog2n.(2)

9 Note that q0
0(i) and q1

0(i) are the sequences of positive integers and primes, respectively.
10 Above, we introduced s as a shift parameter for the index set of PIPs, which will be discussed in Section

5. For now, s = 0, indicating no shift.
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By iteration of (2), the asymptotic behavior of qk
0,n for any prime-index order k can be

shown to be11

qk
0,n = pp...ppn︸  ︷︷  ︸

p’s (k times)

∼ n(log n)k.(3)

Refining this approximation, Bayless, Klyve and Silva[2] took Dusart’s lower bound for pn

(PIPs of k = 1)

q1
0,n = pn > n(logn + loglogn − 1)(4)

and iterated it to derive an improved lower bound for PIPs of k = 2

q2
0,n > n(logn + loglogn − 1)

(
log(n(logn + loglogn − 1))(5)

+ loglog(n(logn + loglogn − 1)) − 1
)
.

This iterative process can be continued to find the lower bound for qk
0,n for k in general.12

Figure 1 contains six log-log plots showing the growth of qk
0,i vs. i for i = 1..2500 and

k = 1..6 (black lines). The asymptotic forms, based on iterations of (4) and (5), for all six
orders of k are also shown (blue lines).

2.2. Finite differences. The forward finite difference operator ∆, is the discrete analog
to differentials of continuous functions.13 In time series analysis, the forward first-order
difference of a function f (x) is defined as

∆1
h[ f ](x) = f (x + h) − f (x)

where h is the spacing parameter.14 First-order differences are commonly used to detrend
series that are linear-nonstationary (e.g., non-stationary in the mean). Operation of ∆1

1 on
sequences of consecutive primes

11 The On-Line Encyclopedia of Integer Sequences, 2013, http://oeis.org/wiki/Higher-order_
prime_numbers[Online; accessed October 01, 2012].

12 For each iteration, n is replaced with n(logn + loglogn − 1).
13 In this discussion, we use forward differences to be consistent with other authors, however, backward or

central differences could also be used.
14 Wikipedia, Finite difference, 2014, http://en.wikipedia.org/wiki/Finite_difference [On-

line; accessed April 12, 2014].

http://oeis.org/wiki/Higher-order_prime_numbers
http://oeis.org/wiki/Higher-order_prime_numbers
http://en.wikipedia.org/wiki/Finite_difference
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Figure 1. Log-log plots of qk
0,i vs. i for i = 1..2500 and k = 1..6

∆1
1(pi) = pi+1 − pi,

yields sequences of prime differences (or gaps), and is thus quintessential in the study of
the distribution of primes.[10, 11, 21, 22]

Likewise, the forward second-order finite difference of a function f (x)

∆2
h[ f ](x) = f (x + 2h) − 2 f (x + h) + f (x)

is used to detrend quadratic-nonstationary series. When operating on consecutive primes,
the second-order finite difference operator

∆2
1(pi) = pi+2 − 2pi+1 + pi

generates the sequence of prime increments (differences between consecutive prime gaps).
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In general, the nth-order forward finite difference of f (x) is defined as

∆n
h[ f ](x) =

n∑
m=0

(−1)m

(
n
m

)
f (x + (n − m)h)

where n is the order of the finite difference operator and
(

n
m

)
are the binomial coefficients.15

Szpiro[27, 28] examined the operation of ∆n
1 on the primes.

2.2.1. Finite differences of PIPs. In this work, we are interested in the family of sequences
obtained by taking the finite differences of PIPs.16 We thus define a general, nth-order
prime-indexed-prime finite difference function k as follows,

knk
hsi = ∆n

h(qk
si) = ∆n

h[qk
s](i) =

n∑
m=0

(−1)m

(
n
m

)
qk

s(i + (n − m)h),(6)

where qk
si is defined in (1). Table 2 shows the range of

k2,k
1,0,i = qk

0,i+2 − 2qk
0,i+1 + qk

0,i

for prime-index orders k = 0..8, a domain of i = 1..50, spacing of the finite difference
operator h = 1, second-order finite difference operator n = 2, and zero shift (s = 0) of the
index set of qk

0,i.

In Table 2, it can be seen that in any given row i, all k = 1..8 terms generally have the
identical sign.17 This observation is highlighted by selectively shading the cells in Table 2 as
follows: the rows with mostly negative values are shaded in gray; rows with predominantly
positive values are not shaded; and outliers (a term whose sign deviates from a majority of
the others in the same row) are shaded in red.

15 See footnote 14.
16 Labos, E., Sequence A073131, “a(n)=p[p[n+1]]-p[p[n]]] where p(j) is the j-th prime,” in The On-Line

Encyclopedia of Integer Sequences (2002), published electronically at http://oeis.org/A073131.
17 In the following discussion, we disregard the k=0 column of Table 2, in which all i terms are zero due to

the finite differencing of the integers.

http://oeis.org/A073131
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Table 2. Values of k2,k
1,0,i with i = 1..50 and k = 0..8
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The occurrence of only seven outliers in the 400 samples given in Table 2 is unexpected.
Given the pseudorandom nature of the distribution of the primes, one would anticipate
approximately half (i.e., roughly 200) of the samples to be outliers.

2.2.2. Time series plots of k2,k
1,0,i. Expanding on the data given in Table 2, Figure 2 contains

12 plots of the evolution of k2,k
1,0,i vs. i. Subplots (a)-(f) show k2,k

1,0,i with k = 1..6, respectively,
and a domain of the full sample, i = 1..1.3 × 109.18 Due to the large number of data
points and small page size, it is not possible to see fine detail in these plots; however, it is
clear that the sequences rapidly oscillate around zero, slowly grow in variance over time,
and have approximate mirror symmetry about the k2,k

1,0,i = 0 axis. To help visualize some
finer detail of the sequences, subplots (g)-(l) show k2,k

1,0,i with k = 1..6, respectively, and a
domain i = 1..500. It can be seen in subplots (g)-(l), that while k2,k

1,0,i varies by six orders of
magnitude as a function of k, all six sequences exhibit rapid oscillation about the k = 0 axis
and follow an apparently similar structure in their growth and fine detail.

18 Due to available processing power, we reduce the domain of k2,1
1,0,i and k2,2

1,0,i to i = 1..107.
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Figure 2. k2,k
1,0,i with k = 1..6; (a-f) large samples; (g-l) sample size T = 500
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The seeming anomaly noted in Table 2 and Figure 2 (unexpectedly similar patterns among
the kth sequences of k2,k

1,0,i) inspires us to investigate whether the relationships between the
distributions of the sequences of k2,k

1,0,i, and more generally those of knk
hsi, are not the result of

randomness.

3. Statistical Analysis of k

We now examine statistical properties of the example case k2,k
1,0,i, where the finite difference

spacing parameter h = 1, order of finite differencing n = 2, and PIP index-set shift parameter
s = 0. The domain in the following study is generally maximized based on the size of our
sample, which consists of p1..p1.3×109 , where p is prime. However, in some cases we reduce
the domain due to limitations of processing power or display resolution, and in other cases
we crop the domain appropriately so that all displayed sequences have the identical number
of elements.

3.1. Variance and mean. In developing a statistical model, it is of interest to determine
whether the mean and variance of the distribution of the time series under study are
stationary over the sample. To assess stationarity of these moments of k2,k

1,0,i, let T be the
sample size, w be the width of a window (or sub-sample), y be the step size and define the
rolling-sample means µ̂i(w) and variances σ̂2

i (w) as follows,

µ̂i(w) =
1
w

w−1∑
j=0

k2,k
1,i− j,

σ̂2
i (w) =

1
w − 1

w−1∑
j=0

(k2,k
1,i− j − µ̂i(w))2,

for windows i = w,w + y, . . . ,w +
⌊

T−w
y

⌋
y, where bxc is the floor function. These µ̂i(w) and

σ̂2
i (w) are estimated moments based on the most recent w observations, taken at time i, with

a window width w, and stepped by y samples at a time.

Figure 3 shows 12 plots of σ̂2
i (w) and µ̂i(w) for k2,k

1,0,i. Subplots (a)-(f) show σ̂2
i (w) with

k = 1..6, respectively, and subplots (g)-(l) show µ̂i(w) with k = 1..6, respectively. In
each subplot, values for k, T , w, and y are given. In subplots (a)-(f), σ̂i(w) appears to
be non-stationary with a monomial asymptote. In subplots (g)-(l), µ̂i(w) appears to be
stationary, oscillating around 0 (which is consistent with the observations of Figure 2). The
similarities in fine detail observed in Figure 2(g)-(l) are again seen in Figure 3(g)-(h), but
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not in Figure 3(i)-(l); this is due to varying the values of the parameters T , w, and y in these
subplots.

3.2. Linear regression. The phenomena (self-similarity following prime-index order, k)
exhibited in Table 2, Figure 2 and Figure 3(g)-(h) indicates a possible correlation in our
data, and we use a simple linear regression as an initial tool for analysis of the relationships
between the distributions of the sequences of k2,k

1,0,i.

Figure 4 is a scatterplot matrix showing all 15 pairwise combinations of sequences of k2,k
1,0,i

for k = 1..6. Histograms, showing the distribution of each sequence k2,1
1,0,i, . . . , k

2,6
1,0,i, are

given along the main diagonal of the matrix. The minima and maxima of the ranges for each
pair (k2,a

1,0,i, k
2,b
1,0,i) are given in the corresponding scatterplot. Each scatterplot also shows the

linear regression fit (red line), linear fit coefficients (a0, a1), and Pearson’s correlation r.

The close linear fits and high correlation coefficients seen in the scatterplots of Figure 4
indicate that a strong positive correlation may exist in all of the pairwise combination of
sequences. The weakest correlation, r = 0.926, is seen in the bottom-rightmost scatter-
plot (k2,1

1,0,i, k
2,6
1,0,i), while the strongest correlation, r = 0.999, is seen in the top-rightmost

scatterplot (k2,5
1,0,i, k

2,6
1,0,i). The correlation strength appears to exhibit the following trends: r

monotonically decreases along each row in the direction of increasing k; r monotonically
decreases along each column in the direction of decreasing k; and r monotonically increases
along each diagonal in the direction of increasing k. Due to the strong correlations, it’s
reasonable to hypothesize that these trends can be extrapolated to larger samples and higher
k, continuing ad infinitum.

3.2.1. Modeling the probability distribution. In Figure 4, each histogram subplot is over-
layed with a normal distribution fit (red curve). The normal model is initially chosen since
the distributions in all six histograms appear unimodal and symmetric. However, the sharp
peaks and fat tails of the distribution data, compared to the normal fits, indicate that the
distribution of k2,k

1,0,i is leptokurtic over our sample, hence, the normal distribution model is
not the ideal choice for a fit.

In searching for a better fit, Holdom[18], Dahmen et al.[8], Kumar[20], Wolf et al.[34, 35],
Scafetta et al.[24] and others[33, 25] have observed that the histograms of prime difference
functions, e.g., ∆1

1(pi) and ∆2
1(pi), exhibit exponential or Poisson probability distributions.

We find that this behavior applies also to the finite differences of PIPs. Hence, an improved
model for the distribution of our example case k2,k

1,0,i can be obtained with the Laplace (or
double exponential) distribution P(x) = 1

2be−|x−µ|/b, where P(x) is the probability density
function (PDF).
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Figure 4. Scatterplot matrix and histograms for the pairwise combinations
of k2,k

1,0,i with k = 1..6; T = 2500 samples; linear regression lines and Gaussian
fits are shown in red; Pearson correlation coefficients r, and first-order linear-
fit coefficients (a0, a1) are shown in each subplot
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Figure 5 shows PDF histograms of k2,k
1,0,i with k = 1..6. In each histogram, T is the sample

size and the domain is i = 1..T . Due to the large numbers of bins, the outer wings of the
histograms have been excluded in order to help visualize the fine detail of central regions
of the distributions. In each of the six cases, the Laplace distribution shows a good fit with
the histograms of k2,k

1,0,i.

3.2.2. Periodicity in the probability distribution. Periodic (or “oscillatory”) behavior in the
probability distribution histograms of the first and second finite differences of primes, i.e.,
∆1

1(pn) and ∆2
1(pn), is an active area of research.[1, 8, 27, 28, 34, 35, 20, 3]19 Specifically,

spikes in the histograms of prime differences are seen to occur when ∆1
1(pn) ≡ 0 (mod 3) (i.e.,

oscillation at period 3). Likewise, dips in the histograms of prime increments (differences of
differences) are seen to occur when ∆2

1(pn) ≡ 0 (mod 6) (i.e., oscillation at period 6). Ares
and Castro [1] show that this behavior directly results from the combination of Dirichlet’s
Theorem 20 and local structure (i.e., that for every prime p > 3, p ≡ ± 1 (mod 6)).

Ares and Castro [1] further conjecture that this periodic behavior, “should hold also for
non-consecutive primes. . . ”, and we find that this also appears to be the case for second-
differenced PIPs, k2,k

1,0,i. Figure 6 shows probability density histograms for k2,k
1,0,i with k = 1..4.

Sample sizes T are identical to those given in Figure 5 for the corresponding k values. In
order to highlight the fine detail in the histograms, in all four subplots the bin width is set to
1 and bin numbers are limited to a range of k2,k

1,0,i = −50..50. In subplots k = 1, 2, 3, periodic
behavior is clearly visible with dips occurring at 0 (mod 6). For these three subplots, the
average number of counts in bins −50..50 is roughly: 5 × 105 for k = 1; 2 × 104 for k = 2;
and 500 for k = 3. These counts are sufficient to reveal the fine detail in the probability
distribution and its periodic behavior. In contrast, however, for the fourth subplot, k = 4,
the range of k2,4

1,0,i is so large that our sample (i.e., the first 1.3 billion primes) provides fewer
than 10 counts in each of bins −50..50, thus yielding an insufficient number of counts to
display the oscillatory behavior in the distribution.

4. Fractal Plots of k

We now investigate the fractal behavior of knk
hsi, focusing on the example case k2,k

1,0,i. We
will examine the function both in its raw form as well as after filtering to stationarize the
variance.

19 See footnote 3.
20 Given an arithmetic progression of terms an + b, for n = 1, 2, . . . , the series contains an infinite number

of primes if a and b are relatively prime
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Figure 6. Detailed views of the probability distribution histograms for k2,k
1,0,i

with k = 1..4; period-6 oscillatory behavior is visible in subplots k = 1 − 3,
while subplot k = 4 has insufficient bin counts to display the periodicity in
the distribution

4.1. Stationarization of the variance. It is of interest to test whether the observed corre-
lation among the pairwise combinations of sequences of k2,k

1,0,i (see Figure 4) is statistically
significant or an erroneous result of non-Gaussian distribution and variance nonstationarity
(see Figure 3). Further, in order to obtain useful statistics on knk

hsi (e.g., for forecasting
large primes), it will be necessary to detrend the variance σ̂2

i (w), and possibly any higher
non-stationary moments, in a given sample. Attempting to model and detrend the moments
of knk

hsi is beyond the scope of the present work, however, we can stationarize σ̂2
i (w) and test

the correlation by using the sign function,

sgn(x) =


1 for x > 0
0 for x = 0
−1 for x < 0.
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Figure 7 shows 12 plots of moving-average σ̂2
i (w) and µ̂i(w) for sgn(k2,k

1,0,i). All parameters
are identical to those given in Figure 3 (which shows σ̂2

i (w) and µ̂i(w) for unfiltered k2,k
1,0,i).

It can be seen for k = 1..6 that the variance is now stationarized at σ̂2
i (w) ≈ 1, while µ̂i(w)

continues to oscillate around 0 as previously shown for the unfiltered case.

4.2. Fractal plot of stationarized k. Having stationarized the variance of k2,k
1,0,i, we now

examine its correlation behavior in the context of a fractal plot. Figure 8 is a vertical array
of six one-dimensional horizontally-oriented grid plots. The data points in the grid plots
are stretched vertically into narrow bands in order to give the plots sufficient height for easy
viewing. Since the sign function reduced the range of k2,k

1,0,i to just three values (−1, 0, 1), we
map sgn(k2,k

1,0,i) onto a 3-color colormap as follows: sgn(k2,k
1,0,i) = 1 (white); sgn(k2,k

1,0,i) = 0
(red); and sgn(k2,k

1,0,i) = −1 (black). Each grid plot displays a unique kth sequence of k2,k
1,0,i,

and each vertical band (data point) represents a unique ith value of k2,k
1,0,i of its respective

kth sequence. In all of the six grid plots, the domain of k2,k
1,0,i is i = 1..2500 and the k values

are labeled to the left of the plots. At the top of each grid plot, on the left and right ends,
the values of qk

0,1 = qk
0(1) and qk

0,2500 = qk
0(2500), are marked. Since k2,k

1,0,i = ∆2
1(qk

0,i), these
markings are provided to help convey the scale and range of qk

0,i over our sample. For
example, on the bottom grid plot, k = 1 and q1

0,i ranges from 2 to 22,307. For the top grid
plot, k = 6 and q6

0,i ranges from 127 to 27,256,077,217.

In Figure 8, the quasi-self-similarity of k2,k
1,0,i, and scale-invariance following prime-index

order k, are unmistakable. While the upper limit of qk
0,i spans more than six orders of mag-

nitude (i.e., from q1
0,2500 ≈ 2.2 × 104 to q6

0,2500 ≈ 2.7 × 1010), all six 2500-element sequences
are almost identical. In fact, the similarity between adjacent grid plots appears to improve
as k gets larger; this is consistent with the monotonically increasing correlation r values ob-
served along the matrix diagonals of Figure 4. And, unlike typical fractals, scale invariance
of the structure does not follow a power law, but instead follows prime-index order k.

4.3. Fractal plot of unfiltered k. The quasi-self-similarity seen in Figure 8 (in which the
variance of k2,k

1,0,i was stationarized) suggests that the strong correlation observed in Figure 4
is valid, and not an artifact of a non-Gaussian probability distribution or nonstationarity of
the moments of k2,k

1,0,i. Therefore, it is of interest to apply the format used in Figure 8 to the
unfiltered (variance non-stationary) k2,k

1,0,i data in order to examine the range of the function
in finer detail.

Over our sample, k2,k
1,0,i ranges from 0 to approximately ±8 × 107 (see Figure 2(f)), a span

of more than eight orders of magnitude. In Figure 8, this range was reduced to just three
values (-1,0,1) by the sign function. We now increase the resolution of the range of k2,k

1,0,i



A PRIME FRACTAL 19

0 500 1000 1500 2000 2500
0.8

0.9

1

1.1

1.2
σ̂
2
i
(w)

(f)  k = 6

T = 2661   w = 25   y = 1

0 500 1000 1500 2000 2500
−0.5

0

0.5
µ̂i(w)

(l)  k = 6

T = 2661   w = 25   y = 1

0 0.5 1 1.5 2

x 10
4

0.98

0.99

1

1.01

1.02
(e)  k = 5

T = 23952   w = 100   y = 1

0 0.5 1 1.5 2

x 10
4

−0.4

−0.2

0

0.2

0.4
(k)  k = 5

T = 23952   w = 100   y = 1

0 0.5 1 1.5 2 2.5

x 10
5

0.995

1

1.005
(d)  k = 4

T = 273950   w = 523   y = 74

0 0.5 1 1.5 2 2.5

x 10
5

−0.1

−0.05

0

0.05

0.1
(j)  k = 4

T = 273950   w = 523   y = 74

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0.995

1

1.005
(c)  k = 3

T = 3859583   w = 1964   y = 982

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

−0.1

−0.05

0

0.05

0.1
(i)  k = 3

T = 3859583   w = 1964   y = 982

1 2 3 4 5 6

x 10
7

0.995

1

1.005
(b)  k = 2

T = 65342757   w = 8083   y = 8083

0 1 2 3 4 5 6

x 10
7

−0.04

−0.02

0

0.02

0.04
(h)  k = 2

T = 65342757   w = 8083   y = 8083

1 2 3 4 5 6

x 10
7

0.94

0.96

0.98

1
(a)  k = 1

T = 65342757   w = 8083   y = 8083

i
0 1 2 3 4 5 6

x 10
7

−0.04

−0.02

0

0.02

0.04
(g)  k = 1

T = 65342757   w = 8083   y = 8083

i

Figure 7. Rolling-sample variance and mean of sgn(k2,k
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20 R.G. BATCHKO

k = 1

i
1 500 1000 1500 2000 2500

2 22,307

k = 2

3 253,423

k = 3

5 3,550,219

k = 4

11 59,786,929

k = 5

31 1,186,045,843

k = 6

127 27,256,077,217

qk0 (1) qk0 (2500)

 

 

−1 0 1

Figure 8. Fractal gridplot of sgn(k2,k
1,0,i) mapped onto a 3-color colormap

where h = 1, n = 2, s = 0, k = 1..6 and i = 1..2500

from three to 256 levels, and map the data to an 8-bit colormap. We use a modified version
of the “Jet” 8-bit colormap provided in Matlab R© software, which runs from blue to red and
includes cyan, green, yellow and orange. In Figure 9, all parameters are identical to those
of Figure 8, except that the range of each of the kth k2,k

1,0,i sequences is now downsampled
and scaled to the interval [0..255] as follows,

k2,k
1,0,i (256 levels) = nint

 k2,k
1,0,i −min

(
k2,k

1,0,i

)
max

(
k2,k

1,0,i

)
−min

(
k2,k

1,0,i

) · 255

 ,(7)

where k = 1..6; i = 1..2500 and nint(x) is the nearest-integer function.
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Figure 9. Fractal gridplot of k2,k
1,0,i mapped onto an 8-bit colormap where

h = 1, n = 2, s = 0, k = 1..6 and i = 1..2500

In Figure 9, the self-similarity and scale invariance of k2,k
1,0,i are again indisputable. Although

color-bands representing approximately all 256 levels are visible in each grid plot, the color
is dominated by the green-yellow portion of the spectrum. The left side of each grid plot is
particularly washed-out in comparison to the right side; this is a result of the sharp peak
of the Laplace probability distribution of k2,k

1,0,i being mapped onto the green portion of the
8-bit colormap and the nonstationarity of the variance of k2,k

1,0,i.

5. Discussion

5.1. Zeros of k. Evaluation of the scaling exponents and fractal dimensionality of the
distribution of primes is currently an active area of research;[7, 18, 24, 35]21,22 a result of

21 See footnote ??.
22 See footnote 5.
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the recent studies of statistical structure discussed in Sections 1 and 3.2.2. Extending this
fractal analysis to the finite differences of prime-indexed primes knk

hsi will require careful
treatment of the function’s properties, such as quasi-self-similarity, variance nonstationarity,
exponential distribution, and scaling by prime-index order, and is beyond the scope of the
present work. Nonetheless, we have illustrated some properties of knk

hsi and qk
si that might

be useful in addressing this question. In Section 2, we iterated the findings of Bayless et
al. [2], on the asymptotic lower bound for q2

0,i, to prime-index order k = 6. In Section 3,
the r correlations of pairwise combinations of k2,k

1,0,i were observed to increase for pairs of
sequences having consecutive values of k.

Another potentially useful measure for quantifying the fractality of knk
hsi is its distribution of

zeros; that is, the values of i and k for which knk
hsi = 0. For our example case of h = 1, s = 0,

and n = 2, the zeros of k2,k
1,0,i occur when 2qk

0,i+1 = qk
0,i+2 + qk

0,i. This form of recurrence
relation has a historical background in the “balanced primes”[4, 14]. Balanced primes
are those primes pn for which 2pn = pn+ j + pn− j, and it is conjectured that the number of
balanced primes is infinite.23

Erdös and Pomerance conjectured the following about balanced primes: “Is it true that for
n > n0 there always is an i for which 2pn = pn+i + pn−i? The answer is almost certainly
affirmative.”[12]

In examining the distribution of zeros of our example case k2,k
1,0,i, we are interested in their

density and infinitude, and ask: for every k ≥ 1 is there an infinite number of i’s for
which 2qk

0,i+1 = qk
0,i+2 + qk

0,i? In Figure 8, the zeros of k2,k
1,0,i are highlighted with red bands;

numerous zeros can be seen in the k = 1 gridplot with density rapidly diminishing for
each sequence of increasing k. Figure 10 is a plot of the density of zeros of knk

1,0,i vs. k for
k = 1..4. Plots are given for orders of finite differences n = 2..5. Exponential fits to the data
and samples T are shown in the legend. The R2’s of the fits are all 1.0000. Although our
sample only yields four data points for n = 2, 3, 4 and three data points for n = 5, the strong
exponential fits give no reason to expect that the number of zeros is finite for any order of k
or n.

23 Wikipedia, Balanced prime, 2014, http://en.wikipedia.org/w/index.php?title=Balanced_
prime&oldid=603643701, [Online; accessed 12-April-2014]

http://en.wikipedia.org/w/index.php?title=Balanced_prime&oldid=603643701
http://en.wikipedia.org/w/index.php?title=Balanced_prime&oldid=603643701
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n=2 zeros, T=273950
131769.91 exp(−2.63 x)
n=3 zeros, T=273949
240755.16 exp(−2.81 x)
n=4 zeros, T=273948
78021.85 exp(−2.71 x)
n=5 zeros, T=273947
57616.45 exp(−2.84 x)

Figure 10. Density of zeros of knk
1,0,i vs. k for n = 2..5, T samples, and

exponential fits

5.2. Globality. Up to this point, we have mostly focused on a local case of knk
hsi with

parameters fixed at h = 1, s = 0, and n = 2. The prime-index order k has been the chief
parameter examined, as it is the fractal scaling parameter of k2,k

1,0,i, while i is the index of the
function.

Returning to the topic of local structure discussed in Section 1, consider that for our
example case k2,k

1,0,i and any k ≥ 1, the primes pn ∈ qk
0,i encode ‘special’ information (i.e.,

the distribution of k2,1
1,0,i), while all other primes pm < qk

0,i apparently do not. This can easily
be tested by replacing the primes of a given qk

0,i sequence with nearby primes pm < qk
0,i; the

result is that the correlations of (k2,k
1,0,i, k

2,b,k
1,0,i ) will be decimated. Additionally, in Figures



24 R.G. BATCHKO

2(g)-2(l), it can be seen that the values of k2,k
1,0,i oscillate rapidly about zero, indicating the

sensitivity of k2,k
1,0,i to qk

0,i. Thus, we may say that k2,k
1,0,i is a structure with local information

at the prime-index order (or kth) place.

Now, we are interested in building a global picture of knk
hsi and will examine its behavior

when the parameters s, n and h are freely varied.

5.2.1. Shift invariance. As shown in (1), the underlying index set of any kth sequence qk≥2
si

is pi (the ordered set of primes). Now, let us perform a left-shift operation S ∗ on pi as
follows:

S ∗0(p1, p2, p3, . . . ) → (p1, p2, p3, . . . ) = (2, 3, 5, . . . )
S ∗1(p1, p2, p3, . . . ) → (p2, p3, p4, . . . ) = (3, 5, 7, . . . )

...

S ∗s(p1, p2, p3, . . . ) → (ps+1, ps+2, ps+3, . . . ).

Then, define a left-shift operation on the PIPs, qk
i . For k = 2, let

S ∗0(q2
i ) = q2

0,i = (q2
0,1, q

2
0,2, q

2
0,3, . . . )→ (pp1 , pp2 , pp3 , . . . ) = (3, 5, 11, . . . )

S ∗1(q2
i ) = q2

1,i = (q2
1,1, q

2
1,2, q

2
1,3, . . . )→ (p1+p2 , p1+p3 , p1+p4 , . . . ) = (7, 13, 19 . . . )

...

S ∗s(q2
i ) = q2

si = (q2
s,1, q

2
s,2, q

2
s,3, . . . )→ (ps+ps+1 , ps+ps+2 , ps+ps+3 , . . . ).

In general, define the kth-order left-shifted PIPs as

S ∗s(qk
i ) = qk

si →



ps+i, if k = 1,
ps+ps+i , if k = 2,
...

...

ps+ps+
...ps+i

, if k = m.

(8)

Table 3 shows an array of the values of q2
si for k = 2, s = 0..11 and a domain of i = 1..30.

The s = 0, i = 1..20 elements of Table 3 are identical to the values in the k = 2 column of
Table 1, as both of these data correspond to (q2

0,1, q
2
0,2, . . . , q

2
0,20). In the other columns, the
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sequences of primes shown in Tables 1 and 3 are unique and suggest that, with appropriate
choice of s, any prime ps+i can be a member of a corresponding sequence of index-set
shifted PIPs.

Table 3. Values of q2
si for index-set shifts of s = 0..11

i s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 s = 11
1 3 7 17 29 47 61 83 101 127 163 179 223
2 5 13 23 43 59 79 97 113 157 173 211 239
3 11 19 41 53 73 89 109 151 167 199 233 251
4 17 37 47 71 83 107 149 163 197 229 241 271
5 31 43 67 79 103 139 157 193 227 239 269 311
6 41 61 73 101 137 151 191 223 233 263 307 349
7 59 71 97 131 149 181 211 229 257 293 347 359
8 67 89 127 139 179 199 227 251 283 337 353 397
9 83 113 137 173 197 223 241 281 331 349 389 421

10 109 131 167 193 211 239 277 317 347 383 419 433
11 127 163 191 199 233 271 313 337 379 409 431 463
12 157 181 197 229 269 311 331 373 401 421 461 491
13 179 193 227 263 307 317 367 397 419 457 487 541
14 191 223 257 293 313 359 389 409 449 479 523 593
15 211 251 283 311 353 383 401 443 467 521 587 613
16 241 281 307 349 379 397 439 463 509 577 607 619
17 277 293 347 373 389 433 461 503 571 601 617 647
18 283 337 367 383 431 457 499 569 599 613 643 659
19 331 359 379 421 449 491 563 593 607 641 653 683
20 353 373 419 443 487 557 587 601 631 647 677 787
21 367 409 439 479 547 577 599 619 643 673 773 821
22 401 433 467 541 571 593 617 641 661 769 811 857
23 431 463 523 569 587 613 631 659 761 809 853 863
24 461 521 563 577 607 619 653 757 797 839 859 941
25 509 557 571 601 617 647 751 787 829 857 937 953
26 547 569 599 613 643 743 773 827 853 929 947 997
27 563 593 607 641 739 769 823 839 919 941 991 1033
28 587 601 631 733 761 821 829 911 937 983 1031 1061
29 599 619 727 757 811 827 907 929 977 1021 1051 1097
30 617 719 751 809 823 887 919 971 1019 1049 1093 1151
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Using the definition of (8), we now examine knk
hsi for different values of s. Figure 11 is a

fractal plot of k2,k
1,19,i with an index-set shift of s = 19, h = 1, n = 2, k = 1..6, and a domain

of i = 1..2500. The same 8-bit colormap of Figure 9 is used here and in the following
figures to emphasize the relative changes in the distributions and moments of knk

hsi as its
parameters are varied. It is instructive to compare Figure 11 (showing k2,k

1,19,i with s = 19) to
Figure 9 (showing k2,k

1,0,i with s = 0). Even though the ranges of the kth sequences in these
two figures are vastly different, the only significant change is that all six grid plots in Figure
11 are slightly shifted to the left by 19.

Figure 12, shows k2,k
1,249,i where the index-set shift is now increased to s = 249. The

parameters h, n, and k are identical to those in Figures 9 and 11. In Figure 12, the domain
is reduced to i = 1..2384 due to the limit of our sample at k = 6. Again, the corresponding
grid plots of Figures 12 and 9 are similar, with the only major difference being that Figure
12 is now shifted to the left by 249. From these observations, we hypothesize that knk

hsi is
shift (or translation) invariant on its index set.

5.2.2. Spacing and order of finite differences. So far, we have kept the spacing h and order
n parameters of the finite difference operator (see (6)) fixed at h = 1 and n = 2. As shown in
Figures 13-16, we now test the fractal behavior of knk

hsi when these parameters are allowed
to vary. In all four figures, s = 0, and k = 1..6. The values of h and n in these figures
are: h = 1, n = 1 (Figure 13); h = 1, n = 3 (Figure 14); h = 3, n = 2 (Figure 15); and
h = 5, n = 1 (Figure 16). In Figures 11 and 12, it was shown that changes in s result in a
translation of the distribution of knk

hsi along the index i axis. Now, in Figures 13-16, with s
fixed and h and n variable, the distribution itself (shown as the range of colors in the grid
patterns) widely varies for each configuration of parameters.

As a final example, Figure 17 shows knk
hsi with h = 11, n = 4, s = 249, k = 1..6, and

i = 1..2342. In spite of now varying all three parameters h, s and n, the quasi-self-similarity
and scaling by prime-index order k are still clearly visible.

From these examples, we hypothesize that the fractal structure of k extends ad infinitum in
i and k, and is encoded globally by all primes.
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Figure 11. Fractal gridplot of k2,k
1,19,i mapped onto an 8-bit colormap where

h = 1, n = 2, s = 19, k = 1..6, and i = 1..2500



28 R.G. BATCHKO

k = 1

i
1 500 1000 1500 2000

1,583 23,669

k = 2

15,727 273,367

k = 3

175,843 3,854,621

k = 4

2,397,113 65,258,681

k = 5

39,364,657 1,300,641,383

k = 6

763,529,821 30,015,306,653

qk249(1) qk249(2384)

 

 

0 255

Figure 12. Fractal gridplot of k2,k
1,249,i mapped onto an 8-bit colormap where

h = 1, n = 2, s = 249, k = 1..6, and i = 1..2384
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Figure 13. Fractal gridplot of k1,k
1,0,i mapped onto an 8-bit colormap where

h = 1, n = 1, s = 0, k = 1..6 and i = 1..2500
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Figure 14. Fractal gridplot of k3,k
1,0,i mapped onto an 8-bit colormap where

h = 1, n = 3, s = 0, k = 1..6 and i = 1..2500
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Figure 15. Fractal gridplot of k2,k
3,0,i mapped onto an 8-bit colormap where

h = 3, n = 2, s = 0, k = 1..6 and i = 1..2500
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Figure 16. Fractal gridplot of k1,k
5,0,i mapped onto an 8-bit colormap where

h = 5, n = 1, s = 0, k = 1..6 and i = 1..2500
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Figure 17. Fractal gridplot of k4,k
11,249,i mapped onto an 8-bit colormap where

h = 11, n = 4, s = 249, k = 1..6 and i = 1..2342
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6. Conclusion

Using a sample of the first 1.3 billion primes, we empirically investigated what appears to
be a global quasi-self-similar structure in the distribution of differences of prime-indexed
primes, with scaling by prime-index order. We briefly touched on several aspects of the
structure to gain a picture of its scope, leaving a plethora more questions yet to be addressed.

Of the many possible questions, we conclude on the fourth form of structure discussed
in Section 1: if our hypothesis that the fractal behavior of k can be infinitely extended
is not proved false, might k then be an exotic structure? Recall that the condition for a
structure’s being exotic is that it fails to follow the Cramér random model. Cramér’s model
predicts that the probability of finding k primes in the interval [n, n + logn] is λk

k! exp −λ,
which is the Poisson probability distribution[26]. However, k is nothing more than a family
of sequences, in which each sequence is a linear combination of subsequences of the primes
themselves. So, it is no surprise that the sequences of k exhibit exponential or double-
exponential distributions, from which the Poisson distribution can be derived.24 Therefore,
k follows the Cramér model and does not meet the strict definition of an exotic structure;
but “quasi-exotic structure” may be a more accurate label, reflecting its pseudorandomness.

The fractality of k may be of relevance in other areas of mathematics and science, such as
refining the accuracy of predicting large primes. Likewise, it may be useful in improving
the efficiency of factoring large composites, the difficulty of which is critical to RSA public
key data encryption. Examples of fractals are found everywhere in nature. So, a fractal
structure in the set of primes, which is arguably Nature’s most fundamental phenomenon,
might help us better understand our world and universe.

And, while these findings might raise new questions about the primes, perhaps they’ll shed
light on some old ones too.
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