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Abstract

Consider a continuous-time random walk on a lattice formed by the integers of d

semiaxes joined at the origin, i.e. a star graph. The motion on each ray behaves as a

one-dimensional linear birth-death process with immigration. When the walk reaches the

origin, then it may jumps toward any semiaxis. We investigate transient and asymptotic

behaviours of the resulting stochastic process, as well as its diffusion approximation.

As a byproduct, we obtain a closed form of the number of permutations with a fixed

number of components, and a new series form of the polylogarithm function involving

the Gauss hypergeometric function.

MSC: 60J27; 60J60

Keywords: Immigration; Probability generating function; Diffusion process; Permutations

with k components; Polylogarithm function.

1 Introduction

A relevant stochastic model in the study of population processes of biological and ecological

systems is the linear birth-death process with immigration (see, for instance, Section 5 of

Ricciardi [26]). This process is also employed in queueing theory for capacity expansion

problems (cf. Nucho [23]). An usual approach for the transient analysis of such kind of

processes is the method of characteristics (see Zheng et al. [30]). Moreover, a graphical

argument and a binary tree representation of births and deaths has been used by Branson

[3] and [4] to study inhomogeneous birth-death-immigration processes. An extension of the
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birth-death-immigration process has been discussed recently by Jakeman and Hopcraft [21],

to describe a family of Markovian population models that include the possibility of multiple

immigrations.

Aiming to consider a more general model, in this paper we propose a birth-death process

with immigration over a lattice formed by the integers of d semiaxes joined at the origin, i.e.

a star graph. Random walks on graphs are often described by Markov processes and deserve

interest in many applied fields, such as biology (see, e.g., the review by Volchenkov [29] and

references therein). We recall for instance the application of birth-death processes on graphs

to evolutionary models of spatially structured populations. See Allen and Tarnita [2] for a

comprehensive investigation on population models with fixed population size and structure,

which involve state-dependent birth-death processes. In particular, star graphs are worthy

of interest in mathematical biology and other applied areas. Recall, for instance, Broom

and Rychtář [5], who studied evolutionary dynamics of populations on graphs, with special

attention to fixation probabilities.

The object of our investigation, i.e. the birth-death-immigration process on a star graph,

is suitable to describe the dynamics of a population formed by d species into a given habitat

that is initially empty. As soon as the habitat is occupied by an individual of a certain

species (by effect of immigration) then the dynamics evolves according to a linear birth-

death-immigration process until extinction. Next the habitat can be occupied again due to

immigration of an individual of a possibly different species, and so on. For the considered

model we develop a generating function-based approach in order to carry out the transient

analysis of its probability law, whereas its asymptotic behaviour is studied making use of the

Laplace transform. We also perform a diffusion approximation, which leads to a diffusion

process defined on the star graph, having linear drift and infinitesimal variance.

Diffusion processes on graphs have been studied by several authors. We recall for instance

Freidlin and Wentzell [14], that is one of the first contributions on this topic. Recently, some

results for Brownian motion on a general oriented metric graph have been given in Hajri

and Raimond [17]. An investigation involving a diffusion process on star graph has been

performed in Papanicolaou et al. [25], where the authors obtain exit probabilities and certain

other quantities involving exit and occupation times for a Brownian Motion on star graph.

Other examples of diffusion processes on star graphs have been studied in Mugnolo et al.

[22].

Let us now provide the plan of the paper. In Section 2 we describe the stochastic model

and introduce the state probabilities. Some formal relations for the related generating func-

tions are also provided. This allows to obtain a formal expression for the transient probability

that the walk is located in the origin, whose proof is provided in Appendix A. In Section

3 we perform the transient analysis of the process in two cases: (i) when the birth, death

and immigration parameters are equal, and (ii) when the birth and death parameters are

different, whereas the immigration and birth parameters are equal. In both cases we obtain
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Figure 1: Schematic representation of the state space S.

some series-form expressions for the relevant transient probabilities. Section 4 is devoted

to obtain the asymptotic expression of the state probabilities, that involves a zero-modified

negative binomial distribution. Section 5 deals with the diffusion approximation of the pro-

cess. We adopt a suitable scaling leading to a time-homogeneous diffusion process on the

star graph, characterized by linear infinitesimal moments. A gamma-type stationary density

is also obtained under suitable assumptions.

It is worth pointing out that, as a byproduct of our investigations, we are able to provide

some new results which are of interest in other fields of mathematics. Indeed, in Section 3

(i) we obtain a closed form of the number of permutations of {1, . . . , n} with k components,

also known as number of permutations with k − 1 global descents;

(ii) we prove a new series form of the polylogarithm function expressed in terms of the Gauss

hypergeometric function.

2 The stochastic model

Consider a particle moving randomly on a set S consisting of the integers of d semiaxes

S1, S2, . . . , Sd (d ∈ N) with a common origin 0. Let {N(t), t ≥ 0} be a continuous-time

stochastic process, with state space S, describing the position of the particle at time t.

Throughout this paper we denote by kj the k-th state, k ∈ N
+, located on the semiaxis Sj

(see Figure 1) and by

p(kj , t) = P{N(t) = kj}, t > 0, (1)

3



the probability that the particle at time t is located in kj , for j = 1, 2, . . . , d. Moreover, we

set 0j = 0 and assume that

p(0, 0) = 1, (2)

i.e. initially the particle is located a.s. in the origin 0. Let N(t), t ≥ 0, be a Markov process.

Denoting its transition rates by

q(u, v) = lim
h→0+

1

h
P[N(t+ h) = v |N(t) = u], u, v ∈ S,

for all j = 1, 2, . . . , d and k ∈ N
+ we assume that

q(0, 1j) = α,

q(kj , (k + 1)j) = α+ λk, (3)

q(kj , (k − 1)j) = µk,

where α, λ and µ are positive constants. We remark that if d = 1 then N(t) identifies with

the linear birth-death process with immigration, where α is the immigration rate, λ is the

birth rate, and µ is the death rate per individual. Due to (1),

P (k, t) :=
d∑

j=1

p(kj , t), k ∈ N
+, t ≥ 0 (4)

is the probability that at time t the particle is located in the k-th state of any semiaxis.

In order to investigate the probability law of N(t), hereafter we adopt a probability

generating function-based approach and set

F (z, t) = p(0, t) +
+∞∑

k=1

zkP (k, t), 0 ≤ z ≤ 1, t ≥ 0. (5)

Such generating function, by virtue of (2), satisfies the initial condition

F (z, 0) = 1, 0 ≤ z ≤ 1. (6)

Moreover, the following boundary conditions hold:

F (0, t) = p(0, t), t ≥ 0, (7)

F (1, t) = 1, t ≥ 0. (8)

Proposition 2.1 The generating function (5) satisfies the following differential equation for

0 ≤ z ≤ 1 and t ≥ 0:

∂

∂t
F (z, t) = −α(d − 1)(1 − z)p(0, t) − α(1 − z)F (z, t) − (λz − µ)(1− z)

∂

∂z
F (z, t). (9)
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Proof. Due to (3), for kj ∈ N
+ and j = 1, 2, . . . , d, the following system of differential-

difference equations holds for t > 0:

∂

∂t
p(0, t) = µ

d∑

j=1

p(1j , t)− dα p(0, t),

∂

∂t
p(kj , t) = [α+ λ(k − 1)] p((k − 1)j , t) + µ(k + 1) p((k + 1)j , t)− [α+ (λ+ µ)k] p(kj , t).

(10)

Hence, the probability generating function

Gj(z, t) :=

+∞∑

k=1

zkp(kj , t), 0 ≤ z ≤ 1, t ≥ 0, (11)

for j = 1, 2, . . . , d satisfies the following differential equation:

∂

∂t
Gj(z, t) = αz[p(0, t) +Gj(z, t)] + λz2

∂

∂z
Gj(z, t)

+µ
∂

∂z
[Gj(z, t) − zp(1j , t)]− αGj(z, t) − (λ+ µ)z

∂

∂z
Gj(z, t). (12)

Due to (5) and (11) we have

F (z, t) = p(0, t) +

d∑

j=1

Gj(z, t), 0 ≤ z ≤ 1, t ≥ 0.

Hence, the proof of (9) follows from Eq. (12). �

In the following proposition we solve the partial differential equation (9). Here, and in

the following, f ′ denotes the derivative of any function f .

Proposition 2.2 Eq. (9), with conditions (6) and (8), admits the following solution for

0 ≤ z ≤ 1 and t ≥ 0:

F (z, t) = H(t) + (d− 1)

∫ t

0
H ′(t− y)p(0, y)dy, (13)

where

H(t) = h(t, z;λ, µ) :=





(λ− µ)
α
λ e−

α
λ
(λ−µ)t

[
λ(1− z)− (µ− λz) e−(λ−µ)t

]α
λ

, λ 6= µ,

1

[1 + λt(1− z)]
α
λ

, λ = µ.

(14)

Proof. Let us adopt the method of characteristics. If λ 6= µ, Eq. (9) can be rewritten as

(λz − µ)(1− z)
∂F

∂z
+
∂F

∂t
+ α(1 − z)F + α(d − 1)(1 − z)p(0, t) = 0, (15)
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which gives the following characteristic equations for the original system





∂z

∂s
= (λz − µ)(1− z),

∂t

∂s
= 1,

∂F

∂s
= −α(1− z)F − α(d− 1)(1 − z)p(0, t).

(16)

From Eq. (16), along the characteristic curves

z = 1−
(λ− µ)(1 − τ)

λ(1− τ)− (µ− λτ)e(λ−µ)s
, t = s, τ ∈ R,

the partial differential equation (15) and conditions (6) and (8) yield





dF

ds
+ α

[
(λ− µ)(1− τ)

λ(1− τ)− (µ − λτ)e(λ−µ)s

]
F + α(d− 1)

[
(λ− µ)(1− τ)

λ(1− τ)− (µ− λτ)e(λ−µ)s

]
p(0, s) = 0,

F (0) = 1.

Hence, Eqs. (13) and (14) follow after some calculations. If λ = µ, the proof is similar. �

Hereafter we show that probability p(0, t) satisfies a linear Volterra integral equation of

the second kind.

Corollary 2.1 The following integral equation holds, for t > 0,

p(0, t) = 1−G(t)− (d− 1)

∫ t

0
G′(t− y)p(0, y)dy, (17)

where

G(t) = 1− h(t, 0;λ, µ), (18)

with h(t, z;λ, µ) defined in (14).

Proof. Eqs. (17) and (18) follow from Eqs. (13) and (14), for z = 0 and recalling initial

condition (7). �

We remark that the function G(t), given in (18), is a proper distribution function when

λ ≥ µ.

Hereafter we consider the distribution function

F
(j)
Y (t) := P(Y1 + Y2 + · · · + Yj ≤ t), (19)

where Y1, Y2, . . . , Yj is a sequence of arbitrary i.i.d. random variables. In the following theorem

we give a formal representation of probability p(0, t) in terms of (19) when Yi’s have certain

specific distribution.
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Theorem 2.1 For t ≥ 0 we have

p(0, t) =





1− d

+∞∑

j=1

(1− d)j−1F
(j)
Y (t), λ ≥ µ,

1− d

+∞∑

j=1

(1− d)j−1

[
1−

(
µ− λ

µ

)α
λ

]j
F

(j)
Y (t), λ < µ,

(20)

where

F
(1)
Y (t) =





1−

(
λ− µ

λe(λ−µ)t − µ

)α
λ

, λ > µ,

1−
1

(1 + λt)
α
λ

, λ = µ,

1

1−
(
1− λ

µ

)α
λ

[
1−

(
µ− λ

µ− λe−(µ−λ)t

)α
λ

]
, λ < µ.

(21)

The proof of Theorem 2.1 is given in Appendix A.

Remark 2.1 The right-hand-side of Eq. (21), in each of the three cases, identifies with the

distribution function of suitable transformations of a random variable, say Z, having Pareto

type II (Lomax) distribution with shape and scale parameters α̃ and λ̃, respectively. Namely,

• if λ > µ, then F
(1)
Y (t) is the distribution function of log (Z + 1)/(λ−µ), with α̃ = α/λ and

λ̃ = (λ− µ)/λ,

• if λ = µ, then F
(1)
Y (t) is the distribution function of Z for α̃ = α/λ and λ̃ = 1/λ,

• if λ < µ, then F
(1)
Y (t) is the distribution function of − log (1− Z)/(µ − λ), assuming that

Z has support (0, 1) and parameters α̃ = α/λ and λ̃ = (µ − λ)/λ.

3 Transient analysis

In this section, for t ranging over specified intervals of R, we obtain explicit expressions of

p(0, t), generating function F (z, t) and cumulative probability P (k, t). We consider 2 cases:

(i) µ = α = λ,

(ii) µ 6= λ and α = λ.

3.1 Transient analysis for µ = α = λ

Let us denote by tn,k the number of permutations of {1, . . . , n}, n ≥ 1, with k ≥ 1 compo-

nents (see, for instance, Comtet [8], p. 262 and [24]). Alternatively, tn,k is the number of

permutations of {1, . . . , n} with k − 1 global descents. Permutations with one component,

i.e. tn,1, are known as indecomposable permutations (we recall that a permutation is called

indecomposable if its one-line notation cannot be split into two parts such that every number

7



in the first part is smaller than every number in the second part). An implicit recursion

formula for tn,k is given by (see Propositions 2.4 and 2.7 of Hegarty and Martinsson [19], for

cases k = 1 and 2 ≤ k ≤ n, respectively)

tn,k =





n!−
n−1∑

j=1

(n− j)! · tj,1, k = 1,

n−k+1∑

j=1

tj,1 · tn−j,k−1, 2 ≤ k ≤ n,

0, n < k.

(22)

Proposition 3.1 For µ = α = λ and 0 < t < 1/λ the integral equation (17) admits the

following solution:

p(0, t) = 1 +

+∞∑

n=1

(−λt)n

n!

n∑

j=1

tn,j d
j . (23)

Proof. The proof is based on the coupling of the homotopy perturbation method and the

expansion of the involved functions as Taylor series (see Biazar and Eslami [9]). From (17),

for α = λ = µ, we can construct the following homotopy

H(p, q) = p(0, t)−
1

(1 + λt)
+ λ(d− 1)q

∫ t

0

p(0, y)

[1 + λ(t− y)]2
dy = 0, (24)

with the embedding parameter q. By assuming that p(0, t) =
∑+∞

n=0 qn(t)q
n and substituting

functions 1
(1+λt) and 1

[1+λ(t−y)]2 by their Taylor series forms, in agreement with Eq. (24) we

define

H̃(p, q) =

+∞∑

n=0

qn(t)q
n −

+∞∑

n=0

(−λt)nqn + λ(d− 1)

+∞∑

n=0

qn+1

∫ t

0
αn(y, t)dy = 0, (25)

for 0 < t < 1/λ, with

αn(y, t) =

n∑

k=0

qk(y)(n − k + 1)[−λ(t− y)]n−k. (26)

Hence, equating the coefficients of the terms with identical powers of q, we find that function

qn(x) is solution of the following recursive equation:

qn(x) = (−λx)n − λ(d− 1)

∫ x

0
αn−1(y, x)dy, n ∈ N. (27)

with q0(x) = 1. By direct calculations, from Eq. (27) one immediately gets

q1(x) = −dλx.

8



Hereafter we make use of the strong induction principle to show that

qn(x) =
(−λx)n

n!

n∑

j=1

tn,j d
j , n ∈ N. (28)

Being tk,k = 1 for all k ≥ 1 (see [8], p. 262), Eq. (28) holds for n = 1. Assuming that (28)

holds for all k = 1, 2, . . . , n we now prove that it holds true for k = n + 1. From Eq. (26),

due to the induction hypothesis, we have

∫ x

0
αn(y, x)dy = x

(−λx)n

(n+ 1)!

n∑

j=1

(n+ 1− j)!

j∑

r=1

tj,r d
r + x(−λx)n, n ∈ N.

Hence, recalling Eq. (27) and using tk,k = 1 ∀k ≥ 1, we obtain

qn+1(x) =
(−λx)n+1

(n + 1)!



d (n+ 1)! + (d− 1)

n∑

j=1

(n + 1− j)!

j∑

r=1

tj,r d
r





=
(−λx)n+1

(n+ 1)!



d


(n+ 1)! −

n∑

j=1

(n+ 1− j)! tj,1


+ dn+1

+
n∑

s=2

ds


(n− s+ 2)! +

n∑

j=s

(n + 1− j)!(tj,s−1 − tj,s)






 . (29)

Recalling Eq. (22), we note that

n∑

j=s

(n + 1− j)! · tj,s =

n−1∑

r=s−1

tr,s−1

n∑

j=r+1

(n+ 1− j)! · tj−r,1.

Hence, repeated applications of Eq. (22) yield

(n− s+ 2)!ts−1,s−1 +

n∑

j=s

(n+ 1− j)!(tj,s−1 − tj,s)

= (n− s+ 2)! +
n−1∑

r=s

tr,s−1

[
(n+ 1− r)!−

n∑

j=r+1

(n+ 1− j)!tj−r,1

]

+ tn,s−1 −

n∑

j=s

(n+ 1− j)!tj−s+1,1

= (n− s+ 2)! +

n∑

r=s

tr,s−1 · tn+1−r,1 −

n∑

j=s

(n+ 1− j)!tj−s+1,1

= tn−s+2,1 +
n∑

r=s

tr,s−1 · tn+1−r,1 = tn+1,s. (30)

From Eqs. (29) and (30) we thus obtain Eq. (28). Finally, by taking q = 1 in assumption

p(0, t) =
∑+∞

n=0 qn(t)q
n we get Eq. (23). �
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Proposition 3.2 If µ = α = λ, then for 0 < t < 1/λ we have

F (z, t) =
1

1 + λt(1− z)
−
λt(d− 1)(1− z)

1 + λt(1− z)


1 +

+∞∑

n=1

(−λt)n

n!

n∑

j=1

tn,j d
j




−
(d− 1)(1 − z)

[1 + λt(1− z)]2

+∞∑

n=1

n
(−λt)n+1

(n+ 1)!
2F1

(
1, n + 1;n+ 2; 1 −

1

1 + λt(1− z)

) n∑

j=1

tn,j d
j , (31)

where

2F1(a, b; c; z) =

+∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(32)

is the Gauss hypergeometric function. (Here, and in the remainder of the paper, (d)n =

d(d + 1)(d + 2) · · · (d + n − 1), n ≥ 1, denotes the Pochhammer symbol, with (d)0 = 1 for

d 6= 0.)

Proof. From Eqs. (13), (14) and (23), we obtain

F (z, t) =
1

1 + λt(1− z)
−
λt(d− 1)(1 − z)

1 + λt(1− z)
− (d− 1)

+∞∑

n=1

(−λt)n

n!

n∑

j=1

tn,j d
j

+
(d− 1)

1 + λt(1− z)

+∞∑

n=1

(−λt)n

n!
2F1

(
1, n;n + 1; 1−

1

1 + λt(1− z)

) n∑

j=1

tn,j d
j .

Hence, making use of (see, for instance, Eqs. 15.2.25 and 15.1.8 of [1]),

− c2F1(a, b; c; z) + (c− a)z2F1(a, b+ 1; c + 1; z)− c(z − 1)2F1(a, b+ 1; c; z) = 0, (33)

2F1(a, b; b; z) = (1− z)−a,

after some calculations we obtain Eq. (31). �

In the following proposition we obtain probability (4) under the assumptions of Proposi-

tions 3.1 and 3.2.

Proposition 3.3 If µ = α = λ, for 0 < t < 1/λ we have

P (k, t) =
(λt)k

(λt+ 1)k+1



d+ (d− 1)

+∞∑

n=1

(−λt)n

n!

n∑

j=1

tn,j d
j

×

+∞∑

r=0

(n)r
(n+ 1)r

(
1−

1

1 + λt

)r
2F1

(
−r,−k; 1;−

1

λt

)}
. (34)
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Proof. From Eq. (31), and recalling (23) and (32), we have

F (z, t) =
1

1 + λt(1− z)
− (d− 1)p(0, t)

λt(1− z)

1 + λt(1− z)

−
(d− 1)(1 − z)

[1 + λt(1− z)]2

+∞∑

k=0

[
1−

1

1 + λt(1− z)

]k +∞∑

n=1

(−λt)n+1

(n− 1)!(n + k + 1)

n∑

j=1

tn,j d
j

= p(0, t) +
+∞∑

m=0

zm
(λt)m

(λt+ 1)m+1
− p(0, t)

[
1 + dλt

1 + λt
− (d− 1)

+∞∑

m=1

zm
(λt)m

(λt+ 1)m+1

]

−(d− 1)
+∞∑

m=0

zm
(λt)m

(λt+ 1)m+2

+∞∑

n=1

(−λt)n+1

(n− 1)!

n∑

j=1

tn,j d
j

×

+∞∑

k=0

(
λt
λt+1

)k

n+ k + 1
2F1

(
−k − 1,−m; 1;−

1

λt

)
.

Hence, since p(0, t) satisfies the integral equation (17), it results

F (z, t) = p(0, t) +

+∞∑

m=1

zm
(λt)m

(λt+ 1)m+1
+ p(0, t)(d − 1)

+∞∑

m=1

zm
(λt)m

(λt+ 1)m+1

+(d− 1)
+∞∑

m=1

zm
(λt)m+1

(λt+ 1)m+2

+∞∑

n=1

(−λt)n

(n− 1)!

n∑

j=1

tn,j d
j

×
+∞∑

k=0

(n+ 1)k
(n+ 2)k (n+ 1)

(
λt

λt+ 1

)k
2F1

(
−k − 1,−m; 1;−

1

λt

)
.

Finally, recalling Eq. (5) and equating the coefficients of the terms with identical powers of

z we obtain Eq. (34). �
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Figure 2: Plot of p(0, t) and P (1, t) for λ = 0.5, µ = 0.5 and α = 0.5, for d = 1, 2, 3, 4, 10,

from top to bottom for p(0, t), and from bottom to top for P (1, t).

Figure 2 shows some plots obtained by means of the expressions given in Proposition 3.1

and Proposition 3.3.
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3.2 Transient analysis for µ 6= λ and α = λ

In order to investigate the case µ 6= λ and α = λ, for brevity we set

Qj,m ≡ Qj,m

(µ
λ

)
:=

∑

s1,...,sj≥2
s1+···+sj=m

As1

(µ
λ

)
× · · · ×Asj

(µ
λ

)
, (35)

where An(t) are the Eulerian Polynomials (see, for instance, Foata [13] or Hirzebruch [20]).

Proposition 3.4 If α = λ and µ 6= λ, then for 0 < t < log(µ/λ)/(µ−λ) the integral equation

(17) admits the following solution

p(0, t) = 1− d

{
1−

µ− λ

µ− λe−(µ−λ)t
−

1

d− 1

[
e−λt(d−1) − 1 + λt(d− 1)

]

−

∞∑

n=3

(−λt)n

n!

n−2∑

k=1

(d− 1)k
n−k−1∑

j=1

(
k + 1

j

)
Qj,j+n−k−1



 . (36)

Proof. The proof proceeds similarly as that of Proposition 3.1. Recalling Eq. (18), for

0 < t < log(µ/λ)/(µ − λ) we have

1−G(t) =
µ
λ − 1

µ
λ − e−λt(

µ

λ
−1)

=

∞∑

n=0

An

(µ
λ

) (−λt)n

n!
. (37)

Note that the radius of convergence of the power series (37) has been determined finding the

location (in the complex plane) of the singularity nearest to the origin. We can construct the

following homotopy

H(p, q) =
+∞∑

n=0

qn(t)q
n −

+∞∑

n=0

An

(µ
λ

) (−λt)n

n!
qn

+λ(d− 1)
+∞∑

n=0

qn+1
n∑

j=0

Aj+1

(µ
λ

) ∫ t

0

(−λy)j

j!
qn−j(t− y)dy = 0, (38)

where q is the embedding parameter and we have set p(0, t) =
∑+∞

n=0 qn(t)q
n. We thus find

that qn(t) satisfies the following recursive equation:

qn(t) = An

(µ
λ

) (−λt)n

n!
− λ(d− 1)

n−1∑

j=0

Aj+1

(µ
λ

)∫ t

0

(−λy)j

j!
qn−1−j(t− y)dy. (39)

By straightforward calculations, from Eq. (39) one immediately gets

q0(t) = 1, q1(t) = −dλt, q2(t) = λd(µ+ λd)
t2

2
. (40)

Let us now make use of the strong induction principle to show that, for n ≥ 3,

qn(t) = d
(−λt)n

n!





n−2∑

k=1

(d− 1)k
n−k−1∑

j=1

(
k + 1

j

)
Qj,j+n−k−1 +An

(µ
λ

)
+ (d− 1)n−1



 . (41)
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By direct calculations, it follows from (39) and (40) that

q3(t) = −λd[λ2d2 + 2λµ(d+ 1) + µ2]
t3

3!
,

which is equal to Eq. (41) for n = 3, being A3(z) = 1 + 4z + z2. Let us consider n ≥ 3 and

assume that Eq. (41) holds for all r = 2, . . . , n − 1. We shall prove that identity (41) holds

also for r = n. From Eq. (39), recalling (40) we have

qn(t) = dAn

(µ
λ

) (−λt)n

n!
+ d(d− 1)An−1

(µ
λ

) (−λt)n

n!

−λ(d− 1)

n−1∑

r=2

An−r

(µ
λ

)∫ t

0

(−λy)n−1−r

(n− 1− r)!
qr(t− y)dy.

Hence, due to the induction hypothesis (41), we obtain

qn(t) = d
(−λt)n

n!

{
An

(µ
λ

)
+ (d− 1)An−1

(µ
λ

)
+ (d− 1)

n−1∑

r=2

An−r

(µ
λ

)
Ar

(µ
λ

)

+

n−1∑

r=2

(d− 1)rAn−r

(µ
λ

)
+

n−1∑

r=3

An−r

(µ
λ

) r−2∑

k=1

(d− 1)k+1
r−k−1∑

j=1

(
k + 1

j

)
Qj,j+r−k−1





= d
(−λt)n

n!

{
An

(µ
λ

)
+
n−1∑

r=1

(d− 1)rAn−r

(µ
λ

)

+

n−2∑

h=1

(d− 1)h
n−1−h∑

j=1

(
h

j

) n−j−h∑

r=1

Ar

(µ
λ

)
Qj,n+j−h−r



 . (42)

Noting that
n−j−h∑

r=1

Ar

(µ
λ

)
Qj,n+j−h−r = Qj,n+j−h−1 +Qj+1,n+j−h,

from Eq. (42) we obtain

qn(t) = d
(−λt)n

n!

{
An

(µ
λ

)
+
n−1∑

r=1

(d− 1)n−rAr

(µ
λ

)

+

n−1∑

r=2

(d− 1)n−r
r−1∑

k=1

(
n− r

k

)
Qk,r+k−1 +

n−1∑

r=2

(d− 1)n−r
r∑

k=2

(
n− r

k − 1

)
Qk,r+k−1

}

= d
(−λt)n

n!

{
An

(µ
λ

)
+

n−1∑

r=1

(d− 1)n−rAr

(µ
λ

)
+

n−1∑

r=2

(d− 1)n−r(n− r)Ar

(µ
λ

)

+

n−1∑

r=2

(d− 1)n−r
r−1∑

k=2

(
n− r + 1

k

)
Qk,r+k−1

}
.

= d
(−λt)n

n!

{
An

(µ
λ

)
+ (d− 1)n−1 +

n−1∑

r=2

(d− 1)n−r
r−1∑

k=1

(
n− r + 1

k

)
Qk,r+k−1

}
,

13



which gives Eq. (41). By setting q = 1 in assumption p(0, t) =
∑+∞

n=0 qn(t)q
n, and recalling

(41), we finally obtain Eq. (36). �

Remark 3.1 If d = 1 the expressions for p(0, t) given in Theorem 2.1, Proposition 3.1 and

Proposition 3.4 are in agreement with the well-known results for the linear birth-death process

with immigration (see, for instance, Section 2.3 of Nucho [23]).

Hereafter we obtain an explicit expression for tn,k in terms of multinomial coefficients,

for n ≥ 2 and 1 ≤ k ≤ n. It is worth pointing out that a closed form expression for such

numbers does not appear to have been obtained before.

Corollary 3.1 The following equalities hold for n ≥ 2:

tn,1 = n! + (−1)n−1 +

n−2∑

k=1

(−1)k
n−k−1∑

j=1

(
k + 1

j

)
(n− k − 1 + j)!

∑

s1,...,sj≥2
s1+···+sj=n−k−1+j

1(n−k−1+j
s1,...,sj

) ;

tn,k =

(
n− 1

k − 1

)
(−1)n−k +

n−2∑

r=k−1

(
r

k − 1

)
(−1)r−k+1

n−r−1∑

j=1

(
r + 1

j

)
(n− r − 1 + j)!

×
∑

s1,...,sj≥2
s1+···+sj=n−r−1+j

1(n−r−1+j
s1,...,sj

) , 2 ≤ k ≤ n− 1;

tn,n = 1.

Proof. The proof follows from Propositions 3.1 and 3.4, by letting µ→ λ and noting that

Aj(1) = j!. �

In the following proposition we obtain the probability generating function when µ 6= λ

and α = λ. In the sequel we shall denote by

θn ≡ θn(λ, µ, d) :=

n−2∑

i=1

(d− 1)i
n−i−1∑

j=1

(
i+ 1

j

)
Qj,j+n−i−1 +An

(µ
λ

)
+ (d− 1)n−1, (43)

where Qj,m is defined in Eq. (35).

Proposition 3.5 If µ 6= λ and α = λ, for t < log(µ/λ)/(µ − λ), it is

F (z, t) = 1− d+
d(µ − λ)

µ− λz − λ(1− z)e−(µ−λ)t
−
d(d− 1)(µ − λ)2

µ− λz

×
[
− λg1(z) +

+∞∑

n=2

(−λ)n

n!
gn(z)θn

]
(44)
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where

gk(z) =





1
(λ−µ)k+1

{
λ(1− z)(λ− µ)k−1tk + k!

[
Lik

(
λ(1−z)e−(µ−λ)t

µ−λz

)

−Lik

(
λ(1−z)
µ−λz

)]
−
∑k−1

r=1
k!
r! [(λ− µ)t]rLik−r

(
λ(1−z)
µ−λz

)}
, if µ > λ,

1
(µ−λ)k+1

{
(µ− λz)(µ − λ)k−1tk + k!

[
Lik

(
(µ−λz)e−(λ−µ)t

λ(1−z)

)

−Lik

(
µ−λz
λ(1−z)

)]
−
∑k−1

r=1
k!
r! [(µ− λ)t]r Lik−r

(
µ−λz
λ(1−z)

)}
, if µ < λ,

and where

Lik(z) =

+∞∑

j=1

zj

jk
(45)

is the polylogarithm function.

Proof. It immediately follows from Eqs. (13) and (14), recalling Eq. (36). �

We conclude this section by evaluating the probability (4).

Proposition 3.6 Let k ∈ N. If α = λ, for t < log(µ/λ)/(µ − λ), we have

• for µ > λ

P (k, t) =
λk

µk+1

{
d(µ− λ)µk+1 [1− e−(µ−λ)t]k

[µ − λe−(µ−λ)t]k+1
− d(d− 1)(λ− µ)

×

[
−λt+

+∞∑

n=2

(−λt)n

n!
θn

]
− λd(d − 1)

+∞∑

l=1

(1− e−l(µ−λ)t)

l
2F1

(
−l, k + 1; 1; 1 −

λ

µ

)

+d(d− 1)
+∞∑

n=2

(−λ)n

(λ− µ)n−1
θn

n−1∑

r=1

[(λ− µ)t]r

r!

+∞∑

l=1

1

ln−r
2F1

(
−l, k + 1; 1; 1 −

λ

µ

)

+d(d− 1)

+∞∑

n=2

(−λ)n

(λ− µ)n−1
θn

+∞∑

l=1

1− e−l(µ−λ)t

ln
2F1

(
−l, k + 1; 1; 1 −

λ

µ

)}
; (46)

• for µ < λ

P (k, t) = d(λ− µ)e−(λ−µ)t [λ (1− e−(λ−µ)t)]k

[λ− µe−(λ−µ)t]k+1
− d(d− 1)

λ

µ
Lik+1

(µ
λ

)

+d(d− 1)
+∞∑

s=1

e−s(λ−µ)t

s
2F1

(
1− s, k + 1; 1; 1 −

µ

λ

)

+
d(d− 1)

λ

+∞∑

n=2

(−λ)n

(µ− λ)n−1
θn

+∞∑

s=1

(1− e−s(λ−µ)t)

sn
2F1

(
1− s, k + 1; 1; 1 −

µ

λ

)

+
d(d− 1)

λ

+∞∑

n=2

(−λ)n

(µ− λ)n−1
θn

n−1∑

r=1

[(µ − λ)t]r

r!

+∞∑

s=1

1

sn−r
2F1

(
1− s, k + 1; 1; 1 −

µ

λ

)
, (47)

where θn is defined in Eq. (43).
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Proof. The proof follows from Eqs. (5) and (44), recalling that p(0, t) satisfies the integral

equation (17), noting that (see Eq. (65.1.3) of [18], for instance)

+∞∑

k=0

(d)k
k!

yk2F1 (−k, b; c;x) = (1− y)−d2F1

(
d, b; c;

xy

y − 1

)
,

and making use of (45). �
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Figure 3: Plot of p(0, t) and P (1, t) for λ = 0.1, µ = 0.5 and α = 0.1, for d = 1, 2, 3, 4, 10,

from top to bottom for p(0, t), and from bottom to top for P (1, t).
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Figure 4: Plot of p(0, t) and P (1, t) for λ = 0.5, µ = 0.1 and α = 0.5, for d = 1, 2, 3, 4, from

top to bottom for p(0, t), and from bottom to top for P (1, t).

Figures 3 and 4 show some plots of p(0, t) and P (1, t) obtained by evaluating the expres-

sions given in Proposition 3.4 and Proposition 3.6.

Let us now show a simple relation between the polylogarithm function and a series of

Gauss hypergeometric functions, which does not appear to have been given before. This

result immediately follows from Proposition 3.6.
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Corollary 3.2 For all k ∈ N and x ∈ (0, 1) we have

Lik+1(x) = x
+∞∑

s=1

1

s
[2F1 (1− s, k + 1; 1; 1 − x)] . (48)

Proof. The proof of (48) follows from (47), by taking into account that P (k, 0) = 0. �

A classical problem in biological models described by birth-death processes is the extinc-

tion, i.e. the first passage through the zero state (see, for instance, Van Doorn and Zeifman

[28]). However, due to the specific structure of the state space S, in our model the first

passage through the origin (when the initial state is not zero) reduces to a classical one-

dimensional problem. Then we conclude the analysis of N(t) by discussing some asymptotic

results.

4 Asymptotic results

In the following proposition we obtain the asymptotic expressions of probabilities p(0, t) and

P (k, t).

Proposition 4.1 If λ < µ, then

lim
t→+∞

p(0, t) =
1

d

(
1− λ

µ

)α
λ

1−
(
1− 1

d

) (
1− λ

µ

)α
λ

, (49)

lim
t→+∞

P (k, t) =

(
1− λ

µ

)α
λ

1−
(
1− 1

d

)(
1− λ

µ

)α
λ

(αλ )k

k!

(
λ

µ

)k
, k ∈ N. (50)

If λ ≥ µ, then p(0, t) → 0 and P (k, t) → 0 when t→ +∞.

Proof. Eq. (49) follows from Theorem 2.1. Denoting by

Ls[f(t)] =

∫ +∞

0
e−stf(t)dt, s ≥ 0, (51)

the Laplace transform of an arbitrary function f(t), from Proposition 2.2 we have

Ls[F (z, t)] = Ls[H(t)] + (d− 1)(sLs[H(t)] − 1)Ls[p(0, t)]. (52)
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Note that, due to Eq. (10) of Section 2.1.3, p. 59, of Erdélyi et al. [12],

Ls[H(t)] =





λ(λ− µ)
α
λ 2F1(

α
λ ,

α
λ + s

λ−µ ;
α
λ + s

λ−µ + 1; µ−λz
λ(1−z))

[λ(1− z)]
α
λ [λs+ α(λ− µ)]

, λ > µ,

(µ − λ)
α
λ
−1

(µ − λz)
α
λ

µ− λ

s
2F1

(
α

λ
,

s

µ− λ
;

s

µ− λ
+ 1;

λ(1− z)

µ− λz

)
, λ < µ,

e
s

λ(1−z)E
(
α
λ ,

s
λ(1−z)

)

λ(1− z)
, λ = µ,

where

E(ν, z) :=

∫ +∞

1

e−zt

tν
dt, ν ∈ R, z > 0, (53)

denotes the generalized exponential integral function and 2F1 is defined in (32). Hence,

recalling that lim
t→+∞

F (z, t) = lim
s→0

sLs[F (z, t)] by the Tauberian theorem, and making use of

Eqs. (49) and (52), we have

lim
t→+∞

F (z, t) =





0, λ ≥ µ,

(µ− λ)
α
λ

(µ− λz)
α
λ


1 +

(d− 1)
(
µ−λ
µ

)α
λ

d− (d− 1)
(
µ−λ
µ

)α
λ


−

(d− 1)
(
µ−λ
µ

)α
λ

d− (d− 1)
(
µ−λ
µ

)α
λ

, λ < µ.

(54)

If λ < µ, making use of

(µ− λ)
α
λ

(µ − λz)
α
λ

=

+∞∑

k=0

(αλ )k

k!

(
1−

λ

µ

)α
λ
(
λ

µ

)k
zk

and recalling Eq. (5), after some calculations we obtain (50) from Eqs. (49) and (54). �

Remark 4.1 Denoting by N the random variable whose distribution is given in the right-

hand-sides of Eqs. (49) and (50), for λ < µ, the following mixture holds:

P(N = k) = ϑd π(k) + (1− ϑd)1{k=0}, k ∈ N0, (55)

where

π(k) =

(
1−

λ

µ

)α
λ (αλ )k

k!

(
λ

µ

)k
, k ∈ N0

is a negative binomial distribution, and where the mixing parameter is given by

ϑd =
1

1−
(
1− 1

d

) (
1− λ

µ

)α
λ

.
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Hence, after some calculations we obtain mean and variance of N , for λ < µ:

E[N ] = ϑd
α

µ− λ
, V ar[N ] = ϑ2d

αµ

(µ− λ)2

[
1−

(
1−

1

d

)(
α

µ
+ 1

)(
1−

λ

µ

)α
λ

]
.

We note that E[N ] is increasing in d, and V ar[N ] is decreasing in d, both having a finite

limit when d→ +∞.

5 The diffusion approximation

In this section we construct a diffusion approximation starting from the process N(t). We

adopt a scaling procedure that is customary in queueing theory contexts (see, for instance,

Di Crescenzo et al. [10]). First of all, we perform a different parameterization of the model

studied in Section 2 by setting

α = γ̃
µ̃

ǫ
, λ =

µ̃

ǫ
+ β̃, µ =

µ̃

ǫ
, (56)

with γ̃ > 0, µ̃ > 0, β̃ ∈ R and ǫ > 0. Note that ǫ is a positive constant that can be viewed as

a measure of the size of µ̃. It plays a crucial role in the approximating procedure indicated

below, where we let ǫ→ 0+.

For all t > 0, consider the scaling N∗
ǫ (t) = N(t) ǫ, so that {N∗

ǫ (t); t ≥ 0} is a continuous-

time stochastic process having state space

S∗
ǫ = {0} ∪

(
d⋃

j=1

{ǫj , (2ǫ)j , (3ǫ)j , . . .}

)
,

and transient probabilities

p∗ǫ (kj , t) := P {N∗
ǫ (t) = (kǫ)j}

= P {(kǫ)j ≤ N∗
ǫ (t) < ((k + 1)ǫ)j} , t ≥ 0, k ∈ N, j = 1, 2, . . . , d.

In the limit as ǫ → 0+, the scaled process {N∗
ǫ (t); t ≥ 0} is shown to converge weakly to a

diffusion process {X(t); t ≥ 0}, whose state space is the star graph

SX := {0} ∪

(
d⋃

j=1

{xj : 0 < xj < +∞}

)
.

For x ∈ R
+, t ≥ 0 and j = 1, 2, . . . , d, let P{xj ≤ X(t) < (x+ ǫ)j} = f(xj, t)ǫ + o(ǫ), where

xj denotes the state x located on the ray Sj (as indicated in Section 2).

Proposition 5.1 For x ∈ R
+, t ≥ 0 and j = 1, 2, . . . , d, the following differential equation

holds:
∂

∂t
f(xj, t) = −

∂

∂xj

{
(β̃ xj + γ̃ µ̃) f(xj , t)

}
+

1

2

∂2

∂x2j

{
2 µ̃ xj f(xj, t)

}
, (57)

19



with boundary condition

d∑

j=1

lim
xj→0+

{
(β̃ xj + γ̃ µ̃) f(xj, t)−

1

2

∂

∂xj

[
2 µ̃ xj f(xj , t)

]}
= 0. (58)

Proof. Since p∗ǫ(kj , t) = p(kj , t), due to (56) and in analogy with system (10), for j =

1, 2, . . . , d and t ≥ 0 we have

p∗ǫ (0, t+∆t) =

d∑

j=1

p∗ǫ(1j , t)
µ̃

ǫ
∆t+ p∗ǫ(0, t)

(
1− dγ̃

µ̃

ǫ
∆t

)
+ o(∆t), (59)

p∗ǫ(kj , t+∆t) = p∗ǫ((k − 1)j , t)

[
γ̃
µ̃

ǫ
+

(
µ̃

ǫ
+ β̃

)
(k − 1)

]
∆t+ p∗ǫ((k + 1)j , t)

µ̃

ǫ
(k + 1)∆t

+ p∗ǫ(kj , t)

{
1−

[
γ̃
µ̃

ǫ
+

(
2
µ̃

ǫ
+ β̃

)
k

]
∆t

}
+ o(∆t), k ∈ N. (60)

Let p∗ǫ(kj , t) ≃ f((kǫ)j , t) ǫ for ǫ close to 0. Hence, for xj = (kǫ)j , from Eq. (60) we have

f(xj, t+∆t) = f(xj − ǫ, t)

[
γ̃ µ̃+

(
µ̃

ǫ
+ β̃

)
(xj − ǫ)

]
∆t

ǫ
+ f(xj + ǫ, t) µ̃ (xj + ǫ)

∆t

ǫ

+ f(xj, t)

{
1−

[
γ̃ µ̃+

(
2
µ̃

ǫ
+ β̃

)
xj

]
∆t

ǫ

}
+ o(∆t).

Expanding f as Taylor series, by setting ∆t = Aǫ2, with A > 0, and passing to the limit as

ǫ→ 0+, we obtain Eq. (57). Similarly, Eq. (59) yields

f(0, t+∆t) =
d∑

j=1

f(ǫj, t) µ̃
∆t

ǫ
+ f(0, t)

(
1− dγ̃µ̃

∆t

ǫ

)
+ o(∆t),

so that (58) holds. �

From the above procedure, the following approximation holds for small ǫ and for x = kǫ:

P{N(t) < k} ≃ P{X(t) < x}, the approximation being expected to improve as ǫ goes to zero

and as k grows larger.

Let us now introduce the density

h(x, t) :=

d∑

j=1

f(xj, t), x ∈ R
+, t ≥ 0. (61)

Proposition 5.2 For x ∈ R
+ and t ≥ 0, the transition density (61) satisfies the following

differential equation:

∂

∂t
h(x, t) = −

∂

∂x

{
(β̃ x+ γ̃ µ̃)h(x, t)

}
+

1

2

∂2

∂x2

{
2 µ̃ x h(x, t)

}
, (62)
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with boundary condition

lim
x→0+

{
(β̃ x+ γ̃ µ̃)h(x, t) −

1

2

∂

∂x

[
2 µ̃ x h(x, t)

]}
= 0 (63)

and initial condition

lim
t→0+

h(x, t) = δ(x). (64)

Proof. The proof of Eqs. (62) and (63) follows immediately from Proposition 5.1, and

recalling position (61). The condition (64) can be obtained from (2). �

Note that Eq. (62) is the Fokker-Planck equation for a temporally homogeneous diffusion

process on R
+ with linear drift and linear infinitesimal variance, while Eq. (63) expresses

a zero-flux condition in the state x = 0. We remark that various results on such kind of

diffusion process have been given in Buonocore et al. [6], Giorno et al. [15], and Sacerdote

[27], for instance.

Hereafter we show that h(x, t) is a gamma density with shape parameter γ̃ and rate ψ(t).

Proposition 5.3 The density (61) is given by

h(x, t) =
[ψ(t)]γ̃

Γ(γ̃)
xγ̃−1 e−xψ(t), x ∈ R

+, t ≥ 0, (65)

where

ψ(t) =
β̃

µ̃
·

1

eβ̃t − 1
, t ≥ 0.

Proof. The transformation (see Capocelli and Ricciardi [7])

x′ = x e−β̃t, t′ =
µ̃

β̃

(
1− e−β̃t

)
, h(x, t) = e−β̃t h′(x′, t′),

changes equation (62) and condition (63) respectively into a Fokker-Planck equation for the

time-homogeneous diffusion process on R
+ having drift γ̃ and infinitesimal variance 2x′, with

a zero-flux condition on the boundary x′ = 0. Initial condition (64) becomes lim
t′→0+

h′(x′, t′) =

δ(x′). The proof thus proceeds similarly as Proposition 4.1 of Di Crescenzo and Nobile [11]

assuming a zero initial state. �

In conclusion, from Eq. (65) we immediately obtain that a gamma-type stationary density

exists when β̃ < 0.

Corollary 5.1 If β̃ < 0, then

h(x) := lim
t→+∞

h(x, t) =
1

Γ(γ̃)

(
|β̃|

µ̃

)γ̃
xγ̃−1 exp

(
− x

|β̃|

µ̃

)
, x ∈ R

+. (66)
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A Proof of Theorem 2.1

In the appendix we provide the proof of Theorem 2.1 in 3 cases. Recall that the Laplace

transform of any function f(t) is denoted as in (51).

A.1 Case λ = µ

From Eq. (17) in this case we obtain

Ls[p(0, t)] = Ls

[
1

(1 + λt)
α
λ

]
− α(d − 1)Ls[p(0, t)]Ls

[
1

(1 + λt)
α
λ
+1

]
, (67)

where, for any b ∈ R, λ, s > 0

Ls

[
1

(1 + λt)b

]
=

es/λ

λ
E
(
b,
s

λ

)
,

and where E(ν, z) is defined in (53). Noting that

E(ν, z) =
1

ν − 1
[e−z − zE(ν − 1, z)], ν ∈ R, z > 0,

from Eq. (67) we obtain

Ls[p(0, t)] =
1

λd

es/λE
(
α
λ ,

s
λ

)

1− d−1
d

s
λ e

s/λE
(
α
λ ,

s
λ

) .

Hence, the above expression gives

Ls[p(0, t)] =
1

sd

+∞∑

n=0

(
1−

1

d

)n [ s
λ
es/λE

(α
λ
,
s

λ

)]n+1

=
1

sd

+∞∑

n=0

(
1−

1

d

)n n+1∑

j=0

(
n+ 1

j

)
(−1)j

[
1−

s

λ
es/λE

(α
λ
,
s

λ

)]j
. (68)

Taking the inverse Laplace Transform, from Eq. (68) we obtain

p(0, t) = 1 +
1

d

+∞∑

n=0

(
1−

1

d

)n n+1∑

j=1

(
n+ 1

j

)
(−1)jF

(j)
Y (t), (69)

where F
(j)
Y (t), defined in (19), is the distribution function of the sum of j independent random

variables having probability density

f
(1)
Y (t) =

α

(1 + λt)
α
λ
+1
, t > 0.

Finally, by interchanging the order of summation in the right-hand side of (69), Eq. (20)

immediately follows when λ = µ.
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A.2 Case λ > µ

From Eqs. (17) and (18) in this case we obtain

Ls[p(0, t)]

{
1 + (d− 1)Ls

[
α(λ− µ)

α
λ
+1e(λ−µ)t

(λe(λ−µ)t − µ)
α
λ
+1

]}
= Ls

[
(λ− µ)

α
λ

(λe(λ−µ)t − µ)
α
λ

]
. (70)

We have (cf. Eq. (3.197.3) of Gradshteyn and Ryzhik [16])

Ls

[
(λ− µ)

α
λ

(λe(λ−µ)t − µ)
α
λ

]
=

λ
(
λ−µ
λ

)α
λ

λs+ (λ− µ)α
2F1

(
α

λ
,
α

λ
+

s

λ− µ
; 1 +

α

λ
+

s

λ− µ
;
µ

λ

)
,

where 2F1(a, b; c; z) is defined in Eq. (32). Moreover, since

Ls

[
α(λ− µ)

α
λ
+1e(λ−µ)t

(λe(λ−µ)t − µ)
α
λ
+1

]
=
λα
(
λ−µ
λ

)α
λ
+1

λs+ (λ− µ)α
2F1

(
1 +

α

λ
,
α

λ
+

s

λ− µ
; 1 +

α

λ
+

s

λ− µ
;
µ

λ

)

and (cf., for instance, Eq. 15.2.14 of Abramowitz and Stegun [1]),

b 2F1(a, b+ 1; c; z) − a 2F1(a+ 1, b; c; z) + (a− b) 2F1(a, b; c; z) = 0, (71)

from Eq. (70) we obtain

Ls[p(0, t)]

{
1 + (d− 1)

[
1−

s (λ− µ)
α
λ

λ
α
λ
−1(λs+ (λ− µ)α)

2F1

(
α

λ
,
α

λ
+

s

λ− µ
; 1 +

α

λ
+

s

λ− µ
;
µ

λ

)]}

=
(λ− µ)

α
λ

λ
α
λ
−1(λs + (λ− µ)α)

2F1

(
α

λ
,
α

λ
+

s

λ− µ
; 1 +

α

λ
+

s

λ− µ
;
µ

λ

)
.

Hence, after some calculations, the above equation gives

Ls[p(0, t)] =
1

sd

+∞∑

n=0

(
1−

1

d

)n


s (λ− µ)

α
λ 2F1

(
α
λ ,

α
λ + s

λ−µ ; 1 +
α
λ + s

λ−µ ;
µ
λ

)

λ
α
λ
−1(λs+ (λ− µ)α)



n+1

=
1

sd

+∞∑

n=0

(
1−

1

d

)n n+1∑

j=0

(
n+ 1

j

)
(−1)j


1−

s (λ− µ)
α
λ 2F1

(
α
λ ,

α
λ + s

λ−µ ; 1 +
α
λ + s

λ−µ ;
µ
λ

)

λ
α
λ
−1(λs+ (λ− µ)α)



j

.

(72)

Taking the inverse Laplace Transform, in Eq. (72) we get

p(0, t) = 1 +
1

d

+∞∑

n=0

(
1−

1

d

)n n+1∑

j=1

(
n+ 1

j

)
(−1)jF

(j)
Y (t), (73)

where F
(j)
Y (t) is the distribution function of the sum of j independent random variables having

probability density

f
(1)
Y (t) =

α(λ− µ)
α
λ
+1e(λ−µ)t

[
λe(λ−µ)t − µ

]α
λ
+1

, t > 0.

By interchanging the order of summation in Eq. (73) we immediately obtain Eq. (20) when

λ > µ.
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A.3 Case λ < µ

When λ < µ, Eq. (70) can be rewritten as

Ls[p(0, t)]




1 + (d− 1)

[
1−

(
µ− λ

µ

)α
λ

]
Ls




α(λ− µ)
α
λ
+1e(λ−µ)t[

1−
(
µ−λ
µ

)α
λ

]
(λe(λ−µ)t − µ)

α
λ
+1








= Ls

[
(λ− µ)

α
λ

(λe(λ−µ)t − µ)
α
λ

]
, (74)

with (cf. Eq. (3.197.3) of Gradshteyn and Ryzhik [16])

Ls

[
(λ− µ)

α
λ

(λe(λ−µ)t − µ)
α
λ

]
=

1

s

(
µ− λ

µ

)α
λ

2F1

(
α

λ
,

s

µ− λ
; 1 +

s

µ− λ
;
λ

µ

)
,

and

Ls




α(λ− µ)
α
λ
+1e(λ−µ)t[

1−
(
µ−λ
µ

)α
λ

]
(λe(λ−µ)t − µ)

α
λ
+1


 =

α[(
µ

µ−λ

)α
λ
− 1

]
2F1

(
1 + α

λ , 1 +
s

µ−λ ; 2 +
s

µ−λ ;
λ
µ

)

µ[1 + s
µ−λ ]

.

=
λ
(

µ
µ−λ

)α
λ

µ

[(
µ

µ−λ

)α
λ
− 1

]




1 +

[
α
λ − 1− s

µ−λ

]

[1 + s
µ−λ ]

(
µ

µ−λ

)α
λ

2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)



,

where use of Eq. (71) has been made. Hence, performing some calculations, Eq. (74) becomes

Ls[p(0, t)]

{
1−

λ(µ− λ)
α
λ (d− 1)

µ
α
λ (µ − λ+ λd)

[
1−

α(µ − λ)

λ(µ− λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)}

=

(
µ−λ
µ

)α
λ

s
[
1 + λ

µ(d− 1)
] 2F1

(
α

λ
,

s

µ− λ
; 1 +

s

µ− λ
;
λ

µ

)

so that

Ls[p(0, t)] =
µ

s[µ+ λ(d− 1)]

(
µ− λ

µ

)α
λ

2F1

(
α

λ
,

s

µ− λ
; 1 +

s

µ− λ
;
λ

µ

) +∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n

×

[(
µ− λ

µ

)α
λ
[
1−

α(µ− λ)

λ(µ− λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)]n
. (75)
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Recalling Eq. (33), from Eq. (75), after some calculations, we obtain

Ls[p(0, t)] =
λ

s[µ+ λ(d− 1)]

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n

×

{(
µ− λ

µ

)α
λ
[
1−

α(µ − λ)

λ(µ− λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)}n+1

+
µ− λ

s[µ+ λ(d− 1)]

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n

×

{(
µ− λ

µ

)α
λ
[
1−

α(µ − λ)

λ(µ− λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)}n

=
λ

s[µ+ λ(d− 1)]

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n n+1∑

j=0

(
n+ 1

j

)
(−1)j

×

{
1−

(
µ− λ

µ

)α
λ
[
1−

α(µ− λ)

λ(µ − λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)}j

+
µ− λ

s[µ+ λ(d− 1)]

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n n∑

j=0

(
n

j

)
(−1)j

×

{
1−

(
µ− λ

µ

)α
λ
[
1−

α(µ− λ)

λ(µ − λ+ s)

]
2F1

(
α

λ
, 1 +

s

µ− λ
; 2 +

s

µ− λ
;
λ

µ

)}j
. (76)

Taking the inverse Laplace Transform, from Eq. (76) we get

p(0, t) = 1 +
λ

µ+ λ(d− 1)

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n

×

n+1∑

j=1

(
n+ 1

j

)(
−
µ

λ

)j
[
1−

(
µ− λ

µ

)α
λ

]j
F

(j)
Y (t)

+
µ− λ

µ+ λ(d− 1)

+∞∑

n=0

[
λ(d− 1)

µ+ λ(d− 1)

]n n∑

j=1

(
n

j

)(
−
µ

λ

)j
[
1−

(
µ− λ

µ

)α
λ

]j
F

(j)
Y (t), (77)

where F
(j)
Y (t) is the distribution function of the sum of j independent random variables having

probability density

f
(1)
Y (t) =

α(µ − λ)
α
λ
+1e−(µ−λ)t

[
1−

(
µ−λ
µ

)α
λ

] [
µ− λe−(µ−λ)t

]α
λ
+1
, t > 0.

Finally, by interchanging the order of summation in Eq. (77), we come to Eq. (20) when

λ < µ.
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