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Graph Invariants Based on the Divides Relation and Ordered by
Prime Signatures

Sung-Hyuk Cha, Edgar G. DuCasse, and Louis V. Quintas

Abstract

Directed acyclic graphs whose nodes are all the divisors of a positive integer n and arcs (a, b)
defined by a divides b are considered. Fourteen graph invariants such as order, size, and the
number of paths are investigated for two classic graphs, the Hasse diagram GH(n) and its
transitive closure GT (n) derived from the divides relation partial order. Concise formulae and
algorithms are devised for these graph invariants and several important properties of these graphs
are formally proven. Integer sequences of these invariants in natural order by n are computed
and several new sequences are identified by comparing them to existing sequences in the On-Line
Encyclopedia of Integer Sequences. These new and existing integer sequences are interpreted from
the graph theory point of view. Both GH(n) and GT (n) are characterized by the prime signature
of n. Hence, two conventional orders of prime signatures, namely the graded colexicographic and
the canonical orders are considered and additional new integer sequences are discovered.

1. Introduction

Let V (n) be the set of all positive divisors of a positive integer n as defined in (1.1). For
instance, V (20) = {1, 2, 4, 5, 10, 20}. The partial order called the divides relation, a divides b
denoted a|b, is applied to V (n) and yields two types of directed acyclic graphs (henceforth
referred simply as graphs) as shown in Figure 1. The first graph is called the transitive closure,
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(a) Transitive Closure GT (20) (b) Hasse diagram GH (20)

Figure 1. Two basic graphs derived from the divides relation.

GT (n) = (V (n), ET (n)) where

V (n) = {x
∣

∣ x ∈ Z+ ∧ x|n} (1.1)

ET (n) = {(a, b) | a, b ∈ V (n) ∧ a < b ∧ a|b} (1.2)

Next, when all arcs in GT (n) with alternative transitive paths are excluded, the graph becomes
a Hasse diagram denoted as GH(n) = (V (n), EH(n)) where EH(n) is defined in (1.3).

EH(n) = ET (n)− {(a, b) ∈ ET (n) | ∃c ∈ V (n)(a < c < b ∧ a|c ∧ c|b)} (1.3)
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Figures 1 (a) and (b) show the Transitive Closure GT (20) and Hasse diagram GH(20) ,
respectively. Note that GH(n) = GT (n) if and only if n is a prime. Numerous integer sequences
have been discovered from the divides relation from the number theory point of view (see [8]).
In Section 2, this paper not only compiles various existing integer sequences in [8], but also
discovers numerous integer sequences from the graph theory point of view, mainly from GH(n)
and GT (n).
By the Fundamental Theorem of Arithmetic, every positive integer n > 1 can be repre-

sented by ω distinct prime numbers p1, p2, · · · , pω and positive integers m1,m2, · · · ,mω as
corresponding exponents such that n = pm1

1 pm2
2 · · · pmω

ω where p1 < p2 < · · · < pω. Let M(n) =
(m1,m2, · · · ,mω) be the sequence of the exponents. In [5], Hardy and Wright used Ω(n) and
ω(n) to denote the number of prime divisors of n counted with multiplicity and the number of
distinct prime factors of n, respectively. For example, 20 = 2× 2× 5 = 22 × 51 has Ω(20) = 3
and ω(20) = 2.
Let M ′(n) = [m1,m2, · · · ,mω] be the multiset known as the prime signature of n where

the order does not matter and repetitions are allowed. For example, M ′(4500 = 22 × 32 ×
53) = [2, 2, 3] has the same prime signature as M ′(33075 = 33 × 52 × 72) = [3, 2, 2]. The prime
signature M ′(n) uniquely determines the structures of GH(n) and GT (n) and play a central
role in this work as they partition the GH(n) and GT (n) into isomorphism classes and are used
as the labels of the nodes of GH(n) and GT (n) .
Any ordering of the prime signatures corresponds to an ordering of the isomorphism classes

of GH(n) and GT (n) and consequently of their associated graph invariants, such as their
order, size, and path counts. Two kinds of orderings of prime signatures such as the graded
colexicographic and canonical orderings appear in the literature and the On-line Encyclopedia
of Integer Sequences [8]. Several integer sequences by prime signatures have been studied from
the number theory point of view [1, 5], the earliest one of which dates from 1919 [7]. However,
some sequences have interpretations different from the graph theory interpretations provided
here. Most importantly, over twenty new integer sequences of great interest are presented in
Section 3.

2. Graph Theoretic Properties and Invariants of the Divides Relation

In this section, fourteen graph invariants such as order, size, degree, etc. for the Hasse
Diagram and/or Transitive Closure graphs are formally defined and investigated. Furthermore,
various graph theoretic properties are also determined.
The first graph invariant of interest is the common order of GH(n) and GT (n), i.e., the

number of nodes, |V (n)|. By definition, this is simply the number of divisors of n.

Theorem 2.1 Order of GH(n) and GT (n).

|V (n)| = |V (M(n))| =
∏

mi∈M(n)

(mi + 1) (2.1)

Proof. Each pmi

i term contains mi + 1 factors which can contribute to a divisor of n. Thus,
the number of divisors of n is (m1 + 1)× (m2 + 1)× · · · × (mω + 1) by the product rule of
counting.

This classic and important integer sequence of |V (n)| in natural order is given in Table 1 and
listed as A000005 in [8]. Table 1 lists 14 integer sequences of all forthcoming graph invariants
with OEIS number if listed and blank in the OEIS column if not listed.
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Table 1. divides relation graph invariants in natural order

Invariant Integer sequence for n = 1, · · · , 50 OEIS

|V (n)| 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6,
2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, · · ·

A000005

|EH(n)| 0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 10, 2, 4, 3,
7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 10, 1, 12, 1, 7, 7, 4, 1, 13, · · ·

A062799

Ω(n) 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3,
1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, · · ·

A001222

ω(n) 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2,
1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, · · ·

A001221

Wv(n) 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2,
1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, · · ·

A096825

We(n) 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 1, 3,
1, 6, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 6, 1, 3, 3, 2, 1, 3, 1, 3, · · ·

-

∆(n) 0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3,
1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, · · ·

-

|PH(n)| 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3,
1, 6, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, · · ·

A008480

|VE(n)| 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3,
1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, · · ·

A038548

|VO(n)| 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3,
1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 3, · · ·

A056924

|EE(n)| 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 2, 1, 5, 1, 2, 2, 4,
1, 6, 1, 3, 2, 2, 2, 6, 1, 2, 2, 5, 1, 6, 1, 4, 4, 2, 1, 7, 1, 4, · · ·

-

|EO(n)| 0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 2, 0, 3, 0, 3, 2, 2, 0, 5, 1, 2, 1, 3,
0, 6, 0, 2, 2, 2, 2, 6, 0, 2, 2, 5, 0, 6, 0, 3, 3, 2, 0, 6, 1, 3, · · ·

-

|ET (n)| 0, 1, 1, 3, 1, 5, 1, 6, 3, 5, 1, 12, 1, 5, 5, 10, 1, 12, 1, 12, 5, 5, 1, 22, 3, 5,
6, 12, 1, 19, 1, 15, 5, 5, 5, 27, 1, 5, 5, 22, 1, 19, 1, 12, 12, 5, · · ·

-

|PT (n)| 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4,
8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, · · ·

A002033

The next eleven graph invariants of interest are for GH(n) exclusively. The second graph
invariant of interest is the size of GH(n) which is the cardinality of the arc set |EH(n)| =
|EH(M(n))|. A recursive algorithm to compute |EH(n)| is given in Algorithm 1 which utilizes
a size fact about the Cartesian product of two graphs.

Algorithm 1 Size of GH(n). Let mi ∈ M ′ and the multiset, M = M ′(n) initially.

|EH(M)| =
{

|EH(M − {mi})| × (mi + 1) +mi × |V (M − {mi})| if |M | > 1
m1 if |M | = 1

(2.2)

Theorem 2.2 Algorithm 1 correctly computes |EH(n)|.

Proof. In [4], a theorem about the size of the Cartesian product of two graphs is given, i.e.,
the size of a Cartesian product of two graphs is the size of the first multiplied by the order
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of the second added to the size of the second multiplied by the order of the first. Using this
theorem and the fact that GH(n) is isomorphic to the Cartesian product of paths, it is clear
inductively that the recursive Algorithm 1 correctly computes the size of GH(n).

The integer sequence of |EH(n)| is listed as A062799 with an alternative formula and
described as the inverse Möbius transform of the number of distinct prime factors of n in [8].
For the purpose of illustrating the various concepts that are defined in what follows GH(540)

is shown in Figure 2. Note that 540 = 22335 and that the nodes of GH(540) are labeled with
the sequence of exponents with respect of the order of M(n). Each node v ∈ V (n) is expressed
as a sequence, Mn(v) = (v1, · · · , vω(n)) where 0 ≤ vi ≤ mi.

Definition 1 Node as a sequence. If v ∈ V (n) and n = pm1
1 pm2

2 · · · pmω

ω , then

v = pv11 pv22 · · · pvωω and Mn(v) = (v1, v2, · · · , vω) (2.3)

To minimize clutter in Figure 2 the sequences (2, 3, 1), (2, 3, 0), · · · , (0, 0, 0) are written
2 3 1, 2 3 0, · · · , 0 0 0.

2 3 1

2 2 12 3 0 1 3 1

2 2 0 0 3 12 1 1 1 3 0 1 2 1

2 1 0 2 0 1 1 2 0 1 1 1 0 3 0 0 2 1

2 0 0 1 1 0 1 0 1 0 2 0 0 1 1

0 1 01 0 0 0 0 1

0 0 0

540

270180108

13590546036

452730182012

1591064

2 3 5

1
0

1

2

3

4

5

6

Figure 2. GH(540) = GH(M(540)) = GH((2, 3, 1)).

Let Vl(n) denote the set of nodes lying in the l level of the decomposition of GH(n). For
example in Figure 2, V5(540) = {108, 180, 270}.
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Lemma 2.3 The sum of the prime signature of a node equals its level.

Vl(n) =







v ∈ V (n)

∣

∣

∣

∣

∣

∣

∑

vi∈Mn(v)

vi = l







(2.4)

Proof. If v ∈ V (n), then v = n/x, where x is the product of Ω(n)− l primes (multiplicities
counted) contained in {p1, p2, · · · pw}. Thus, the nodes in Vl(n) are precisely the nodes with
signature sum

∑

vi∈Mn(v)
vi = l.

Observation 1. Nodes partitioned by their level.

Vl1(n) ∩ Vl2(n) = Ø if l1 6= l2 ∧ l1, l2 ∈ {0, ..,Ω(n)} (2.5)

V (n) =
⋃

l∈{0,..,Ω(n)}

Vl(n) (2.6)

|V (n)| =
∑

l∈{0,..,Ω(n)}

|Vl(n)| (2.7)

Let P (x, y) be the set of paths from node x to node y in a directed acyclic graph where
each path is a sequence of arcs from x to y. For example in GH(20) as shown in Figure 1 (b),
P (1, 20) = {〈(1, 2), (2, 4), (4, 20)〉, 〈(1, 2), (2, 10), (10, 20)〉, 〈(1, 5), (5, 10), (10, 20)〉}. Let sp(x, y)
and lp(x, y) be the lengths of the shortest path and longest path from x to y. Let G(n) be a
directed acyclic graph with a single source node, 1 and a single sink node, n. Let sp(G(n)) and
lp(G(n)) be the lengths of the shortest path and longest path from 1 to n, respectively. For
simplicity sake, we shall denote PH(n) and PT (n) for P (1, n) in GH(n) andGT (n), respectively.
The height of GH(n) is the maximum level in the level decomposition of GH(n), namely the

number of prime factors.

Theorem 2.4 Height of GH(n).

height(GH(n)) = sp(GH(n)) =
∑

mi∈M(n)

mi = Ω(n) (2.8)

Proof. Follows directly from Lemma 2.3.

Corollary 2.5 Length of Paths in GH(n) and GT (n).

sp(GH(n)) = lp(GH(n)) = lp(GT (n)) = Ω(n) (2.9)

Proof. Follows directly from Lemma 2.3.

Note that sp(GT (n)) = 1 since the arc with a single path, (1, n) ∈ PT (n).

Theorem 2.6 Symmetry of Vl(n).

|Vl(n)| = |VΩ(n)−l(n)| (2.10)
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Proof. A 1− 1 correspondence f is defined between Vl(n) and VΩ(n)−l(n). Let v be a node
in Vl(n) and f the function from Vl(n) to VΩ(n)−l(n) defined by

f(v) = pm1−v1
1 pm2−v2

2 · · · pmω−vω
ω (2.11)

By Lemma 2.3, f(v) is on level Ω(n)− l and f is clearly 1− 1 into. Similarly, the function g
from VΩ(n)−l(n) to Vl(n) defined by

g(u) = pm1−u1
1 pm2−u2

2 · · · pmω−nω

ω where u ∈ VΩ(n)−l(n) (2.12)

is clearly 1− 1 into with g(u) in Vl(n). Thus, g is f−1 and |Vl(n)| = |VΩ(n)−l(n)|.

Let EH
l (n) be the set of arcs from nodes in level l to level l+ 1 and formally defined in

Definition 2.

Definition 2.

EH
l (n) = {(a, b) ∈ EH(n)|a ∈ Vl(n)} (2.13)

For example in Figure 2, EH
0 (540) = {(1, 2), (1, 3), (1, 5)} and

EH
5 (540) = {(108, 540), (180, 540), (270, 540)}. The following is a symmetry property of EH(n).

Theorem 2.7 Symmetry of EH
l (n).

|EH
l (n)| = |EH

Ω(n)−l−1(n)| (2.14)

Proof. Let a ∈ Vl(n) and b ∈ Vl+1(n), and (a, b) be an arc from Vl(n) to Vl+1(n). Then, using
f in (2.11), the function F defined by F (a, b) = (f(b), f(a)) provides a 1− 1 into function from
EH

l (n) to EH
Ω(n)−l−1(n). This is seen by noting that

f(b) = pm1−b1
1 pm2−b2

2 · · · pmω−bω
ω is in VΩ(n)−l−1 (2.15)

f(a) = pm1−a1
1 pm2−a2

2 · · · pmω−aω

ω is in VΩ(n)−l (2.16)

f(a)

f(b)
=

pm1−a1
1 pm2−a2

2 · · · pmω−aω

ω

pm1−b1
1 pm2−b2

2 · · · pmω−bω
ω

=
pm1
1 pm2

2 · · · pmω

ω pb11 pb22 · · · pbωω
pm1
1 pm2

2 · · · pmω

ω pa1
1 pa2

2 · · · paω

ω
=

b

a
= p (2.17)

Thus, from (2.17), since (a, b) is an arc, (f(b), f(a)) is an arc from VΩ(n)−l−1 to VΩ(n)−l.
Therefore, F provides a 1− 1 into function from EH

l (n) to EH
Ω(n)−l−1(n). Similarly, the function

G defined by G(c, d) = (g(d), g(c)) is a 1− 1 into function from EH
Ω(n)−l−1(n) to EH

l (n) .

Therefore, |EH
l (n)| = |EH

Ω(n)−l−1(n)|.

All GH(n) have a single source node, 1 and a single sink node, n. Thus |V0(n)| = |VΩ(n)(n)| =
1. There are two other special levels with ω(n) as their cardinalities.

Theorem 2.8 Two special levels with ω(n) nodes.

|VΩ(n)−1(n)| = |V1(n)| = ω(n) (2.18)
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Proof. V1(n) consists of the ω(n) distinct prime factors of n. By Theorem 2.6 |V1(n)| =
|VΩ(n)−1(n)| = ω(n).

Definition 3. Width of GH(n) in terms of nodes

Wv(n) = max
l∈{0,..,Ω(n)}

|Vl(n)| (2.19)

For example in Figure 2, Wv(540) = 6 at level 3. The Wv(n) sequence is listed as A096825,
the maximal size of an antichain in a divisor lattice in [8]. A different width can be defined in
terms of arc cardinality in each level as depicted in Figure 3.

Definition 4. Width of GH(n) in terms of arcs

We(n) = max
l∈{0,..,Ω(n)−1}

|EH
l (n)| (2.20)

1

n

Ω(n)

Wv(n)

ω(n)

ω(n)

We(n)1

n

|PH(n)|

∆(n)

Figure 3. Anatomy of (n).

For example in Figure 2, We(540) = 12 at levels 2 and 3. The We(n) sequence does not
appear in [8].
Since GH(n) is a digraph, each node, v has an in-degree, ∆−(v), number of incoming arcs

and an out-degree, ∆+(v), number of outgoing arcs and the degree of v is defined ∆(v) =
∆+(v) + ∆−(v) .

Lemma 2.9 Upper bound for indegrees and outdegrees. For a node v ∈ V (n),

∆−(v) ≤ ω(n),∆+(v) ≤ ω(n), and ∆(v) ≤ 2ω(n)

Proof. For the outdegree, each node can add at most one more of each distinct prime to
the product. For the indegree, the product represented by the node was obtained by adding at
most one prime to the product at the level just below.
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Definition 5. The degree of the graph GH(n) denoted , ∆(GH(n)) is defined by

∆(GH(n)) = max
v∈V (n)

∆(v) (2.21)

For example from Figure 2, ∆(GH(540)) = 5 because the maximum node degree of GH(540)
occurs at 90, 30, 18, and 6. The ∆(GH(n)) or simply ∆(n) sequence is not listed in [8]. The
∆(GH(n)) can be computed very efficiently as stated in Theorem 2.10 using only M ′(n). Let
G(n) be a sub-multiset of M ′(n).

G(n) = [mi ∈ M ′(n) |m i > 1] (2.22)

|G(n)| =
∑

mi∈M(n)

gto(mi) where gto(mi) =

{

1 if mi > 1
0 otherwise

(2.23)

For example of M ′(540) = [2, 3, 1], G(540) = [2, 3], and |G(540)| = 2.

Theorem 2.10 Degree of GH(n).

∆(GH(n)) = ω(n) + |G(n)| (2.24)

Proof. Consider v ∈ V (n) with Mn(v) = (v1, · · · , vω) where 0 ≤ vi ≤ mi. For a vi whose
mi > 1, v has an incoming arc from a node u whose Mn(u) = (v1, · · · , (ui = vi − 1), · · · , vω)
provided vi > 0 and v has an outgoing arc to a node w whose Mn(w) = (v1, · · · , (wi = vi +
1), · · · , vω) as long as vi < mi. Every element in G(n) contributes 2 to ∆(v). For a vi in
the M ′(n)−G(n) multiset, whose mi = 1, v can have either only the incoming arc from a
node u whose Mn(u) = (v1, · · · , (ui = 0), · · · , vω(n)) if vi = 1 or the outgoing arc to a node
w whose Mn(w) = [v1, · · · , (wi = 1), · · · , vω(n)] if vi = 0. There are ω(n)− |G(n)| number of
such elements, ≤ 1. Therefore, for every node v ∈ V (n), ∆(v) ≤ 2× |G(n)|+ ω(n)− |G(n)| =
ω(n) + |G(n)|. There exists a node v whose ∆(v) = ω(n) + |G(n)|. One such node is v such
that Mn(v) = (m1 − 1,m2 − 1, · · · ,mω(n) − 1).

For example in Figure 2, in GH((2, 3, 1)), the node 18 whose Mn(18) = (1, 2, 0) has the
maximum degree, 5.
The next graph invariant of interest is the cardinality of paths, |P (GH(n))|. The first 200

integer sequence entries match with those labeled as A008480 [8] which is the number of ordered
prime factorizations of n with its multinomial coefficient formula given in Theorem 2.11 [1, 6].

Theorem 2.11 the number of ordered prime factorizations of n [1, 6].

opf(n) =
(
∑

x∈M(n) x)!
∏

x∈M(n) x!
(2.25)

While a nice formula has been given in [1, 6], a recursive definition is given here where the
dynamic programming technique can be applied to quickly generate the integer sequence.

Theorem 2.12 Cardinality of P (GH(n)).

|P (GH(n))| =







∑

v∈VΩ(n)−1(n)

|P (GH(v))| if Ω(n) > 1

1 if Ω(n) ≤ 1
(2.26)
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Proof. All paths in P (GH(n)) must contain exactly one node at level Ω(n)− 1.

The next four graph invariants involve the fact thatGH(n) is bipartite as depicted in Figure 4.

Theorem 2.13 GH(n) is bipartite.

Proof. Arcs join only even level nodes to odd level nodes and vice versa. Thus, the nodes
at even and odd levels form a bipartition of V (n).

2

15

53

6 10

12 3020

1

60

4

0

1

2

3

4

156 104 601

1 3

2 40

12 3020532

(a) Hasse diagram GH (60) (b) GH (60) shown as a bipartite graph

Figure 4. GH(60)

Definition 6.

VE(n) = {v ∈ V (n) |
∑

mi∈Mn(v)

mi = even} (2.27)

VO(n) = {v ∈ V (n) |
∑

mi∈Mn(v)

mi = odd} (2.28)

The integer sequence of the cardinality of VE matches with A038548 which is the number of
divisors of n that are at most

√
n [8, 2]. The integer sequence of |VO| also appears as A056924,

described as the number of divisors of n that are smaller than
√
n [8, 2].

Theorem 2.14 Cardinality of VO(n).

|VO(n)| =
⌊ |V (n)|

2

⌋

(2.29)

Proof. The proof is by induction. For the base case ω = 1, each divisor has a single exponent,

i.e., vi ∈ {p01, p11, · · · , pm1
1 }. Clearly, |VO| =

⌊

|V (n)|
2

⌋

. For the inductive step ω + 1, let Mω+1 be

Mω with mω+1 appended. VO(Mω+1) is the union of the cartesian product of VO(Mω) and
VE(mω+1) together with the cartesian product of VE(Mω) and VO(mω+1), thus

|VO(Mω+1)| = |VO(Mω)| × |VE(mω+1)|+ |VE(Mω)| × |VO(mω+1)| (2.30)
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There are four cases depending on the parities of |V (Mω)| and mω+1. The following uses
Theorem 2.1 and Definition 6.
If |V (Mω)| is odd and mω+1 is odd,

|VO(Mω+1)| =
|V (Mω)| − 1

2
× mω+1 + 1

2
+

|V (Mω)|+ 1

2
× mω+1 + 1

2

=
|V (Mω)|(mω+1 + 1)− (mω+1 + 1)

4
+

|V (Mω)|(mω+1 + 1) + (mω+1 + 1)

4

=
|V (Mω+1)| − (mω+1 + 1) + |V (Mω+1)|+ (mω+1 + 1)

4
=

⌊ |V (Mω+1)|
2

⌋

If |V (Mω)| is odd and mω+1 is even,

|VO(Mω+1)| =
|V (Mω)| − 1

2
× mω+1 + 2

2
+

|V (Mω)|+ 1

2
× mω+1

2

=
|V (Mω)|(mω+1)− (mω+1 + 2)

4
+

|V (Mω)|(mω+1 + 2) +mω+1

4

=
|V (Mω)|(2mω+1 + 2)− (mω+1 + 2) +mω+1

4
=

|V (Mω+1)| − 1

2
=

⌊ |V (Mω+1)|
2

⌋

If |V (Mω)| is even and mω+1 is odd,

|VO(Mω+1)| =
|V (Mω)|

2
× mω+1 + 1

2
+

|V (Mω)|
2

× mω+1 + 1

2

=
|V (Mω)|(mω+1 + 1)

4
+

|V (Mω)|(mω+1 + 1)

4
=

|V (Mω+1)|
2

=

⌊ |V (Mω+1)|
2

⌋

If |V (Mω)| is even and mω+1 is even,

|VO(Mω+1)| =
|V (Mω)|

2
× mω+1 + 2

2
+

|V (Mω)|
2

× mω+1

2

=
|V (Mω)|(2mω+1 + 2)

4
=

|V (Mω+1)|
2

=

⌊ |V (Mω+1)|
2

⌋

Therefore, |VO(Mω+1)| =
⌊

|V (Mω+1)|
2

⌋

in all four cases.

Corollary 2.15 Cardinality of VE(n).

|VE(n)| = |V (n)| − |VO(n)| = |V (n)| − ⌊|V (n)|/2⌋ (2.31)

Proof. Since VE(n) and VO(n) partition V (n), |VE(n)| = |V (n)| − |VO(n)|.

Similarly as with V (n), E(n) is bipartite as follows.

Definition 7.

EE(n) = {(a, b) ∈ EH(n) |
∑

mi∈M(a)

mi = even} (2.32)

EO(n) = {(a, b) ∈ EH(n) |
∑

mi∈M(a)

mi = odd} (2.33)

Surprisingly, the integer sequences of |EE(n)| and |EO(n)| are not listed in [8].
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Theorem 2.16 Cardinality of EO(n).

|EO(n)| =
⌊ |EH(n)|

2

⌋

(2.34)

Proof. An inductive proof, similar to the proof for the node parity decomposition in
Theorem 2.14, can be applied using the cartesian product of two graphs (2.35) and the arc
parity decomposition (2.36).

|EH(Mω+1)| = |EH(Mω)| × |V (mω+1)|+ |V (Mω)| × |EH(mω+1)| (2.35)

|EO(Mω+1)| = |EO(Mω)| × |VE(mω+1)|+ |EE(Mω)| × |VO(mω+1)| (2.36)

+|VO(Mω)| × |EE(mω+1)|+ |VE(Mω)| × |EO(mω+1)|

|EO(Mω+1)| =
⌊

|EH(Mω+1)|/2
⌋

in all eight cases bsed on parities of |EH(Mω)|, |V (Mω)|, and
mω+1.

Corollary 2.17 Cardinality of EE(n).

|EE(n)| = |EH(n)| − |EO(n)| = |EH(n)| −
⌊ |EH(n)|

2

⌋

(2.37)

Proof. Since EE(n) and EO(n) partition EH(n), |EE(n)| = |EH(n)| − |EO(n)|.

The last two graph invariants of Table 1 are exclusive to the transitive closure, GT (n),
namely the size and the number of paths in GT (n). Also surprisingly, the sequence for the size
of GT (n) is not listed in [8].

Theorem 2.18 Size of GT (n).

|ET (n)| =
∑

v∈V (n)

(|V (v)| − 1) (2.38)

Proof. The number of incoming arcs to node v is the number of divisors of v that are less
than v itself. Thus the indegree of v is |V (v)| − 1 and the sum of the indegrees of all nodes in
GT (n) is the size of GT (n).

Theorem 2.19 Cardinality of P (GT (n)).

|P (GT (n))| =
{

∑

v∈V (n)−{n}

|P (GT (v))| if Ω(n) > 1

1 if Ω(n) ≤ 1
(2.39)

Proof. Let P (GT (v)) be the set of all paths from 1 to v where v 6= n. The addition of
the arc (v, n) to each path in P (GT (v)) yields a path from 1 to n. Thus, summing over all
v ∈ V (n)− {n} is equal to |P (GT (n))|.

The integer sequence of |P (GT (n))| matches with A002033 [8] and described as the number
of perfect partitions of n [8, 3]. Thus, the interpretation as the number of paths from 1 to n is
part of the original contributions of this work.
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3. Graph Invariant Integer Sequences ordered by Prime Signature

The set of positive integers > 1 is partitioned by their prime signatures as exemplified in
Table 2.

Definition 8. nx and ny are prime signature congruent iff M(nx) = M(ny).

Let S(n) be a representative sequence of the prime signature M(n) written in descending
order. More formally, S(n) = (s1, s2, · · · , sω) is the permutation of the multiset, M(n) =
[m1,m2, · · · ,mω] such that s1 ≥ s2 ≥ · · · ≥ sω. For example, S(4500) = S(33075) = (3, 2, 2)
because M(4500 = 22 × 32 × 53) = [2, 2, 3] has the same prime signature as M(33075 = 33 ×
52 × 72) = [3, 2, 2].
Albeit there are numerous ways of ordering S, the set of all S(n), two particular orderings

such as the graded colexicographic and canonical orders of S appear in the literature [5, 1].
First in the graded colexicographic order, S are first grouped by Ω(S) and then by ω(S) in
ascending order. Finally, the reverse lexicographic order is applied to the sub-group. It is closely
related to the graded reflected colexicographic order used and denoted as π in [1] . Let LI(S)
denote the least integer of a prime signature in the graded (reflected or not) colexicographic
order. This sequence is listed as A036035 in [8].
Next, the canonical order, also known as the graded reverse lexicographic order, is often used

to order the partitions [5]. It first groups prime signatures by Ω(S) and then uses the reverse
lexicographic order. Although this order is identical to the graded colexicographic order for
the first 22 prime signatures, they clearly differ at 23, 24, 26, 27, etc., as seen in Figure 5.
The integer sequence of the least integer, LI(S) in canonical order is listed as the Canonical
partition sequence encoded by prime factorization (A063008) in [8].
The S(n) determine the structure of GH(S(n)) and GT (S(n)) as shown in Figure 6 with the

first few simple Hasse diagrams. All integer sequences of graph invariants in natural order in
Table 1 can be ordered in the graded colexicographic order (Table A.1) and the canonical order
(Table A.2). However, very little has been investigated concerning these sequences since most
of them are in fact new. In [1], Abramowitz and Stegun labeled Ω(S), ω(S), and |PH(S)| in the

Table 2. Partitions of integers (> 1) by prime signature congruency.

M / S Integer sequence for n = 1, · · · , 20 OEIS

(1) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, · · ·

A000040
(Primes)

(2) 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849,
2209, 2809, 3481, 3721, 4489, 5041, · · ·

A001248
(Squared prime)

(1,1) 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62,
65, 69, · · ·

A006881

(3) 8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653,
68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, · · ·

A030078
(Cubed prime)

(2,1) 12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117,
124, 147, 148, · · ·

A054753

(1,1,1) 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174,
182, 186, 190, 195, 222, · · ·

A007304

...
...

...
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1 (0) 2 (1) 3 (2) 5 (3) 8 (4) 13 (5)
4 (1,1) 6 (2,1) 9 (3,1) 14 (4,1)

7 (1,1,1) 10 (2,2) 15 (3,2)
11 (2,1,1) 16 (3,1,1)
12 (1,1,1,1) 17 (2,2,1)

18 (2,1,1,1)
19 (1,1,1,1,1)

Index Graded Colexicographic Canonical
20 (6) (6)
21 (5,1) (5,1)
22 (4,2) (4,2)
23 (3,3) (4,1,1)
24 (4,1,1) (3,3)
25 (3,2,1) (3,2,1)
26 (2,2,2) (3,1,1,1)
27 (3,1,1,1) (2,2,2)
28 (2,2,1,1) (2,2,1,1)
29 (2,1,1,1,1) (2,1,1,1,1)
30 (1,1,1,1,1,1) (1,1,1,1,1,1)

Figure 5. First 30 prime signatures in colexicographic and canonical orders.
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Figure 6. First seven Hasse diagrams ordered by prime signatures.

graded colexicographic order as n, m, and M1, respectively. Only these three graph invariants
and the number of divisors, |V (S)| are found in [8] for the graded colexicographic order. Only
|PH(S)| is found in [8] for the canonical order.

4. Conclusion

In this article, fourteen graph invariants were investigated for two classic graphs, the Hasse
diagram,GH(n) and its transitive closure,GT (n). Integer sequences with their first two hundred
entries in natural order by n are computed and compared to existing sequences in the On-Line
Encyclopedia of Integer Sequences. Five new integer sequences in natural order, shown in
Table 1 were discovered, i.e., not found in [8].
New interpretations based on graph theory are provided for sequences found in [8]. Ten

(Table A.1) and thirteen (Table A.2) new integer sequences were discovered for the graded
colexicographic and canonical orders, respectively.
Here are some intriguing conjectures stated as open problems.

Conjecture 1 Cardinality of disjoint paths. Let P ′(GH(n)) be the set of disjoint paths.
|P ′(GH(n))| = ω(n)?
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Conjecture 2 Node width at middle level. Wv(n) = |V⌈Ω(n)/2⌉(n)|?

Conjecture 3 Relationship between widths by nodes and arcs. There always exists a
level l such that if |Vl(n)| = Wv(n), then |EH

l (n)| = We(n).

argmax
l∈{0,..,Ω(n)−1}

|EH
l (n)| = argmax

l∈{0,..,Ω(n)−1}

|Vl(n)|? (4.1)

Other future work includes finding either a closed and/or a simpler recursive formula for the
cardinality of P (GT (n)) in Theorem 2.19. Note that entries for |PT (S)| in Table A.1 and A.2
are less than 50 as computing |PT (S)| by Theorem 2.19 took too long time.

Appendix. Integer Sequences by Prime Signatures
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Table A.1. divides relation graph invariants in graded colexicographic order

Invariant Integer sequence for S = [0], · · · , [4, 4] OEIS

LI(S) 1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64,
96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030, 128, 192, 288, 432,
480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510, 256,
384, 576, 864, 1296, · · ·

A036035

|V (S)| 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16,
20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72,
96, 128, 9, 16, 21, 24, 25, · · ·

A074139

|EH(S)| 0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22,
24, 36, 46, 54, 72, 84, 128, 192, 7, 19, 27, 31, 44, 59, 64, 75, 92, 116, 135,
176, 204, 304, 448, 8, 22, 32, 38, 40, · · ·

-

Ω(S) 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, · · ·

A036042

ω(S) 0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5,
6, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 2, · · ·

A036043

Wv(S) 1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 7, 10, 1, 2, 3, 4, 4, 6, 7, 8, 10,
14, 20, 1, 2, 3, 4, 4, 6, 7, 8, 8, 11, 13, 15, 18, 25, 35, 1, 2, 3, 4, 5, · · ·

-

We(S) 0, 1, 1, 2, 1, 3, 6, 1, 3, 4, 7, 12, 1, 3, 5, 8, 11, 18, 30, 1, 3, 5, 6, 8, 12, 15,
19, 24, 38, 60, 1, 3, 5, 7, 8, 13, 16, 19, 20, 30, 37, 46, 58, 90, 140, 1, 3, 5,
7, 8, · · ·

-

∆(S) 0, 1, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 2, 3, 4, 4, 5, 5, 5, 2, 3, 4, 4, 4, 5, 6, 5, 6, 6,
6, 2, 3, 4, 4, 4, 5, 5, 6, 5, 6, 7, 6, 7, 7, 7, 2, 3, 4, 4, 4, · · ·

-

|PH(S)| 1, 1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30,
60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 210, 420, 630,
840, 1260, 2520, 5040, 1, 8, 28, 56, 70, · · ·

A036038

|VE(S)| 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 8, 10, 12, 14,
16, 18, 24, 32, 4, 7, 9, 10, 12, 15, 16, 18, 20, 24, 27, 32, 36, 48, 64, 5, 8,
11, 12, 13, · · ·

-

|VO(S)| 0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 8, 10, 12, 13,
16, 18, 24, 32, 4, 7, 9, 10, 12, 15, 16, 18, 20, 24, 27, 32, 36, 48, 64, 4, 8,
10, 12, 12, · · ·

-

|EE(S)| 0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 12, 18, 23,
27, 36, 42, 64, 96, 4, 10, 14, 16, 22, 30, 32, 38, 46, 58, 68, 88, 102, 152,
224, 4, 11, 16, 19, 20, · · ·

-

|EO(S)| 0, 0, 1, 2, 1, 3, 6, 2, 5, 6, 10, 16, 2, 6, 8, 14, 16, 26, 40, 3, 8, 11, 12, 18,
23, 27, 36, 42, 64, 96, 3, 9, 13, 15, 22, 29, 32, 37, 46, 58, 67, 88, 102, 152,
224, 4, 11, 16, 19, 20, · · ·

-

|ET (S)| 0, 1, 3, 5, 6, 12, 19, 10, 22, 27, 42, 65, 15, 35, 48, 74, 90, 138, 211, 21, 51,
75, 84, 115, 156, 189, 238, 288, 438, 665, 28, 70, 108, 130, 165, 240, 268,
324, 365, 492, 594, 746, 900, 1362, 2059, 36, 92, 147, 186, 200, · · ·

-

|PT (S)| 1, 1, 2, 3, 4, 8, 13, 8, 20, 26, 44, 75, 16, 48, 76, 132, 176, 308, 541, 32,
112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683, 64, 256, 544, 768,
976, 1888, 2316, 3172, 3408, 5740, 7880, 10404, 14300, 25988, · · ·

-
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Table A.2. divides relation graph invariants in canonical order

Invariant Integer sequence for S = [0], · · · , [5, 3] OEIS

LI(S) 1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64,
96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 480,
432, 720, 1680, 1080, 1800, 2520, 9240, 6300, 13860, 60060, 510510, 256,
384, 576, 960, 864, · · ·

A063008

|V (S)| 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 20,
16, 24, 32, 27, 36, 48, 64, 8, 14, 18, 24, 20, 30, 40, 32, 36, 48, 64, 54, 72,
96, 128, 9, 16, 21, 28, 24, · · ·

-

|EH(S)| 0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22,
36, 24, 46, 72, 54, 84, 128, 192, 7, 19, 27, 44, 31, 59, 92, 64, 75, 116, 176,
135, 204, 304, 448, 8, 22, 32, 52, 38, · · ·

-

Ω(S) 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, · · ·

-

ω(S) 0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5,
6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, · · ·

-

Wv(S) 1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 7, 10, 1, 2, 3, 4, 4, 6, 8, 7, 10,
14, 20, 1, 2, 3, 4, 4, 6, 8, 7, 8, 11, 15, 13, 18, 25, 35, 1, 2, 3, 4, 4, · · ·

-

We(S) 0, 1, 1, 2, 1, 3, 6, 1, 3, 4, 7, 12, 1, 3, 5, 8, 11, 18, 30, 1, 3, 5, 8, 6, 12, 19,
15, 24, 38, 60, 1, 3, 5, 8, 7, 13, 20, 16, 19, 30, 46, 37, 58, 90, 140, 1, 3, 5,
8, 7, · · ·

-

∆(S) 0, 1, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 2, 3, 4, 4, 5, 5, 5, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6,
6, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 2, 3, 4, 4, 4, · · ·

-

|PH(S)| 1, 1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 30, 20,
60, 120, 90, 180, 360, 720, 1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840,
630, 1260, 2520, 5040, 1, 8, 28, 56, 56, · · ·

A078760

|VE(S)| 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16,
14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8,
11, 14, 12, · · ·

-

|VO(S)| 0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 10, 8, 12, 16,
13, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 4, 8,
10, 14, 12, · · ·

-

|EE(S)| 0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 18, 12, 23,
36, 27, 42, 64, 96, 4, 10, 14, 22, 16, 30, 46, 32, 38, 58, 88, 68, 102, 152,
224, 4, 11, 16, 26, 19, · · ·

-

|EO(S)| 0, 0, 1, 2, 1, 3, 6, 2, 5, 6, 10, 16, 2, 6, 8, 14, 16, 26, 40, 3, 8, 11, 18, 12,
23, 36, 27, 42, 64, 96, 3, 9, 13, 22, 15, 29, 46, 32, 37, 58, 88, 67, 102, 152,
224, 4, 11, 16, 26, 19, · · ·

-

|ET (S)| 0, 1, 3, 5, 6, 12, 19, 10, 22, 27, 42, 65, 15, 35, 48, 74, 90, 138, 211, 21, 51,
75, 115, 84, 156, 238, 189, 288, 438, 665, 28, 70, 108, 165, 130, 240, 365,
268, 324, 492, 746, 594, 900, 1362, 2059, 36, 92, 147, 224, 186, · · ·

-

|PT (S)| 1, 1, 2, 3, 4, 8, 13, 8, 20, 26, 44, 75, 16, 48, 76, 132, 176, 308, 541, 32,
112, 208, 368, 252, 604, 1076, 818, 1460, 2612, 4683, 64, 256, 544, 976,
768, 1888, 3408, 2316, 3172, 5740, 10404, 7880, · · ·

-
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