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Distant parents in complete binary trees

.

S. P. GLASBY

Abstract. There is a unique path from the root of a tree to any other vertex. Every
vertex, except the root, has a parent: the adjoining vertex on this unique path. This is
the conventional definition of the parent vertex. For complete binary trees, however, we
show that it is useful to define another parent vertex, called a distant parent. The study
of distant parents leads to novel connections with dyadic rational numbers. Moreover,
we apply the concepts of close and distant parent vertices to deduce an apparently new
sense in which continued fractions are ‘best’ rational approximations.
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1. Introduction

There is a unique path from the root of a tree to any other vertex. Hence each vertex
in a tree with at most two children vertices can be associated with a string S of lefts and
rights, an LR-string. We shall focus exclusively on (infinite) complete binary trees, where
each vertex has precisely two children vertices. We henceforth abbreviate these as ‘trees.’
Rather than identifying the the vertices with LR-strings, it will be convenient to initially
label vertices with LR-strings, see Fig. 1. The empty LR-string is denoted by ε. Thus the
left and right children vertices of S are CL(S) := SL and CR(S) := SR, respectively. If
S 6= ε, then the conventional parent vertex is obtained by deleting the last symbol of S.

LLL LLR LRL LRR RLL RLR RRL RRR

LL LR RL RR

L R

ε

R
−1

L
−1

Figure 1. Infinite complete binary tree with vertices labeled by LR-strings.
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In this paper we say that every string S has a left and right parent vertex denoted
PL(S) = SR−1 and PR(S) = SL−1, respectively. The expressions SR−1 and SL−1 are eval-
uated recursively using the rules: LL−1 = ε, RR−1 = ε, LR−1 = R−1, and RL−1 = L−1.
Thus when S = L2R2, for example, PL(S) = L2R and PR(S) = L. Every vertex S 6= ε has
a close and a distant parent vertex denoted PC(S) and PD(S), respectively. The former
is the usual definition of parent, and the latter is studied in this note.

The aim of this note is to relate close and distant parents to dyadic1 rationals via simple
recurrence relations, or explicit formulae, see Theorems 1 and 2 in Section 2. Properties
of distant parents are described using three metrics: the length |S| of a string, its position
N(S) on a tree, and an order-preserving linear metric r(S) defined later. Note that |S| and
N(S) are natural numbers, while r(S) is a dyadic rational number satisfying 0 6 r(S) 6 2.

Infinite complete binary trees have strong connections with group theory [7, 8], with the
theory of automata, and with the analysis of computer programs. However, this largely
expository note focuses on elementary examples. An outline of this paper is as follows.
Section 2 relates close and distant parents of a vertex S to the the numbers |S|, N(S), and
r(S). In Section 3, an infinite complete binary tree whose vertices are continued fractions
is considered. The children vertices are most naturally defined in terms of close and
distant parents. Continued fractions are well-known to be associated with best rational
approximations, see [6, 4.5.3. Ex. 42] and [3, p. 112]. For example, if a = [a0, a1, . . . ] and
b = [b0, b1, . . . ] are irrational numbers, then the rational number c between a and b with
smallest numerator or denominator is c = [a0, . . . , ak−1,min(ak, bk) + 1] where ai = bi for
0 6 i < k and ak 6= bk. We shall show in Theorem 4(d) that the close and distant parents
to a continued fraction are the best lower-level rational approximations on a complete
binary tree of all rationals.

2. The main results

In this section we define length |S| of a string S, its position N(S) on a tree, and an
order-preserving linear function r(S), see Fig. 2. These are related to the parent vertices
of S. Let S(k0, k1, . . . , km) denote the LR-string

S(k0, k1, . . . , km) :=

{

Rk0Lk1 · · ·Lkm−1Rkm if m is even;

Rk0Lk1 · · ·Rkm−1Lkm if m is odd;
(1)

where k0 ∈ N := {0, 1, 2, . . . } and ki > 1 if 1 6 i 6 m. The length of S = S(k0, k1, . . . , km)
is defined to be |S| = k0 + k1 + · · ·+ km. It counts the number of LR-symbols in S, and
gives the level of S in the tree shown in Fig. 1. The position N(S) of a string S is
determined by Fig. 2(b), and a formula for N(S) is given in Theorem 2 below.

The vertices of the tree in Fig. 1 can be ordered from left-to-right as the real numbers r
in the interval 0 < r < 2 are so ordered. Consider a vertical line through the vertex

1A dyadic rational is one whose denominator is a power of two.
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Figure 2. (a) binary expansions of r(S); and (b) position values N(S).

(string) S meeting the horizontal interval 0 < r < 2 at the real number r(S). The
elements of the monoid {L,R}∗ := {ε, L,R, L2, LR,R2, L3, . . . } will be called strings, and
those of {L,R}⋆ := {L−1, R−1} ∪ {L,R}∗ will be called generalized string. A convenient
recursive definition of r is:

r(ε) = 1, r(SL) = r(S)− 2−|SL|, r(SR) = r(S) + 2−|SR| for S ∈ {L,R}∗. (2)

A simple induction shows that r(S) is a dyadic rational. The value r(R−1) = 0 is obtained
from r(SR) = r(S) + 2−|SR| by substituting S = R−1. Similarly, r(L−1) = 2 is obtained
from r(SL) = r(S) − 2−|SL| by substituting S = L−1. Thus r extends to generalized
strings. (Inorder traversal of a finite binary tree [5, §2.3.1] coincides with r-ordering.)

Moving left decreases the r-value, and moving right increases the r-value. However,
a left move is not counteracted by any number of right moves; nor is a right move
counteracted by any number of left moves. That is,

r(SL) < r(SLR) < r(SLR2) < · · · < r(S) < · · · < r(SRL2) < r(SRL) < r(SR). (3)

Thus r : {L,R}⋆ → [0, 2] is an injective function which orders the generalized strings.

The generalized strings L−1 and R−1 have length (or level) −1, by definition. It follows
from Theorem 1(c) below that the S ′ ∈ {L,R}⋆ with |S ′| < |S| and r(S ′) < r(S) which
maximizes r(S ′) is PL(S) = S ′. Similarly, the S ′ with |S ′| < |S| and r(S ′) > r(S) which
minimizes r(S ′) is PR(S) = S ′. For this reason, the parents of a vertex in a tree are
commonly ‘best approximations’ (in some sense) to the vertex.

Theorem 1. Let S ∈ {L,R}∗ be a string, and let m > 0 be an integer. Then

(a) {r(S) | |S| = m} equals {2k−1
2m

| 1 6 k 6 2m};

(b) {r(S) | 0 6 |S| 6 m} equals { ℓ
2m

| 1 6 ℓ 6 2m+1 − 1};
(c) the following recurrences hold

PL(ε) = R−1, PL(SL) = PL(S), PL(SR) = S;

PR(ε) = L−1, PR(SL) = S, PR(SR) = PR(S);

(d) max(|PL(S)|, |PR(S)|) < |S|, and |PL(S)| 6= |PR(S)| if S 6= ε;
(e) r(PL(S)) = r(S)− 2−|S| and r(PR(S)) = r(S) + 2−|S|;
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(f) if S = S(k0, . . . , km), X = S(k0, . . . , km−1, km−1), Y = S(k0, . . . , km−2, km−1−1),
then the following formulas hold

PL(S) =

{

X if m is even;

Y if m is odd;
PR(S) =

{

Y if m is even;

X if m is odd.
(4)

Proof. (a) We use induction on m. The result is true when m = 0 as r(ε) = 1. Assume
now that |S| = m > 0. Then S equals S ′L or S ′R where |S ′| = m − 1. By induction,
r(S ′) = 2k−1

2m−1 for a unique k with 1 6 k 6 2m−1. It follows from (2) that r(S ′L) = 4k−3
2m

and S ′R = 4k−1
2m

, see Fig. 3. These r-values equal 2ℓ−1
2m

for a unique ℓ with 1 6 ℓ 6 2m.
This proves part (a).

S ′L S ′R

S ′

4k−3
2m

4k−1
2m

2k−1
2m−1

Figure 3. Children rules (a) for strings; (b) for r-values.

(b) By part (a), {r(S) | 0 6 |S| 6 m} equals
⋃m

i=0{
2k−1
2i

| 1 6 k 6 2i}. This is a disjoint
union as the fractions are reduced, and hence distinct. The union has

∑m

i=0 2
i = 2m+1−1

fractions, each of which is more than zero, and less than two. Since each fraction can be
written with a denominator of 2m, the union equals { ℓ

2m
| 1 6 ℓ 6 2m+1 − 1}, as desired.

(c) The initial conditions and the recurrences follow from the definition of PL(S) and
PR(S) together with the rules for postmultiplying by L−1 and R−1 on page 2.

(d) Since PL(S) = SR−1 and PR(S) = SL−1, and |S| counts the number of symbols
(Ls and Rs) in S, it follows that |PL(S)| < |S| and |PR(S)| < |S|. Suppose S 6= ε. One
of PL(S) and PR(S), the close parent, has length |S| − 1 because precisely one symbol is
canceled. For the distant parent, however, at least two symbols are canceled (this needs
appropriate interpretation if S = L or R). Hence |PL(S)| 6= |PR(S)| if S 6= ε, and the
parents of S lie on different levels.

(e) We use induction on |S|. The result is true for |S| = 0. Suppose now that |S| > 0.
Then S = S ′L, or S = S ′R, for some S ′ ∈ {L,R}∗. Suppose S = S ′L. Then PR(S) = S ′

and r(S ′L) = r(S ′) − 2−|S′L| by (2). Thus r(PR(S)) = r(S) + 2−|S|. Since S = S ′L,
part (c) gives PL(S) = PL(S

′), and induction gives r(PL(S
′)) = r(S ′)− 2−|S′|. Hence

r(PL(S)) = r(PL(S
′)) = r(S ′)− 2−|S′| = r(S ′)− 2−|S| − 2−|S| = r(S)− 2−|S|.

Similar arguments may be used to handle the case when S = S ′R.

(f) Formula (4) needs interpretation when m = 0. In this case, S = ε, k0 = 0, X = R−1,
and Y = L−1. This agrees with PL(ε) = R−1 and PR(ε) = L−1. Suppose now that m > 0.
The last symbol of S is Rkm if m is even, and Lkm if m is odd, where km > 1. Formula (4)
now follows by canceling, as PL(S) = SR−1 and PR(S) = SL−1. �
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Counting the strings in {L,R}∗ in Fig. 1 from top down and then left-to-right gives the
tree in Fig. 2b. Recursively define a bijective position function N : {L,R}∗ → N by

N(ε) = 0, N(SL) = 2N(S) + 1, and N(SR) = 2N(S) + 2 for S ∈ {L,R}∗. (5)

Substituting S = L−1 into N(SL) = 2N(S) + 1 gives N(L−1) = −1
2
, and substituting

S = R−1 into N(SR) = 2N(S) + 2 gives N(R−1) = −1.

As a consequence of Theorem 1(d), each ε 6= S ∈ {L,R}∗ has a close parent, denoted
PC(S), and a distant parent, denoted PD(S). Set n := N(S). Then PC(S) equals PL(S)
if n is even, and PR(S) if n is odd. Similarly, PD(S) equals PL(S) if n is odd, and PR(S)

if n is even. Table 1 suggests that N(PC(S)) =
⌊

N(S)−1
2

⌋

holds. This is easily proved.
However, a formula for the numbers N(PD(S)) is more mysterious. The integer-valued

n=N(S) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N(PC(S)) 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

N(PD(S)) −1 − 1

2
−1 0 0 − 1

2
−1 1 1 0 0 2 2 − 1

2
−1 3 3 1 1 4 4 0

Table 1. Position numbers of close and distant parents

function n 7→ 2N(PD(N
−1(n)))+1 does not appear (at the time of writing) in the On-Line

Encyclopedia of Integer Sequences, see http://oeis.org. A formula for N(PD(S)) can
be computed from (6a,b) below.

Theorem 2. Set S := S(k0, . . . , km−1, km). The functions PC, PD, N , and r can be
computed (nonrecursively) by the formulas

PC(S) = S(k0, . . . , km−1, km − 1) and PD(S) = S(k0, . . . , km−2, km−1 − 1); (6a)

N(S) =

{

2k0+···+km+1 − 2k1+···+km + 2k2+···+km − · · ·+ 2km − 2 if m is even;

2k0+···+km+1 − 2k1+···+km + 2k2+···+km − · · · − 2km − 1 if m is odd;
(6b)

r(S) = 2
(

1− 2−k0 + 2−k0−k1 − · · ·+ (−1)m2−k0−k1−···−km−1 + (−1)m+12−|S|−1
)

(6c)

= 2

(

m+1
∑

i=0

(−1)i2−εj

)

+ (−1)m+22−|S| where εj =
i−1
∑

j=0

kj. (6d)

Proof. Equation (6a) follows easily from the rules for postmultiplying by R−1 or L−1.
To verify formulas (6b) and (6c) it suffices to prove that they satisfy their respective
recurrence relations. This is somewhat easier, paradoxically, than guessing the formulas
in the first place. We begin by showing that (6b) satisfies the recurrence (5). First,
N(Rk0) = 2k0+1 − 2 holds by (6b). Setting k0 = 0 shows N(ε) = 0 which agrees
with (5). Second, we must show N(SL) = 2N(S) + 1. When m is even, S ends
in Rkm and so SL = S(k0, . . . , km−1, km, 1). It follows from the second line of (6b)
that N(SL) = 2N(S) + 1 holds. If m is odd, then S ends in Lkm and so SL equals

http://oeis.org


6 S. P. GLASBY

S(k0, . . . , km−1, km + 1). Again the second line of (6b) implies that N(SL) = 2N(S) + 1
holds. Similar reasoning involving the first line of (6b) shows that N(SR) = 2N(S) + 2
holds, independent of the parity of m. Hence (6b) is the (unique) solution to (5).

The last term of formula (6c) equals the last two terms of (6d) because

2(−1)m+12−|S|−1 = 2(−1)m+12−|S| + (−1)m+22−|S|.

Hence (6c) equals (6d). We now prove that the solution to the recurrence relation (2) is
given by the formula (6c). The base case r(ε) = 1 accords with formula (6c). Suppose
that S = S(k0, . . . , km) where m is even. Then SR = S(k0, . . . , km−1, km+1). Comparing

the expressions for r(SR)
2

and r(S)
2

given by (6c) yields

r(SR)

2
=

r(S)

2
− (−1)m+12−|S|−1 + (−1)m+12−|SR|−1 (7a)

=
r(S)

2
+ (−1)m+22−|S|−2(2− 1) =

r(S)

2
+ 2−|SR|−1. (7b)

If m is even, then SL = S(k0, . . . , km, 1). By (6c), the last two terms of r(SL)
2

are

(−1)m+12−|S| + (−1)m+22−|SL|−1 = (−1)m+22−|S|−2(−22 + 1) = −3 · 2−|S|−2.

Comparing the expressions for r(SL)
2

and r(S)
2

given by (6c) yields

r(SL)

2
=

r(S)

2
− (−1)m+12−|S|−1 − 3 · 2−|S|−2 (8a)

=
r(S)

2
+ 2−|S|−2(2− 3) =

r(S)

2
− 2−|SL|−1. (8b)

Equations (7) and (8) accord with the recurrence relation (2). The proof when m is odd
is similar. Hence the solution to the the recurrence relation (2) is (6c), as desired. �

In Fig. 4 we compare the length function N : {L,R}∗ → N with another length function
M : {L,R}∗ → N defined by M(ε) = 0 and M(S(k0, k1, . . . , km)) = m if km > 1.

1 2 3 2 1 2 1 0

1 2 1 0

1 0

0

7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

Figure 4. Values for the length functions (a) M , and (b) N .

Corollary 3. (a) With the above definition, M(S) ≡ N(S) (mod 2) for all S ∈ {L,R}∗.
(b) Let S = Rk0Lk1Rk2 · · · and S ′ = Rk′

0Lk′
1Rk′

2 · · · be finite strings. Then r(S) < r(S ′)
if and only if k0 < k′

0, or k0 = k′
0 and k1 > k′

1, or (k0, k1) = (k′
0, k

′
1) and k2 < k′

2, or
(k0, k1, k2) = (k′

0, k
′
1, k

′
2) and k3 > k′

3, . . . , using an ‘alternating lexicographic’ ordering.
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Proof. (a) Certainly M(S) ≡ N(S) (mod 2) holds when S = ε, as M(ε) = N(ε) = 0.
Assume S := S(k0, . . . , km) and M(S) ≡ N(S) (mod 2) holds. If m = M(S) is even,
then S ends in Rkm, so SL = S(k0, . . . , km, 1) and M(SL) = M(S) + 1 is odd. Hence, by
induction, and Eq. 5

M(SL) = M(S) + 1 ≡ 2M(S) + 1 ≡ 2N(S) + 1 = N(SL) (mod 2).

Similarly, if m is even, then SR = S(k0, . . . , km−1, km + 1) and M(SR) = M(S). Hence

M(SR) = M(S) ≡ 2M(S) + 2 ≡ 2N(S) + 2 = N(SR) (mod 2).

If M(S) = m is odd, then S ends in Lkm and so M(SL) = M(S) and M(SR) = M(S)+1
hold. Hence M(SL) ≡ N(SL) (mod 2) and M(SR) ≡ N(SR) (mod 2) both hold.

(b) The formula (6c) for r(S) implies that Eq. (3) holds. Hence moving left decreases
the r-value, and moving right increase the r-value. A left move is not counteracted by any
number of right moves; nor is a right move counteracted by any number of left moves. This
implies that the r-values are ordered via the stated alternating lexicographic ordering. �

3. Continued fractions and the Stern-Brocot tree

In this section, we shall consider the tree TC in Fig. 5 whose vertices are continued
fractions. Parents of vertices in this tree are related to ‘best approximations.’ Recall that

[04] [022] [0112] [013] [13] [112] [22] [4]

[03] [012] [12] [3]

[02] [2]

[1]

[0] [ ]

Figure 5. Binary tree TC of continued fractions (with commas omitted).

a continued fraction is an expression of the form

[q0, q1, . . . , qm] = q0 +
1

q1 +
1

... +
1

qm

.

Continued fractions can be computed recursively via the recurrence

[q0] = q0 and [q0, . . . , qm−1, qm] = [q0, . . . , qm−2, qm−1 + 1/qm] for m > 0. (9)

The tree TC has root [1], and its children rules are described in Fig. 6 where ‘♦’ is an
abbreviation for ‘q0, . . . , qm−1.’ A simple induction proves that the continued fractions
[q0, . . . , qm−1, qm] generated each have q0 > 0, q1, . . . , qm−1 > 1, and qm > 2 if m > 0.
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[♦, qm]

[♦, qm − 1, 2] [♦, qm + 1]
m even

[♦, qm]

[♦, qm + 1] [♦, qm − 1, 2]
m odd

Figure 6. Children rules for the infinite complete binary tree TC in Fig. 5.

(Incidentally, this ensures that when these continued fractions are evaluated using (9)
that no denominators of zero are encountered.)

Let C be the set of vertices (i.e. continued fractions) of the infinite tree TC in Fig. 5.
When evaluated using (9), a continued fraction [q0, . . . , qm] equals a positive rational p

q
.

Positive rationals have a natural ordering (p1
q1

< p2
q2

if and only if p1q2 < p2q1), so the

continued fractions in C are naturally ordered. We shall compare this ordering of C to the
ordering of {L,R}∗ via the function r, see (2). Towards this end, we define a function
f : C → {L,R}∗ by f([q0, . . . , qm−1, qm]) = S(q0, . . . , qm−1, qm − 1).

Theorem 4. Abbreviate [q0, . . . , qm−1, qm] ∈ C by [♦, qm] where ‘♦’ means ‘q0, . . . , qm−1’.

(a) The LR-location of [♦, qm] in TC is given by the string f([♦, qm]) = S(♦, qm − 1).
(b) If q0, . . . , qm−1 is fixed, then [♦, qm] is an increasing function of qm if m is even,

and a decreasing function of qm if m is odd.
(c) The function f : C → {L,R}∗ is a bijection preserving level, children, and order.
(d) The parents of [♦, qm] are the two closest smaller-level approximations to [♦, qm].

That is, of the 2q0+···+qm−1 continued fractions [q′0, . . . , q
′
n] with

∑n

i=1 q
′
i <

∑m

i=1 qi,
the two closest to [♦, qm] are the parent continued fractions of [♦, qm].

Proof. (a) Define the length of [q0, . . . , qm] to be q0 + · · · + qm − 1. Our proof uses
induction on the length of [q0, . . . , qm]. The LR-location of [q0] in TC is Rq0−1, and
f([q0]) = S(q0 − 1). In particular, the base case of length 0 (when q0 = 1) holds. Suppose
now that q0 + · · · + qm > 1. The length of the children of [♦, qm] in Fig. 6 is one more
than the length of [♦, qm]. If m is even, then induction gives

f([♦, qm − 1, 2]) = f([♦, qm])L = S(♦, qm − 1)L = S(♦, qm − 1, 1), and

f([♦, qm + 1]) = f([♦, qm])R = S(♦, qm − 1)R = S(♦, qm).

If m is odd, then induction gives

f([♦, qm + 1]) = f([♦, qm])L = S(♦, qm − 1)L = S(♦, qm), and

f([♦, qm − 1, 2]) = f([♦, qm])R = S(♦, qm − 1)R = S(♦, qm − 1, 1).

Thus the function f gives the LR-location of each continued fraction, as desired.

(b) We use induction on m. Certainly [q0] = q0 is an increasing function of q0, and
[q0, q1] = q0 + 1

q1
is a decreasing function of q1. Suppose now that m > 2. If m

is even, then [q0, . . . , qm] = [q0, . . . , qm−2, qm−1 +
1
qm

] decreases (by induction) precisely
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when qm−1 +
1
qm

increases. Thus [♦, qm] increases when qm increases. If m is odd, then

[q0, . . . , qm] = [q0, . . . , qm−2, qm−1 +
1
qm

] increases (by induction) precisely when qm−1 +
1
qm

increases. Thus [♦, qm] decreases when qm increases. This completes the induction.

(c) It is clear that f is surjective since f([k0, . . . , km−1, km+1]) = S(k0, . . . , km−1, km) is
a typical LR-string in {L,R}∗. It is also clear that f is injective, and hence f is bijective.
The level of S(q0, . . . , qm−1, qm − 1) is q0 + · · · + qm − 1. A simple induction shows that
the level of [q0, . . . , qm] in TC is also q0 + · · · + qm − 1. (This is true for the root [1]
of TC. If [q0, . . . , qm] has level q0 + · · · + qm − 1, then by Fig. 6 its children have level
q0+ · · ·+ qm.) Part (a) and the children rules (Fig. 6) show that f preserves children, i.e.
f(CL(v)) = CL(f(v)) and f(CR(v)) = CR(f(v)) for all v ∈ C.

It remains to prove that f preserves order. This is true if f−1 preserves order. This, in
turn, amounts to proving that the alternating lexicographic ordering of strings in Cor. 3(b)
is the same as ordering of continued fractions (i.e. of the rational numbers). Suppose that
S := S(k0, . . . , km−1) and S ′ := S(k′

0, . . . , k
′
n−1) where r(S) < r(S ′). By Cor. 3(b) there

exists an i for which k0 = k′
0, . . . , ki−1 = k′

i−1, and ki < k′
i when i is even, and ki > k′

i

when i is odd. We shall prove the rational v := [k0, . . . , km] is less than v′ := [k′
0, . . . , k

′
n].

Before proving the base case when i = 0, we digress to prove k0 6 [k0, . . . , km] < k0+1.
This is true when m = 0 as [k0] = k0. We prove that k0 < [k0, . . . , km] < k0 + 1 holds
for m > 1. The proof of this stronger statement uses induction on m. It is true when
m = 1 as k0 < [k0, k1] = k0 +

1
k1

6 k0 +
1
2
because, in our context, km > 2 for m > 1.

Suppose the stronger statement is true for m − 1 where m > 1. Then, by induction,
k1 < [k1, . . . , km] < k1 + 1 holds. Since k1 > 1, taking inverses shows

1

k1 + 1
< [0, k1, . . . , km] <

1

k1
,

and adding k0 implies

k0 < k0 +
1

k1 + 1
< [k0, k1, . . . , km] < k0 +

1

k1
6 k0 + 1.

Hence k0 < [k0, k1, . . . , km] < k0 + 1 holds for m > 1, establishing the digression.

Return now to the base case i = 0 of our induction. Certainly k0 < k′
0 implies v < v′

when m or n is zero. If m and n are both positive, then k0 < k′
0 implies

k0 6 v < k0 + 1 6 k′
0 6 v′ < k′

0 + 1.

In either case, k0 < k′
0 implies v < v′. Suppose now i > 1 is even and k0 = k′

0, . . . ,
ki−1 = k′

i−1, and ki < k′
i. Abbreviate ‘k0, . . . , ki−1’ by ♦. Then Eq. (9) implies

v = [♦, ki, . . . , km] = [♦, [ki, . . . , km]] and v′ = [♦, k′
i, . . . , k

′
n] = [♦, [k′

i, . . . , k
′
n]].

Hence the base case says ki < k′
i implies [ki, . . . , km] < [k′

i, . . . , k
′
n]. Therefore part (b)

implies [♦, [ki, . . . , km]] < [♦, [k′
i, . . . , k

′
n]] and v < v′, as desired. The case when i is odd

is proved similarly. This completes the proof that S < S ′ implies v < v′.
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(d) This follows from the definition of parent fractions and part (c). �

The continued fractions on the vertices of the tree in Fig. 5 give rise to a tree of
rational numbers. This is the well-known Stern-Brocot tree [3, p. 117], which (remarkably)
lists every positive rational number (in reduced form) precisely once. To each string
S ∈ {L,R}∗ there corresponds a reverse string S defined by ε = ε, SL = LS, and
SR = RS. Reversing (or swapping S ↔ S) vertices in a tree gives another tree, called
the reverse tree. The reverse tree of the Stern-Brocot tree is another well-known tree
called the Calkin-Wilf tree [1]. (In Fig. 7, 2

3
↔ 3

2
because LR ↔ RL.) The reader may

better understand the connection between parent and children vertices by studying the
Stern-Brocot and Calkin-Wilf trees, see [2].
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1
2

2
1

1
1

0
1

1
0

1
4

4
3

3
5

5
2

2
5

5
3

3
4

4
1

1
3

3
2

2
3

3
1

1
2

2
1

1
1

0
1

1
0

Figure 7. (a) Stern-Brocot tree; and the reversed (b) Calkin-Wilf tree.

There are further applications of parent vertices to a complete binary tree associated
with the Cantor2 set, however, exploring these goes beyond the scope of this note.
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