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Abstract
A k-ary charm bracelet is an equivalence class of lengthn strings with the action on

the indices by the additive group of the ring of integers modulo n extended by the group
of units. By applying anO(n3) amortized time algorithm to generate charm bracelet rep-
resentatives with a specified content, we construct 29 new periodic Golay pairs of length
68.

1 Introduction

One of the most natural groups acting onk-ary stringsa0a1 · · · an−1 of lengthn is the group of
rotations. A generator of this group acts on the indices by sending i → i + 1 (mod n), and
so sends the stringa0a1 · · · an−1 → a1 · · · an−1a0. Applying this action partitions the set of
k-ary strings into equivalence classes that are callednecklaces. When the action of reversal is
composed with rotations, the resulting dihedral groups partition k-ary strings into equivalence
classes calledbracelets. Generally, we will refer only to the lexicographically smallest element
in each respective equivalence class as a necklace or a bracelet. For example, consider the
bracelet equivalence class for the string12003:

12003 30021
20031 00213 ← bracelet (necklace)

necklace→ 00312 02130
03120 21300
31200 13002
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Observe that this class contains two necklaces 00312 and 00213, the lexicographically smallest
being the bracelet representative.

In this paper we generalize the notion of bracelets by considering the action of the group
of affine transformationsj → a + dj (mod n) on the indices. Here we consider the indices as
elements of the ring of integers modulon denoted byZn := Z/nZ. The coefficientsa andd
also belong toZn andd is relatively prime ton. We call the resulting equivalence classescharm
bracelets. Note that ifd ∈ {1} we get necklaces, and ifd ∈ {1, n− 1} we get bracelets. As an
example, consider the charm bracelet equivalence class forthe stringα = a0a1a2a3a4 = 12003:

12003 10320 10230 13002
20031 03201 02301 30021
00312 32010 23010 00213 ← charm bracelet
03120 20103 30102 02130
31200 01032 01023 21300

Observe that the first strings in each column are the result ofthe application of the multiplicative
group mapping corresponding tod = 1, 2, 3 and 4 respectively. The subsequent strings in
each column correspond to a rotation of the previous string.Thus, each column will have one
necklace representative: 00312, 01032, 01023, and 00213 respectively. The lexicographically
smallest necklace 00213 is a charm bracelet. Note that if we takea = d = n− 1 then the above
affine transformation is just the reversal. In general, the maximum number of necklaces in each
charm bracelet equivalence class is given by Euler’s totient functionφ(n), which denotes the
number of positive integers less thann that are relatively prime ton. Also, observe that each
charm bracelet class will have at mostφ(n)/2 bracelets. In particular, observe that the first and
last columns of our charm bracelet example correspond to thestrings in our previous bracelet
example for the string 12003.

Both necklaces and bracelets have been well studied. Enumeration formulae are well known
and efficient algorithms to list necklaces have been given byFredricksen, Kessler and Maio-
rana [6, 7] and Cattellet al. [4]. An efficient algorithm to list bracelets is given in [15]. Very little
is known about charm bracelets except for an enumeration formula presented by Titsworth [20].
Its binary enumeration sequence was one of the original 2372sequences presented in 1973 by
Sloane inA Handbook of Integer Sequences [18]. In Section 2, we discuss charm bracelets in
more detail, presenting a known enumeration formula along with an algorithm to generate them.

1.1 An application

This study of charm bracelets was motivated by the difficult task of deciding the existence of
periodic Golay pairs of length 68. Using our charm bracelet algorithm as step in a searching
process we discover 29 new (pairwise nonequivalent) periodic Golay pairs of length 68. This
process is outlined in detail in Section 3.
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Since our discovery, two separate techniques were discovered to multiply a Golay pair of
lengthg and a periodic Golay pair of lengthv, and obtain as a result a periodic Golay pair of
lengthgv. We refer loosely to this operation as “multiplication byg”. For more details on these
multiplications see the recent preprint [13]. A special case to multiply byg = 2 was discovered
long ago [2, Theorems 2 and 3]1. Applying the two multiplications by two, the periodic Golay
pairs of length 34 presented in [5, Theorem 3.1]) allows us toconstruct two nonequivalent
periodic Golay pair of length 68; however, we have verified that these pairs are not equivalent
to any of the29 new pairs discovered in this paper (listed in the appendix).

Finally, we mention that eight non-equivalent periodic Golay pairs of length 72 have been
constructed recently [13]. Consequently, the smallest length for which the existence of periodic
Golay pairs is undecided is now 90.

2 Charm Bracelets

2.1 Enumeration

An enumeration formula for the number ofk-ary charm bracelets of lengthn, denotedCB(n, k),
was derived in [20]:

CB(n, k) =
1

n · φ(n)

n−1
∑

t=0

n−1
∑

j=1

[[ gcd(n, j) = 1 ]] kc(j,t) where

c(j, t) =

n−1
∑

u=0

1

M
(

j, n
gcd(n,u(j−1)+t)

)

and whereM(j, L) is the smallest positive integerm such that1 + j + · · ·+ j(m−1) = 0 (mod
L). The Iverson bracket [[condition ]] evaluates to 1 ifcondition is true, and 0 otherwise.
The enumeration sequence ofCB(n, 2) corresponds to sequence A002729 in Sloane’sThe On-
Line Encyclopedia of Integer Sequences [19]. Additionally, the sequences forCB(n, k) for
k = 3, 4, 5, and 6 correspond to sequences A056411, A056412, A056413, A056414.

2.2 Generation algorithm

Before outlining an algorithm to generate charm bracelets,we first introduce some notation. Let
Φ(n) denote the set of positive integers less thann that are relatively prime ton. Let τ(d, α)
denote the mapping ofj to dj mod n acting on the indices of the stringα = a0a1 · · · an−1. Let
neck(α) denote the necklace representative of the stringα. LetNk(n) denote the set of allk-ary
necklaces of lengthn and letCBk(n) denote the set of allk-ary charm bracelets of lengthn.

1We are grateful to an anonymous referee for pointing this out.
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When developing algorithms to exhaustively list combinatorial objects, one of the primary
goals is to achieve a CAT algorithm: one that generates each object in constant amortized time.
For charm bracelets this does not appear to be a trivial task.In this section we outline an
algorithm that runs inO(n3) time per charm bracelet generated.

Perhaps the most straightforward way to exhaustively listCBk(n) is by the following ap-
proach:

1. Generate all thek-ary necklacesNk(n).

2. For each necklaceα ∈ Nk(n) computeS(α) = {τ(α, d) | d ∈ Φ(n)}.

3. Compute the necklace of each string inS(α) to getT (α) = {neck(s) | s ∈ S(α)}.

4. Test ifα is lexicographically less than or equal to every string inT (α). If it is, a charm
bracelet is found and processα.

As mentioned earlier, necklaces can be generated in constant amortized time. Step 2 re-
quiresO(n2) time to compute the set ofφ(n) strings. Since the necklace of each string can be
computed inO(n) time (see p.222 from [14]), the setT can also be computed inO(n2) time.
The third step trivially takesO(n2) time. Thus the resulting algorithm runs inO(n2) time per
necklace. Since there areφ(n) = O(n) necklaces in each charm bracelet class, each charm
bracelet gets generated inO(n3) time.

More detailed pseudocode is given in Algoirthm 1. The function GENCHARM generates
the necklaces using the algorithm from [4, 14]. For each necklaceα generated, the function
ISCHARM(α) returns whether or notα is a charm bracelet. It in turn, applies the function
NECKLACE(β) that returns the necklace of the stringβ by applying a simple modification of
the technique given in [14]. The initial call is GENCHARM(1,1) initializinga0 = 0. A complete
C implementation is given in the Appendix.
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Algorithm 1 Generate allk-ary charm braceletsα = a1a2 · · · an in O(n3) amortized time.

1: function NECKLACE(β)
2: b1b2 · · · b2n ← ββ ⊲ concatenate two copies ofβ
3: t← j ← p← 1
4: repeat
5: t← t+ p⌊ j−t

p ⌋
6: j ← t+ 1
7: p← 1
8: while j ≤ 2n and bj−p ≤ bj do
9: if bj−p < bj then p← j − t+ 1

10: j ← j + 1

11: until p⌊ j−t
p ⌋ ≥ n

12: return btbt+1 · · · bt+n−1

13: ===========================
14: function ISCHARM(α)
15: for d ∈ Φ(n) do
16: if NECKLACE( τ(d, α) ) < α then return FALSE

17: return TRUE

18: ===========================
19: procedure GENCHARM(t, p)
20: if t > n then
21: if N mod p = 0 and ISCHARM(α) then PRINT(α)

22: else
23: for i from at−p to k − 1 do
24: at ← i

25: if i = at−p then GENCHARM(t + 1, p)
26: else GENCHARM(t+ 1, t)

Theorem 2.1 The algorithm GENCHARM generates all length n charm bracelets in O(n3)-
amortized time.

As mentioned earlier, the ultimate goal is an algorithm thatruns inO(1)-amortized time.
However, this appears a very difficult task for charm bracelets. Any improvement on theO(n3)

algorithm presented here would be a very nice result. The algorithm can be slightly improved
by generating bracelets [15] instead of necklaces. For the application discussed in the next
section, only charm bracelets with a specified content are required. They can also be generated
in O(n3)-amortized time by replacing the function GENCHARM with the CAT algorithm for
fixed content necklaces [16] or fixed content bracelets [8].
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3 Application: Periodic Golay pairs

Periodic Golay pairs (also known as “periodic complementary sequences”) will be defined for-
mally in Section 3.1. Early research by Yang [21] used an exhaustive computer search to show
that there are no periodic Golay pairs of length 18. Subsequently, this case was ruled out by
the non-existence result of Arasu and Xiang [1]. For an up-to-date listing of lengths of known
periodic Golay pairs which are not Golay pairs see [12, 13]. As mentioned earlier, the smallest
length for which the existence of periodic Golay pairs is undecided is now 90. The periodic
Golay pairs can be used to construct Hadamard matrices (see [17, p. 468]).

By applying the (fixed-content) charm bracelet algorithm described in the previous section
along with a compression of complementary sequences, we construct 29 periodic Golay pairs
of length 68. One of them will be discussed in more detail in Section 3.3. The full listing of the
29 solutions is given in Appendix A.

For the remainder of this section, we usev for the string/sequence lengths rather than then

we used in the previous section, asv is the standard in design theory.

3.1 Periodic Golay pairs vs. Golay pairs

The symbolsZ,R,C will denote the set of integers, real numbers and complex numbers, re-
spectively. Binary sequences will have terms±1. A pair of binary sequences of lengthv, say,

A = [a0, a1, . . . , av−1], B = [b0, b1, . . . , bv−1] (1)

is aGolay pair if for eachk = 1, 2, . . . , v − 1:

v−k−1
∑

i=0

(aiai+k + bibi+k) = 0.

It is well known that Golay pairs exist for all lengthsv = 2a10b26c wherea, b, c are nonnegative
integers. For convenience, we shall refer to integersv having this form asGolay numbers. No
Golay pairs of other lengths are presently known [3].

We are interested in an analogue of Golay pairs to which we refer as periodic Golay pairs.
They can be defined over any finite abelian group, but we will consider only the finite cyclic
groups. To be specific, we shall use only the cyclic groupZv = {0, 1, . . . , v − 1} of integers
modulov. The group operation is addition modulov. From now on we shall consider the
indices of sequences as members ofZv. A periodic Golay pair is a pair of binary sequences (1)
such that for eachk = 1, 2, . . . , v − 1:

v−1
∑

i=0

(aiai+k + bibi+k) = 0. (2)
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Since for any sequencex0, x1, . . . , xv−1 we have

v−1
∑

i=0

xixi+k =

v−k−1
∑

i=0

xixi+k +

k−1
∑

i=0

xixi+v−k,

any Golay pair is also a periodic Golay pair. Therefore periodic Golay pairs of lengthv exist
wheneverv is a Golay number. However, it is known that they also exist for some other lengths
as well. The first such example was of length 34 (see [9]). At the present time, only finitely
many periodic Golay pairs are known whose lengthv is not a Golay number. The smallest
lengthv for which the existence of periodic Golay pairs of lengthv is undecided isv = 68. In
this note we show that such pairs exist.

3.2 The role of charm bracelets in the search for periodic Golay pairs

Our objective in this subsection is to explain the role of bracelets in the search for Golay pairs.
In order to do that, we first briefly review some background material.

For an integer sequenceA = [a0, a1, . . . , av−1] of lengthv, the functionZv → Z which
sendss →

∑v−1
i=0 aiai+s is known as theperiodic autocorrelation function (PAF) of A. If

(A,B) is a periodic Golay pair of lengthv, then the equation (2) can be written as

(PAFA + PAFB)(s) = 0, s = 1, 2, . . . , v − 1. (3)

The discrete Fourier transform (DFT) of the above sequenceA is the functionZv → C

which sendss →
∑v−1

k=0 akω
ks, whereω = e2πi/v. The power spectral density (PSD) of the

sequenceA is the functionZv → R defined by PSDA(s) = |DFTA(s)|
2. By using [11, Theorem

2], we deduce that (3) implies

(PSDA + PSDB)(s) = 2v, s = 0, 1, 2, . . . , v − 1. (4)

Occasionally we shall write PSD(A, s) instead of PSDA(s), and similarly for the PAF function.
Our search for a periodic Golay pair(A,B) is based on the compression method which

is described in detail in the very recent paper of two of the authors [11]. We refer the reader
to this paper also for some additional facts concerningA andB that we shall use below. In
this computation we used the compression factorm = 2, and so the compressed sequences
have lengthd = v/m = 34. If a andb are the sums of the terms of the sequenceA andB,
respectively, it is known thata2+b2 = 4v = 136, and so we may assume thata = 6 andb = 10.

In the first stage of the computation we search for suitable compressed sequences
(A(34), B(34)). This is a pair of ternary sequences of length 34,

A(34) = [a0 + a34, a1 + a35, . . . , a33 + a67], B(34) = [b0 + b34, b1 + b35, . . . , b33 + b67],
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whose termsa(34)i = ai + ai+34 andb(34)i = bi + bi+34 belong to the set{0, 2,−2}. Another
known fact that we need is that the total number of 0 terms in these two compressed sequences
is equal to 34. For instance, we can choose the case where eachof A andB has seventeen 0
terms. Asa = 6 the sequenceA(34) must have the content(17, 10, 7), i.e., it has seventeen terms
equal to 0, ten terms equal to 2, and seven terms equal to−2. Similarly, B(34) must have the
content(17, 11, 6).

We can perform on(A,B), as well as on the compressed sequences, the following opera-
tions which preserve the set of periodic Golay pairs. First,we can permute cyclicallyA or B
(independently of one another). Second, we can reverse independently the sequenceA or B.
Third, we can apply the transformationxi → xki (mod v) to bothA andB simultaneously, where
k is a fixed integer relatively prime tov. By using these transformations on the compressed se-
quences, we deduce that we can restrict our search for the pairs (A(34), B(34)) to the case where
A(34) is a charm bracelet andB(34) is an ordinary bracelet. (The alphabet used for these bracelets
is {0, 2,−2}.) Since the number of bracelets is much smaller than the number of all sequences
with the same content, our search will be much faster. There is an additional speed-up when we
restrict (as we may)A(34) to be a charm bracelet. The searches for the braceletsA(34) andB(34)

are performed separately and the bracelets are written in two files. The search is aborted if the
output file becomes too large. Some of the bracelets do not need to be recorded. This happens
when they fail the so called PSD test. In our case this test is based on the fact that we must have
PSD(A(34), s) + PSD(B(34), s) = 136. Hence, the bracelets for which one of its PSD values is
larger than 136 can be safely discarded. By implementing this test into the search for (charm)
bracelets, the size of the output file is considerably reduced.

3.3 Periodic Golay pairs of length 68

In this section we present one of the periodic Golay pairs that we found for lengthv = 68.
Consider the following two sequences of length34 each, with{−2, 0,+2} elements:

A(34) = [0, 0, 0, 2, 0, 0,−2, 0, 0, 0, 2,−2, 0, 0,−2, 0, 0, 2, 0, 0, 0, 2, 2,−2, 0, 0,−2, 0, 0, 2, 0, 2, 0, 2]

B(34) = [0, 0,−2, 2, 0, 2, 0,−2,−2, 0, 2, 2, 0, 2,−2, 0, 2, 0,−2, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0,−2, 2, 0,−2,−2]

These two sequences satisfy the following properties:

1. PAF(A(34), s) + PAF(B(34), s) = 0, s = 0, 1, . . . , 33;

2. PSD(A(34), s) + PSD(B(34), s) = 2 · 68 = 136, s = 0, 1, . . . , 33;

3. PSD(A(34), 17) = 100 and PSD(B(34), 17) = 36;

4.
34
∑

i=1

A
(34)
i = 6 and

34
∑

i=1

B
(34)
i = 10;

5. The total number of0 elements inA(34) andB(34) is equal to34;
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6. The total number of±2 elements inA(34) andB(34) is equal to34;

7. A(34) contains21 zeros andB(34) contains13 zeros.

We claim that the sequencesA(34) andB(34) are in fact the 2-compressed sequences of two
{−1,+1} sequences of length68 each, that form a particular periodic Golay pair. Here is this
particular periodic Golay pair of length68:

A =
−−++−+−+−++−−+−−++−−−++−−−−−−+−+++

++−++−−−+−+−+−−+−++++++−++−+++++−+

B =
−−−+++−−−+++++−−++−+−+++++++−−+−−−

++−+−++−−−++−+−++−−++++−+−+++−++−−

In the above periodic Golay pair we use the customary notation of representing−1 by − and
+1 by+, so as to achieve a constant length encoding of the sequences.

In order to find the periodic Golay pair given above, startingfrom the two sequencesA(34)

andB(34), we needed to write a program that looks at every individual element ofA(34) andB(34)

and generates all corresponding potential{−1,+1} sequences of length68. If we encounter an
element equal to−2 then this implies that we can set two elements of the length68 sequences
equal to−1. If we encounter an element equal to+2 then this implies that we can set two
elements of the length68 sequences equal to+1. If we encounter an element equal to0, then
this implies that we have two possibilities for the two elements of the length68 sequences,
either(−1,+1) or (+1,−1). ThereforeA(34) generates221 sequences of length68 andA(34)

generates213 sequences of length68. Subsequently we filter these two sets of sequences using
the PSD test with PSD constant equal to136, since we know from compression theory [11] that
the PSD constants of the compressed sequences and the original sequences are equal. The PSD
test typically eliminates anywhere between95% to99% of the sequences, so we are left with a
very small number of sequences and then it is easy to locate a solution.

Note that there are several thousands (possibly several millions) of pairs of sequences that
satisfy properties 1 to 6 (and a variant of property 7) of the pair A(34), B(34), but which do not
correspond (via 2-compression) to periodic Golay pairs of order68. Both bracelets and charm
bracelets are an essential tool for locating such pairs in a systematic manner. On the other hand,
all periodic Golay pairs of order68 must necessarily be obtained from a pair of sequences of
length34 that satisfies properties 1 up to 6 and an appropriate versionof property 7. Note that
property 7 reflects the distribution of the34 zeros inA(34), B(34) and is directly related with the
corresponding bracelets content.

3.4 Connection with supplementary difference sets

The periodic Golay pairs of fixed lengthv are in one-to-one correspondence with a special
class of combinatorial objects known as supplementary difference sets (SDS). For the definition
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of SDSs in general we refer the reader to [11]. Here we shall just explain, in the context
of this paper, the meaning of SDSs with parameters(v; r, s;λ) = (68; 31, 29; 26). Each of
our SDSs consists of two base blocks, sayX andY . They are subsets of the additive group
Zv = Z68 = {0, 1, . . . , 67} of sizes|X| = r = 31 and|Y | = s = 29. Each nonzero integer
in Zv can be represented as a differencex1 − x2 with x1, x2 ∈ X or as a differencey1 − y2
with y1, y2 ∈ Y in total in exactlyλ = 26 ways. These particular SDSs are in one-to-one
correspondence with periodic Golay pairs of lengthv = 68. Let us make this correspondence
explicit. Given an SDS(X, Y ) with the above parameters, we associate to it a periodic Golay
pair (A,B). The first binary sequenceA = [a0, a1, . . . , av−1] is constructed from the setX by
settingaj = −1 if j ∈ X andaj = 1 otherwise. The sequenceB is constructed from the setY
in the same way.

We point out that there exist SDSs with two base blocks which do not correspond to periodic
Golay pairs. The SDS’s which do correspond to periodic Golaypairs are exactly those whose
parameters satisfy the conditionv = 2(r + s− λ).
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Appendix A: List of 29 solutions
For convenience we list only the 29 SDSs which correspond to the 29 periodic Golay se-

quences that we found. All 29 SDSs are given in the normal formdefined in [10]. The solution
discussed in Section 3.3 is equivalent to the solution no. 15in the list below.

1) [[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 20, 21, 25, 28, 31, 33, 34, 40, 41, 42, 45, 46, 50, 52, 54, 56, 57, 60],

[0, 2, 3, 4, 6, 7, 10, 11, 13, 16, 18, 20, 21, 23, 25, 27, 28, 29, 35, 36, 38, 40, 44, 45, 50, 51, 58, 59, 62]],

2) [[0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 20, 21, 25, 28, 31, 33, 34, 35, 40, 45, 48, 49, 50, 55, 58, 61],

[0, 1, 2, 4, 7, 8, 9, 12, 13, 16, 18, 19, 20, 22, 27, 30, 35, 37, 39, 41, 42, 43, 48, 50, 52, 53, 56, 59, 62]],

3) [[0, 1, 2, 3, 4, 5, 6, 9, 11, 15, 16, 20, 22, 23, 27, 29, 30, 32, 36, 38, 39, 42, 43, 44, 47, 48, 52, 54, 55, 60, 62],

[0, 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, 15, 16, 18, 21, 22, 25, 31, 33, 35, 38, 42, 44, 50, 52, 55, 56, 57, 60]],

4) [[0, 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 15, 19, 20, 21, 24, 25, 27, 30, 31, 32, 37, 39, 42, 46, 48, 52, 55, 56, 57, 59],

[0, 1, 2, 3, 5, 6, 8, 9, 10, 14, 17, 20, 23, 24, 27, 29, 31, 33, 34, 35, 39, 40, 42, 43, 47, 52, 55, 57, 63]],

5) [[0, 1, 2, 3, 4, 5, 7, 11, 13, 16, 19, 21, 22, 27, 28, 29, 30, 31, 33, 35, 38, 39, 42, 43, 46, 48, 49, 51, 56, 58, 64],

[0, 1, 2, 3, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 24, 26, 27, 31, 32, 35, 36, 39, 45, 46, 48, 49, 53, 55, 64]],

6) [[0, 1, 2, 3, 4, 5, 8, 10, 12, 13, 17, 18, 19, 21, 22, 24, 28, 31, 32, 33, 35, 37, 38, 41, 43, 45, 49, 56, 57, 58, 63],

[0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 16, 20, 23, 24, 26, 27, 33, 34, 36, 41, 42, 45, 48, 50, 52, 53, 58, 65]],

7) [[0, 1, 2, 3, 4, 5, 8, 10, 14, 15, 17, 23, 24, 25, 26, 27, 28, 29, 32, 33, 35, 36, 40, 42, 43, 47, 52, 54, 56, 60, 62],

[0, 1, 2, 3, 5, 7, 8, 10, 13, 14, 16, 18, 19, 22, 25, 26, 30, 31, 34, 35, 36, 39, 41, 46, 49, 50, 52, 56, 63]],

8) [[0, 1, 2, 3, 4, 5, 9, 11, 13, 14, 15, 17, 21, 22, 23, 26, 28, 31, 33, 35, 38, 39, 41, 42, 46, 47, 50, 53, 54, 56, 63],

[0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 20, 24, 26, 27, 30, 31, 36, 41, 43, 46, 47, 49, 54, 56, 60, 61]],

9) [[0, 1, 2, 3, 4, 6, 7, 12, 14, 15, 16, 20, 22, 23, 25, 26, 27, 30, 32, 34, 38, 39, 40, 41, 43, 44, 47, 49, 52, 55, 62],

[0, 1, 2, 4, 6, 8, 9, 11, 13, 14, 15, 18, 19, 21, 23, 29, 30, 33, 35, 36, 39, 40, 44, 45, 52, 53, 55, 56, 63]],

10) [[0, 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 17, 19, 20, 23, 24, 26, 28, 30, 31, 35, 36, 37, 41, 45, 46, 48, 49, 54, 57, 58],

[0, 1, 2, 6, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 25, 30, 32, 35, 37, 38, 40, 42, 44, 45, 51, 53, 54, 56, 62]],

11) [[0, 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, 14, 17, 21, 22, 26, 27, 29, 30, 33, 38, 39, 41, 46, 47, 52, 54, 56, 57, 58, 62],

[0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 15, 17, 19, 21, 24, 26, 27, 32, 34, 37, 38, 39, 41, 46, 48, 49, 53, 55, 59]],

12) [[0, 1, 2, 3, 5, 6, 7, 8, 9, 14, 16, 17, 20, 22, 24, 26, 27, 30, 31, 33, 38, 40, 43, 46, 47, 48, 50, 55, 58, 59, 63],

[0, 1, 2, 4, 5, 6, 7, 10, 11, 15, 16, 18, 19, 21, 22, 27, 28, 30, 34, 36, 37, 38, 40, 41, 46, 48, 50, 55, 61]],

13) [[0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 15, 17, 18, 19, 23, 25, 26, 29, 32, 33, 37, 40, 41, 42, 43, 45, 49, 52, 55, 61, 62],

[0, 1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 18, 20, 22, 23, 24, 27, 28, 36, 38, 39, 41, 47, 48, 49, 52, 54, 58, 63]],

14) [[0, 1, 2, 3, 5, 6, 9, 10, 12, 14, 15, 18, 20, 21, 23, 24, 25, 26, 31, 32, 33, 38, 42, 43, 47, 48, 50, 54, 57, 58, 61],

[0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 15, 16, 22, 25, 27, 29, 30, 31, 33, 35, 40, 42, 43, 44, 47, 50, 56, 60, 61]],

15) [[0, 1, 2, 3, 5, 7, 8, 10, 11, 17, 18, 20, 21, 25, 26, 27, 30, 33, 34, 38, 40, 43, 44, 45, 46, 47, 49, 55, 57, 61, 65],

[0, 1, 2, 3, 7, 8, 10, 12, 13, 14, 18, 19, 21, 22, 23, 25, 28, 30, 34, 36, 37, 39, 40, 42, 44, 47, 51, 55, 56]],
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16) [[0, 1, 2, 3, 5, 8, 10, 11, 12, 15, 19, 20, 21, 24, 25, 27, 28, 33, 35, 36, 39, 40, 41, 43, 45, 46, 47, 50, 51, 57, 60],

[0, 1, 2, 4, 5, 6, 7, 10, 12, 15, 18, 19, 21, 22, 26, 27, 28, 30, 32, 34, 36, 39, 41, 43, 46, 49, 55, 56, 57]],

17) [0, 2, 4, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 22, 23, 25, 27, 33, 34, 35, 36, 37, 39, 42, 43, 46, 49, 51, 56, 57, 59]],

[[0, 1, 2, 3, 7, 8, 9, 11, 12, 14, 15, 18, 21, 25, 27, 28, 29, 30, 33, 35, 39, 40, 44, 47, 48, 52, 55, 57, 60],

18) [[0, 1, 2, 4, 5, 8, 9, 10, 11, 15, 16, 19, 20, 21, 22, 23, 29, 31, 33, 35, 37, 40, 41, 46, 48, 51, 53, 55, 56, 60, 63],

[0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 16, 22, 24, 26, 27, 29, 30, 32, 33, 36, 39, 40, 41, 45, 48, 50, 56, 57]],

19) [[0, 1, 2, 4, 5, 8, 9, 11, 12, 15, 17, 20, 21, 22, 23, 27, 28, 29, 30, 33, 37, 39, 44, 45, 46, 49, 50, 53, 55, 58, 59],

[0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 17, 19, 20, 22, 26, 27, 29, 31, 37, 40, 41, 42, 44, 45, 52, 54, 56, 61]],

20) [[0, 1, 2, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 20, 24, 28, 29, 30, 31, 33, 34, 38, 40, 42, 47, 48, 49, 53, 59, 61, 62],

[0, 1, 2, 4, 6, 7, 9, 10, 11, 13, 14, 16, 19, 20, 23, 26, 28, 34, 36, 37, 39, 45, 49, 50, 52, 53, 54, 57, 60]],

21) [[0, 1, 2, 5, 6, 7, 9, 10, 11, 15, 17, 19, 20, 24, 26, 27, 31, 32, 33, 35, 38, 39, 42, 44, 45, 47, 52, 55, 56, 58, 59],

[0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 16, 19, 22, 24, 25, 27, 32, 35, 39, 40, 44, 46, 50, 52, 54, 56, 61]],

22) [0, 1, 2, 3, 4, 7, 8, 10, 12, 13, 14, 16, 19, 20, 22, 23, 25, 27, 32, 33, 34, 36, 38, 41, 48, 49, 50, 53, 54, 58, 61]],

[[0, 1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 19, 20, 21, 26, 29, 31, 35, 36, 39, 44, 45, 47, 48, 50, 52, 58, 62, 64],

23) [0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 17, 21, 22, 25, 26, 28, 32, 33, 34, 35, 38, 40, 42, 45, 48, 49, 50, 51, 56, 59, 62]],

[[0, 1, 3, 4, 5, 6, 10, 13, 14, 15, 18, 19, 20, 22, 24, 26, 29, 30, 33, 36, 38, 39, 40, 41, 44, 46, 51, 57, 59],

24) [[0, 1, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 24, 25, 26, 27, 30, 33, 35, 36, 39, 40, 43, 50, 51, 55, 56, 57, 63],

[0, 1, 2, 5, 7, 8, 9, 11, 13, 17, 18, 20, 21, 23, 25, 31, 32, 35, 36, 38, 40, 42, 45, 46, 49, 51, 54, 57, 59]],

25) [[0, 1, 3, 4, 5, 7, 8, 11, 13, 14, 15, 19, 20, 21, 24, 27, 29, 30, 31, 33, 34, 36, 38, 39, 44, 46, 47, 48, 51, 57, 60],

[0, 2, 3, 4, 6, 8, 9, 10, 14, 15, 17, 19, 22, 24, 25, 26, 28, 35, 36, 40, 43, 45, 48, 49, 53, 54, 55, 56, 60]],

26) [[0, 1, 3, 4, 5, 7, 9, 10, 11, 12, 15, 16, 18, 19, 20, 26, 27, 29, 31, 33, 34, 36, 38, 39, 42, 43, 51, 52, 56, 57, 59],

[0, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 22, 23, 25, 27, 31, 34, 38, 40, 41, 44, 46, 48, 51, 54, 56, 59, 60]],

27) [[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 22, 26, 30, 32, 33, 34, 35, 37, 39, 42, 47, 49, 50, 51, 55, 56, 60],

[0, 1, 2, 3, 6, 9, 10, 12, 14, 15, 16, 17, 18, 20, 23, 25, 27, 30, 34, 37, 38, 43, 44, 49, 50, 54, 56, 59, 60]],

28) [[0, 2, 3, 4, 5, 6, 7, 9, 11, 14, 15, 18, 19, 21, 24, 31, 32, 33, 35, 39, 40, 41, 45, 47, 50, 51, 52, 57, 59, 60, 64],

[0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 15, 16, 19, 22, 24, 25, 26, 27, 30, 33, 36, 38, 40, 44, 46, 49, 53, 56, 61]],

29) [[0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15, 17, 18, 21, 25, 28, 29, 30, 34, 38, 39, 41, 44, 46, 48, 49, 53, 54, 56, 60, 61],

[0, 1, 2, 3, 6, 7, 8, 9, 11, 13, 17, 18, 21, 22, 24, 27, 29, 30, 31, 33, 35, 38, 41, 42, 43, 52, 55, 56, 58]].
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Appendix B: C code to generate charm bracelets
1 #include <stdio.h>

2 int a[100],b[100];

3 int N,K,total=0;

4 //-------------------------------------------------------------

5 int Gcd(int x, int y){

6 int t;

7
8 while( y != 0 ) {

9 t = y; y = x % y; x = t;

10 }

11 return x;

12 }

13 //-------------------------------------------------------------

14 void Print() {

15 int i;

16
17 total++;

18 for (i=1; i<=N; i++) printf("%d", a[i]);

19 printf("\n");

20 }

21 //-------------------------------------------------------------

22 // Find the necklace of the string b[1..n] by concatenating two

23 // copies of b[1..n] together. The necklace will be start at

24 // index t. O(n) time.

25 //-------------------------------------------------------------

26 int Necklace(){

27 int j,t,p;

28
29 for (j=1; j<=N; j++) b[N+j] = b[j];

30
31 j=t=p=1;

32 do {

33 t = t + p*((j-t)/p);

34 j = t + 1;

35 p = 1;

36 while (j <= 2*N && b[j-p] <= b[j]) {

37 if (b[j-p] < b[j]) p = j-t+1;

38 j++;

39 }

40 } while (p * ((j-t)/p) < N);

41
42 return t;

43 }

44 //-------------------------------------------------------------

45 // For each i relatively prime to N, map index j to (ij mod N)

46 // Then find the necklace of the resulting string, if that

47 // necklace is less than the necklace a[1..n] - reject

48 //-------------------------------------------------------------

49 int IsCharm(){

50 int i,j,offset;

51
52 for(i=2; i<=N-1; i++){

53 if ( Gcd(i,N) == 1) {

54
55 // Perform the mapping then determine the necklace

56 for(j=0; j<N; j++) b[(j*i)%N + 1] = a[j+1];

57 offset = Necklace();

58
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59 for (j=1; j<=N; j++){

60 if (a[j] < b[offset + j-1]) break;
61 else if (a[j] > b[offset + j-1]) return 0;

62 }

63 }

64 }

65 return 1;

66 }

67 //--------------------------------------------------------------

68 // Generate necklaces and then check if they are charm bracelets

69 //--------------------------------------------------------------

70 int GenCharm(int t, int p) {

71 int i;

72
73 if (t > N) {

74 if (N%p == 0 && IsCharm()) Print();

75 }

76 else {

77 for (i=a[t-p]; i<K; i++) {

78 a[t] = i;

79 if (i == a[t-p]) GenCharm(t+1,p);

80 else GenCharm(t+1,t);

81 }

82 }

83 }

84 //--------------------------------------------------------------

85 int main() {

86
87 printf("Enter N K: ");

88 scanf("%d %d", &N, &K);

89
90 a[0] = 0;

91 GenCharm(1,1);

92 printf("Total = %d\n", total);

93 }
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