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EXPONENTIAL AND INFINITARY DIVISORS

ANDREW V. LELECHENKO

Abstract. Our paper is devoted to several problems from the field of modified
divisors: namely exponential and infinitary divisors. We study the behaviour
of modified divisors, sum-of-divisors and totient functions. Main results con-
cern with the asymptotic behaviour of mean values and explicit estimates of
extremal orders.

1. Introduction

Let m be an exponential divisor (or e-divisor) of n (denote m |(e) n) if m | n and
for each prime p | n we have a | b, where pa ||m, pb ||n. This concept, introduced
by Subbarao [18], leads us to the e-divisor function τ (e)(n) =

∑

m|(e)n 1 (sequence

A049419 in OEIS [20]) and sum-of-e-divisors function σ(e)(n) =
∑

m|(e)n m (se-

quence A051377). These functions were studied by many authors, including among
others Wu and Pétermann [17, 25].

Consider a set of arithmetic functions A, a set of multiplicative prime-indepen-
dent functions MPI and an operator E : A → MPI such that

(Ef)(pa) = f(a).

One can check that τ (e) = Eτ , but σ(e) 6= Eσ. Section 3 is devoted to the latter
new function Eσ.

On contrary several authors, including Tóth [22, 24] and Pétermann [16], studied
exponential analogue of the totient function, defining φ(e) = Ef . However φ(e)

lacks many significant properties of φ: it is prime-independent and φ(e) ≪ nε. In
Section 4 we construct more natural modification of the totient function, which will
be denoted by f(e).

One can define unitary divisors as follows: m |∗ n if m | n and gcd(m,n/m) = 1.
Further, define bi-unitary divisors: m |∗∗ n if m | n and greatest common unitary
divisor of m and n/m is 1; define tri-unitary divisors: m |∗∗∗ n if m | n and greatest
common bi-unitary divisor of m and n/m is 1; and so on. It appears that this
process converges to the set of so-called infinitary divisors (or ∞-divisors): m |∞ n
if m | n and for each p | n, pa ||m, pb ||n, the binary digits of a have zeros in all
places, where b’s have. This notation immediately induces ∞-divisor function τ∞

(sequence A037445) and sum-of-∞-divisors function σ∞ (sequence A049417). See
Cohen [1].

Recently Minculete and Tóth [15] defined and studied an exponential analogue of
unitary divisors. We introduce e-∞-divisors: m |(e)∞ n if m | n and for each p | n,
pa ||m, pb ||n, we have a |∞ b. In Section 5 we improve an estimate for

∑

n6x τ
∞(n)

by Cohen and Hagis [2] and briefly examine τ (e)∞. Section 6 is devoted to e-∞-
perfect numbers such that σ(e)∞(n) = 2n.
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2. Notations

Letter p with or without indexes denotes a prime number. Notation pa ||n means
that pa | n, but pa+1 ∤ n.

We write f ⋆ g for Dirichlet convolution

(f ⋆ g)(n) =
∑

d|n

f(d)g(n/d).

In asymptotic relations we use ∼, ≍, Landau symbols O and o, Vinogradov
symbols ≪ and ≫ in their usual meanings. All asymptotic relations are given as
an argument (usually x) tends to the infinity.

Letter γ denotes Euler—Mascheroni constant. Everywhere ε > 0 is an arbitrarily
small number (not always the same even in one equation).

As usual ζ(s) is the Riemann zeta-function. Real and imaginary components of
the complex s are denoted as σ := ℜs and t := ℑs, so s = σ + it.

We abbreviate llog x := log log x, lllog x := log log log x, where log x is a natural
logarithm.

Let τ be a divisor function, τ(n) =
∑

d|n 1. Denote

τ(a1, . . . , ak;n) =
∑

d
a1
1 ···d

ak
k =n

1

and τk = τ(1, . . . , 1
︸ ︷︷ ︸

k times

; ·). Then τ ≡ τ2 ≡ τ(1, 1; ·).

Now let ∆(a1, . . . , ak;x) be an error term in the asymptotic estimate of the
sum

∑

n6x τ(a1, . . . , ak;n). (See [11] for the form of the main term.) For the sake

of brevity denote ∆k(x) = ∆(1, . . . , 1
︸ ︷︷ ︸

k times

;x).

Finally, θ(a1, . . . , ak) denotes throughout our paper a real value such that

∆(a1, . . . , ak;x) ≪ xθ(a1,...,ak)+ε

and we write θk for the exponent of x in ∆k(x).

3. Values of Eσ

Theorem 1.

(1) lim sup
n→∞

logEσ(n) llog n

logn
=

log 3

2
.

Proof. Theorem of Suryanarayana and Sita Rama Chandra Rao [19] shows that

lim sup
n→∞

logEσ(n) llog n

logn
= sup

n>1

log σ(n)

n
.

The supremum can be split into two parts: we have

max
n66

log σ(n)

n
=

log σ(2)

2
=

log 3

2

and for n > 6 we apply estimate of Ivić [7]

(2) σ(n) < 2.59n llogn

to obtain
log σ(n)

n
<

log 2.59 + logn+ lllogn

n
:= f(n),

where f is a decreasing function for n > 6 and f(7) < (log 3)/2. Thus

sup
n>1

log σ(n)

n
=

log 3

2
.
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Equation (1) shows that Eσ(n) ≪ nε.

Theorem 2.

(3)
∑

n6x

Eσ(n) = C1x+ (C2 log x+ C3)x
1/2 + C4x

1/3 + E(x),

where C1, C2, C3, C4 are computable constants and

x1/5 ≪ E(x) ≪ x1153/3613+ε.

Proof. Let F (s) =
∑∞

n=1 Eσ(n)n−s. We have utilizing (2)

F (s) =
∏

p

∞∑

a=0

Eσ(pa)p−as =
∏

p

(

1 +

∞∑

a=1

σ(a)p−as

)

=

=
∏

p

(
1 + p−s + 3p−2s + 4p−3s + 7p−4s +O(pε−5s)

)
=

=
∏

p

1 +O(pε−5s)

(1− p−s)(1− p−2s)2(1− p−3s)
,

so

(4) F (s) = ζ(s)ζ2(2s)ζ(3s)H(s),

where series H(s) converges absolutely for σ > 1/5.
Equation (4) shows that

Eσ = τ(1, 2, 2, 3; ·) ⋆ h,

where
∑

n6x |h(n)| ≪ x1/5+ε. We apply the result of Krätzel [12, Th. 3] together

with Huxley’s [6] exponent pair k = 32/205 + ε, l = k + 1/2 to obtain
∑

n6x

τ(1, 2, 2, 3;n) = B1x+ (B2 log x+B3)x
1/2 +B4x

1/3 +O(x1153/3613+ε)

for some computable constants B1, B2, B3, B4. Now convolution argument certi-
fies (3) and the upper bound of E(x). The lower bound for E(x) follows from the
theorem of Kühleitner and Nowak [14]. �

Theorem 3.
∑

n6x

(Eσ(n))2 = Dx+ P7(log x)x
1/2 + E(x),

where D is a computable constant, P7 is a polynomial with degP = 7 and

x4/17 ≪ E(x) ≪ x8/19+ε.

Proof. We have

∞∑

n=1

(Eσ(n))2n−s =
∏

p

(

1 +

∞∑

a=1

(σ(a))2p−as

)

=

=
∏

p

(
1 + p−s + 9p−2s +O(pε−3s)

)
=

=
∏

p

1 +O(pε−3s)

(1− p−s)(1 − p−2s)8
= ζ(s)ζ8(2s)G(s),

where series G(s) converges absolutely for σ > 1/3.
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Ω-estimate of the error term E(x) follows again from [14]. To obtain E(x) ≪
≪ x8/19 we use [11, Th. 6.8], which implies

θ(1, 2, 2, 2, 2, 2, 2, 2, 2)6
1

1 + 2− θ8
6

8

19
.

Here we used the estimate of Heath-Brown θ8 6 5/8 [21, p. 325]. �

4. Values of f(e)

For the usual Möbius function µ, identity function id and unit function 1 we
have

τ = 1 ⋆ 1,

id = 1 ⋆ µ,

σ = 1 ⋆ id .

Subbarao introduced in [18] the exponential convolution ⊙ such that for multi-
plicative f and g their convolution f ⊙ g is also multiplicative with

(5) (f ⊙ g)(pa) =
∑

d|a

f(pd)g(pa/d).

For function µ(e) = Eµ and defined in Section 1 functions τ (e) and σ(e) we have

τ (e) = 1⊙ 1,

id = 1⊙ µ(e),

σ(e) = 1⊙ id .

This leads us to the natural definition of f(e) = µ(e) ⊙ id (similar to usual φ =
= µ ⋆ id). Then by definition (5)

f(e)(pa) =
∑

d|a

µ(a/d)pd.

Let us list a few first values of f(e) on prime powers:

a 1 2 3 4 5

f(e)(pa) p p2 − p p3 − p p4 − p2 p5 − p

Note that f(e)(n)/n depends only on the square-full part of n. Trivially

lim sup
n→∞

f(e)(n)

n
= 1

and one can show utilizing Mertens formula (cf. [5, Th. 328]) that

lim inf
n→∞

f(e)(n) llogn

n
= e−γ .

Instead we prove an explicit result.

Theorem 4. For any n > 44100

(6)
f(e)(n) llog n

n
> Ce−γ , C = 0.993957.
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Proof. Denote for brevity f(n) = f(e)(n) llogn/n.
Let s(n) count primes, squares of which divide n: s(n) =

∑

p2|n 1. Let pk denote

the k-th prime: p1 = 2, p2 = 3 and so on. One can check that

f(n) 6 f




∏

p6ps(n)

p2



 .

Now we are going to prove that for every x > 11 inequality (6) holds for n =
=
∏

p6x p
2. On such numbers we have

f(n) =
∏

p6x

(1− p−1) · log



2
∑

p6x

log p





and our goal is to estimate the right hand side from the bottom. By Dusart [3] we
know that for x > x0 = 10 544 111

∑

p6x

p−1 6 llog x+B +
1

10 log2 x
+

4

15 log3 x
,(7)

∑

p6x

log p > x

(

1−
0.006788

log x

)

(8)

Now since exp(−y − y2/2− cy3) 6 1 − y for 0 6 y 6 1/2 and c = 8 log 2 − 5 =
= 0.545177 we have
∏

p6x

(1− p−1) >
∏

p6x

exp(−p−1 − p−2/2− cp−3) >

>

(
∏

p

exp(−p−2/2− cp−3)

)
∏

p6x

exp(−p−1) =: C1

∏

p6x

exp(−p−1),

where C1 = 0.725132. Further, by (7) for x > x0

∏

p6x

exp(−p−1) = exp



−
∑

p6x

p−1



 >

> log−1 x · exp

(

−B −
1

10 log2 x
−

4

15 log3 x

)

>

> log−1 x · exp

(

−B −
1

10 log2 x0

−
4

15 log3 x0

)

=: C2 log
−1 x,

where C2 = 0.769606. And by (8) for x > x0

log



2
∑

p6x

log p



 > log

(

2x

(

1−
0.006788

log x

))

> log x.

Finally, we obtain that for x > x0, n =
∏

p6x p
2 we have

(9) f(n) > C1C2 = 0.993957e−γ.

Numerical computations show that in fact (9) holds for p5 = 11 6 x < x0 and n =
= (2 · 3 · 5 · 7)2 = 44100 is the largest exception of form

∏

p6x p
2.

To complete the proof we should show that the theorem is valid for each n >
> 44100 such that s(n) 6 4. Firstly, one can validate that the only square-full
numbers k for which f(k) > Ce−γ and s(k) 6 4 are 4, 8, 9, 36, 900, 44100.
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Secondly, let n = kl, where k > 1 stands for square-full part and l for square-free
part, gcd(k, l) = 1. Then

f(n) =
f(e)(k) llog k

k
·
f(e)(l)

l
·
llog kl

llog k
>

2 llog 4

4
·
llog 4l

llog 4
=

llog 4l

2
.

This inequality shows that if f(n) 6 Ce−γ then llog 4l 6 2Ce−γ or equivalently l 6
6 5.

Thus the complete set of suspicious numbers is
{
kl | k ∈ (4, 8, 9, 36, 900, 44100), l ∈ {1, 2, 3, 5}, gcd(k, l) = 1

}

and fortunately all of them are less or equal to 44100. �

Theorem 5. ∑

n6x

f(e)(n) = Cx2 +O(x log5/3 x),

where C is a computable constant.

Proof. Let s be a complex number such that σ > 4/5. For a > 4 one have f(e)(pa) =
= pa +O(pa/2) and

∞∑

a=4

pa/2−4a/5 =
∞∑

a=4

p−3a/10 ≪ p−12/10 ≪ p−1.

We have

F(p) :=

∞∑

a=0

f(e)(pa)p−as =

= 1 + p1−s + (p2−2s − p1−2s) + (p3−3s − p1−3s) +

∞∑

a=4

pa−as + O(p−1).

Then

(1− p1−s)F(p) = 1− p1−2s + p2−3s − p1−3s + p2−4s +O(p−1) =

= 1− p1−2s + p2−3s +O(p−1)

and
(1− p1−s)(1 − p2−3s)

1− p1−2s
F(p) = 1 +O(p−1).

Taking product by p we obtain
∞∑

n=1

f(e)(n)n−s =
∏

p

F(p) =
ζ(s− 1)ζ(3s− 2)

ζ(2s− 1)
G(s),

where G(s) converges absolutely for σ > 4/5. This means that f(e) = z ⋆ g, where

z(n) =
∑

n1n2
2n

3
3=n

n1µ(n2)n2n
2
3

and
∑

n6x |g(n)| ≪ x4/5+ε.

By [17, Th. 1] we have
∑

n1n3
36y n1n

2
3 = y2ζ(4)/2 +O(y log2/3 y), so

∑

n6x

z(n) =
∑

n26x1/2

µ(n2)n2

(
ζ(4)

2

x2

n4
2

+O

(
x

n2
2

log2/3 x

))

=

=
ζ(4)

2ζ(3)
x2 +O(x log5/3 x).

Standard convolution argument completes the proof. �
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5. Values of τ∞ and τ (e)∞

Note that τ∞(p) = τ∞(p2) = τ∞(p4) = 2, τ∞(p3) = τ∞(p5) = 4 and more
generally

(10) τ∞(pa) = 2u(a),

where u(a) is equal to the number of units in binary representation of a. Thus τ∞(pa) 6
6 a+ 1 and τ∞(n) ≪ nε.

Theorem 6.
∑

n6x

τ∞(n) = (D1 log x+D2)x+ E(x),

where D1, D2 are computable constants. In unconditional case

E(x) ≪ x1/2 exp(−A log3/5 x llog−1/5 x), A > 0,

and under Riemann hypothesis E(x) ≪ x5/11+ε.

Proof. Let us transform Dirichlet series for τ∞ into a product of zeta-functions:

∞∑

n=1

τ∞(n)n−s =
∏

p

∞∑

a=0

τ∞(pa)p−as =

=
∏

p

(
1 + 2p−s + 2p−2s + 4p−3s +O(pε−4s)

)
=

=
∏

p

(
1 +O(pε−4s)

)
(1− p−2s)

(1− p−s)2(1− p−3s)2
=

ζ2(s)ζ2(3s)

ζ(2s)
G(s),

where series G(s) converges absolutely for σ > 1/4.
By [11, Th. 6.8] together with estimate θ2 < 131/416+ ε from [6] we get
∑

n6x

τ(1, 1, 3, 3;n) = (C1 log x+ C2) + (C3 log x+ C4)x
1/3 +O(x547/1664+ε).

Now the statement of the theorem can be achieved by application of Ivić’s [8, Th. 2].
Alas, term (C3 log x+ C4)x

1/3 will be absorbed by error term. �

Theorem 7.

(11)
∑

n6x

(
τ∞(n)

)2
= P3(log x)x +O(x1/2 log9 x),

where P3 is a polynomial, degP3 = 3.

Proof. We have
(
τ∞(p)

)2
=
(
τ∞(p2)

)2
= 4,

so

F (s) :=

∞∑

n=1

(
τ∞(n)

)2
n−s =

ζ4(s)

ζ6(2s)
H(s),

where series H(s) converges absolutely for σ > 1/3.
By Perron formula for c := 1 + 1/ logx, logT ≍ log x we have

∑

n6x

(
τ∞(n)

)2
=

1

2πi

∫ c+iT

c−iT

F (s)xss−1ds+O(x1+εT−1).

Moving the contour of the integration till [1/2− iT, 1/2 + iT ] we get
∑

n6x

(
τ∞(n)

)2
= res

s=1
F (s)xss−1 +O(I0 + I− + I+ + x1+εT−1),
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where

I0 :=

∫ 1/2+iT

1/2−iT

F (s)xss−1ds, I± :=

∫ c±iT

1/2±iT

F (s)xss−1ds.

Function F (s)xss−1 has a pole of fourth order at s = 1, so ress=1 F (s)xss−1 has
form P3(log x)x. Let us estimate the error term.

Take T = x3/4. Firstly,

I+ ≪ T−1

∫ c

1/2

ζ4(σ + iT )

ζ6(2σ + 2iT )
xσ dσ

Using classic estimates ζ(σ + iT ) ≪ T (1−σ)/3 for σ ∈ [1/2, 1) and ζ(σ + iT ) ≪ T ε

for s 6= σ > 1 we obtain I+ ≪ x1/4+ε. The same can be proven for I−.

Secondly, taking into account bounds ζ−1(1 + it) ≪ log2/3 t and
∫ T

1 ζ(1/2 +

it)2t−1dt ≪ log5 T (see [9] or [21]) we have

(12) I0 ≪ x1/2

∫ T

1

ζ4(1/2 + it)

ζ6(1 + 2it)

dt

t
≪ x1/2 log9 T,

which completes the proof. �

Recently Jia and Sankaranarayanan proved in the preprint [10] that
∫ T

1

ζ4(1/2 + it)

ζk(1 + 2it)
dt ≪ T log4 T,

so summing up integrals over intervals [2n, 2n+1] for n = 0, . . . , ⌊log2 T ⌋ leads to
∫ T

1

ζ4(1/2 + it)

ζk(1 + 2it)

dt

t
≪ log5 T.

Thus instead of (12) we get I0 ≪ x1/2 log5 x, which provides us with a better error
term in (11).

Function Eτ∞ has Dirichlet series ζ(s)ζ(2s)ζ−1(4s)H(s), where H(s) converges
absolutely for σ > 1/5, very similar to function t(e), studied by Tóth [23] and
Pétermann [16]. The latter achieved error term O(x1/4) in the asymptotic expansion
of
∑

n6x t
(e); the same result holds for Eτ∞.

Dirichlet series for
(
Eτ∞(n)

)2
is similar to

(
τ (e)(n)

)2
: both of them are ζ(s)×

ζ3(2s)H(s), where H(s) converges absolutely for σ > 1/3. Krätzel proved in [13]

that the asymptotic expansion of
∑

n6x

(
τ (e)(n)

)2
has error term O(x11/31); the

same is true for
(
Eτ∞(n)

)2
.

6. E-∞-perfect numbers

Let σ(e)∞ denote sum-of-e-∞-divisor function, where e-∞-divisors were defined
in Section 1. We call n e-∞-perfect if σ(e)∞(n) = 2n. As far as σ(e)∞(n)/n
depends only on square-full part of n, we consider only square-full n below. We
found following examples of e-∞-perfect numbers:

36, 2700, 1800, 4769 856, 357 739 200, 238 492 800, 54 531 590 400,

1307 484 087 615 221 689 700 651 798 824 550 400 000.

All of them are e-perfect also: σ(e)(n) = 2n. We do not know if there are any
e-∞-perfect numbers, which are not e-perfect.

Equation (10) implies that τ∞(n) is even for n 6= 1. Then for p > 2, a > 1 the
value of σ(e)∞(pa) is a sum of even number of odd summands and is even. Thus
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if n is odd and σ(e)∞(n) = 2n then n = pa, p > 2. But definitely σ(e)∞(pa) 6

6 σ(pa) < 2pa. We conclude that all e-∞-perfect numbers are even.
Are there e-∞-perfect numbers, which are not divisible by 3? For e-perfect

numbers Fabrykowski and Subbarao [4] have obtained that if σ(e)(n) = 2n and 3 ∤
∤ n then n > 10664. We are going to show that in the case of e-∞-perfect even
better estimate can be given.

Lemma 1.

σ(e)∞(p)

p
= 1,

σ(e)∞(p2)

p2
= 1+ p−1,

σ(e)∞(pa)

pa
6 1 + 2p−a/2 for a > 6,(13)

σ(e)∞(pa)

pa
6 1 + p−2 for a > 3.(14)

Proof. Two first identities are trivial. For a > 6 all non-proper divisors of a are less
or equal to a/2, so

σ(e)∞(pa) 6 pa +

a/2
∑

b=1

pb 6 pa +
p(pa/2 − 1)

p− 1
6 pa + 2pa/2.

This provides (13). Inequality (14) can be directly verified for a = 3, 4, 5 and follows
from (13) for a > 6. �

Lemma 2. Let b(t) = maxτ>t σ
(e)∞(2τ )2−τ . Then

(15) b(t) 6







5/4, t 6 3,

39/32, 2 < t 6 6,

1 + 21−t/2, t > 6.

Proof. Follows from (13) and direct computations for small τ :

σ(e)∞(23) = 10, σ(e)∞(26) = 78.

�

Theorem 8. If n is e-∞-perfect and 3 ∤ n then n > 1.35 · 10816.

Proof. In fact we will give a lower estimate for square-full n such that for u/v =
= σ(e)∞(n)/n, gcd(u, v) = 1, we have

3 ∤ u, 3 ∤ v,(16)

2 | u, 4 ∤ u, 2 ∤ v,(17)

u/v > 2.(18)

If this conditions are not satisfied then n is not e-∞-perfect or 3 | n.
Let

n = 2t
∏

p∈P

p2
∏

q∈Q

qaq , t > 1, aq > 3,

sets P and Q contain primes > 5 and P ∩Q = ∅. Then

u

v
=

σ(e)∞(n)

n
=

σ(e)∞(2t)

2t

∏

p∈P

p+ 1

p

∏

q∈Q

σ(e)∞(qaq )

qaq
.
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Condition (16) implies that all p ∈ P are of form p = 6k + 1. Split P into three
disjoint sets:

P8 = {p ∈ P | p+ 1 ≡ 0 (mod 8)},

P4 = {p ∈ P | p+ 1 ≡ 4 (mod 8)},

P2 = P \ P4 \ P8.

Let t2 = |P2|, t4 = |P4|, t8 = |P8|. Then condition (17) implies

t > t2 + 2t4 + 3t8 + |Q|+ 1.

Now we utilize (18) to get

2 6
u

v
6 b(t2 + 2t4 + 3t8 + |Q|+ 1)

∏

p∈P

(1 + p−1)
∏

p∈Q

(1 + q−2) =

= b(t2 + 2t4 + 3t8 + |Q|+ 1)
∏

p∈P

1 + p−1

1 + p−2

∏

q∈P∪Q

(1 + q−2).

But

(19)
∏

q∈P∪Q

(1 + q−2) 6

∏

q(1 + q−2)

(1 + 2−2)(1 + 3−2)
=

ζ(2)/ζ(4)

25/18
=

54

5π2
,

so we obtain
10π2

54
6 b(t2 + 2t4 + 3t8 + 1)

∏

p∈P

1 + p−1

1 + p−2
.

Denote f(p) = (1 + p−1)/(1 + p−2). As soon as f is decreasing we can estimate

∏

p∈P

f(p) =
∏

j∈{2,4,8}
p∈Pj

f(p) 6

t2∏

k=1

f(p2,k)

t4∏

k=1

f(p4,k)

t8∏

k=1

f(p8,k),

where p2 is a sequence of consecutive primes such that p2,k ≡ 1 (mod 6) and p2,k+
+ 1 6≡ 0 (mod 4); p4 is a sequence of consecutive primes such that again p4,k ≡ 1
(mod 6), but p4,k+1 ≡ 4 (mod 8); and p8 is such that p8,k ≡ 1 (mod 6), p8,k+1 ≡ 0
(mod 8).

Now conditions (16), (17), (18) can be rewritten as

n > min
t2,t4,t8

{

2t2+2t4+3t8+1
∏

j∈{2,4,8}

tj∏

k=1

p2j,k

∣
∣
∣
∣

∣
∣
∣
∣

10π2

54
6 b(t2 + 2t4 + 3t8 + 1)

∏

j∈{2,4,8}

tj∏

k=1

1 + p−1
j,k

1 + p−2
j,k

}

.

This optimization problem can be solved numerically utilizing (15):

t2 = 70, t4 = 32, t8 = 31, n > 8.49 · 10801.

We can use n’s factor
∏

q∈Q qaq to improve obtained bound. Suppose that any

of primes 5, 11, 17, 23 (all of form 6k − 1) is not in Q. Then instead of (19) we
derive

∏

q∈P∪Q

(1 + q−2) 6
54

5π2(1 + 23−2)
.

Same arguments as above shows that in this case n > 3 · 10823. Otherwise, if 5, 11,
17 and 23 are present in Q we get

n > (8.49 · 10801) · (5 · 11 · 17 · 23)3 · 24 > 1.35 · 10816.



EXPONENTIAL AND INFINITARY DIVISORS 11

�

References

[1] Cohen G. L. On an integer’s infinitary divisors // Math. Comput. — 1990. — jan. — Vol. 54,
no. 189. — P. 395–411.

[2] Cohen G. L., Hagis Jr. P. Arithmetic functions associated with the infinitary divisors of an
integer // Int. J. Math. Math. Sci. — 1993. — Vol. 16, no. 2. — P. 373–383.
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J. Théor. Nombres Bordx. — 1995. — Vol. 7, no. 1. — P. 133–141.

I. I. Mechnikov Odessa National University

E-mail address: 1@dxdy.ru

http://dx.doi.org/10.2307/2008701
http://dx.doi.org/10.1155/S0161171293000456
http://isbndb.com/search-all.html?kw=0199219869, 9780199219865
http://dx.doi.org/10.1112/S0024611504014959
http://isbndb.com/search-all.html?kw=0486428133, 9780486428130
http://arxiv.org/pdf/1311.4041v2
http://dx.doi.org/10.1007/s00605-010-0226-8
http://isbndb.com/search-all.html?kw=9027727333, 9789027727336
http://dx.doi.org/10.1007/BF02941626
http://dx.doi.org/10.1007/s10474-009-9059-0
http://dx.doi.org/10.1002/mana.19941650107
http://dx.doi.org/10.1023/A:1006596009566
http://dx.doi.org/10.1007/BFb0058796
http://oeis.org
http://oeis.org
http://isbndb.com/search-all.html?kw=0198533691, 9780198533696
http://dx.doi.org/10.5802/jtnb.136

	1. Introduction
	2. Notations
	3. Values of E
	4. Values of f(e)
	5. Values of  and (e)
	6. E–perfect numbers
	References

