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Abstract

Knot mosaics are used to model physical quantum states. The mosaic number of a knot is the
smallest integer m such that the knot can be represented as a knot m-mosaic. In this paper
we establish an upper bound for the crossing number of a knot in terms of the mosaic number.
Given an m-mosaic and any knot K that is represented on the mosaic, its crossing number c is
bounded above by (m − 2)2 − 2 if m is odd, and by (m − 2)2 − (m − 3) if m is even. In the
process we develop a useful new tool called the mosaic complement.

1 Introduction

In [7], Lomonaco and Kauffman introduce a standard system of knot mosaics as a model of
physical quantum states. Since then mosaics have been used in this original manner, but also
as a tool by which to better understand knots themselves.

Much like crossing number and other easy to define invariants of knots it is not hard to get
very loose bounds for mosaic number, but strong bounds can be difficult to compute. Many of
the recent known results can be found at the Online Encyclopedia of Integer Sequences webpage
devoted to the number of n× n knot mosaics [9].

Mosaics contain 5 distinct tiles, up to rotation, and all 11 orientations are shown below. We
label the tiles with roman numerals for the 5 types and when applicable the letters a though
d for the distinct rotations of those types. We also introduce a type 0 tile which consists of a
square with a dot in the center. Type 0 tiles are not a part of a mosaic, and have not previously
been used in the literature but will be used when we introduce a new tool called the mosaic
complement in Section 2.

For a positive integer n, define an n-mosaic Mn as an n×n matrix composed of mosaic tiles.
As is typical when studying mosaics, we are only interested in mosaics which represent knots
and links so we restrict to those cases in the standard way as follows. A connection point is the
midpoint of a tile edge which is also the endpoint of an arc drawn on that tile. Thus type I

0 I IIa IIb IIc IId

IIIa IIIb IVa IVb Va Vb

Figure 1.1: The tiles of a mosaic and its mosaic complement.
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Figure 1.2: Pictured above are two 4× 4 mosaics, but only the one on the right is suitably connected to yield the
projection of a knot.

tiles have no connection points, type II and III tiles have 2 connection points and type IV and
V tiles have 4 connection points as seen in Figure 1.1. Contiguous tiles are any tiles which fall
directly next to each other in the same column or row. We can then say that a tile within a
mosaic is suitably connected if each of its connection points is identified with a connection point
of a contiguous tile.

A link n-mosaic is an n-mosaic with all of its tiles suitably connected so that after all the
tiles are placed on the mosaic, the result is a projection of a link. In such a mosaic, tiles of types
II, III, IV, and V must have adjacent tiles that are also of one of these four types to extend the
arcs started on those tiles.

A knot n-mosaic is a link n-mosaic that corresponds to a projection of a one component link
(a knot). Thus every knot mosaic is a link mosaic, but not every link mosaic is a knot mosaic.
Define the mosaic number of a knot (or link) to be the smallest natural number m such that the
knot (link) is able to be represented as a knot (link) m-mosaic. See Figure 1.2 for an example of
a 4-mosaic that is not suitably connected as well as a knot 4-mosaic (that is suitably connected).

An important motivation for studying knot mosaics is the Lomonaco-Kauffman Conjecture,
which states that knot mosaic theory is equivalent to classic (tame) knot theory. This was
proven by Kuriya and Shehab in [4], so as a result, we can treat knot equivalence and crossing
number of knot mosaics in the usual way.

At times we will want to examine specific tiles within a mosaic. When specifying a given
tile, we model subscripts after the entries in a matrix so the tile Ri,j will refer to the tile in the
ith row and jth column, where columns are counted from the left and rows are counted from
the bottom (we diverge from matrix notation slightly here to allow row numbers to reflect a
height function). If we think of Mn as an n× n square disk, the 4n− 4 tiles that intersect ∂Mn

will be called boundary tiles and the other (n− 2)2 tiles will be referred to as the interior of the
mosaic and denoted S. See Figure 1.3 for a depiction of S and the boundary tiles in a mosaic.
We will often be focused on S.

Figure 1.3: In a 4× 4 mosaic the the interior S is the shaded 2× 2 sub-mosaic.

In this paper we are explore the relationship between crossing number and mosaic number.
We begin by listing some of the known results on crossing number and mosaics. We start with
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Theorem 3.1 in [3].

Theorem 1.1 (Upper Bound on Crossing Number). [3] Given an m-mosaic, if a knot is rep-
resentable on the mosaic then its crossing number is bounded above by: c ≤ (m− 2)2

This upper bound follows immediately from the well known observation that all crossing tiles
on an n-mosaic occur on the interior S of a mosaic (see Lemma 3.1) and S has exactly (n− 2)2

tiles. Using this bound, one can quickly find a lower bound for the mosaic numbers for many
knots. For a few simple knots such as the trefoil it yields the exact mosaic number. However,
it is clear that this bound is of limited use when it comes to determining the mosaic number of
more complex knots. Ludwig, Evans, and Paat, for example, show that the relationship between
crossing number and mosaic number can be subtle in [8] by building an infinite family of knots
where each knot can only achieve its mosaic number in a projection on a mosaic that does not
realize its crossing number.

While we will focus on an upper bound, Lee, Hong, Lee, and Oh give a lower bound on
crossing number in [5] showing that the mosaic number of a non-trivial knot is always less than
or equal to the crossing number of a knot plus 1. In this paper, we sharpen the upper bound
on crossing number by proving

Theorem 8.2. Given an m-mosaic and any knot K that is projected onto the mosaic, the
crossing number c of K is bounded above by the following:

c ≤

{
(m− 2)2 − 2 if m = 2k + 1

(m− 2)2 − (m− 3) if m = 2k.

In the next section we introduce a new tool, the mosaic complement, denoted C, together
with T , an ordered triple, associated to C.

2 The definition of the mosaic complement C and T an
ordered triple associated to C

Given a mosaic Mn for link L (or knot K), we define the mosaic complement on S, the interior
tiles of Mn. The mosaic complement C is obtained by replacing the tiles on S in the following
manner: every type V is replaced with a type I, type IV with type 0, type IIIa with type IIIb,
type IIIb with type IIIa, type IIa with type IIc, type IIc with type IIa, type IIb with type IId,
type IId with type IIb, and finally type I with either a type IVa or IVb (although this means
the mosaic complement is not uniquely defined, either type IVa or IVb is fine).

Intuitively, the mosaic complement is complementary to the link in the mosaic in the sense
that the union of the mosaic complement and the mosaic will intersect the boundary of each tile
in S exactly four times - once on each of the tile’s edges. The name follows from the fact that
if we put a link on a mosaic together with its mosaic complement, the union of the two types of
arcs on the interior of the mosaic S will consist of entirely type V tiles, type IV tiles, and type
IV tiles together with a dot (the last set comes from when the link has a type IV tile and the
mosaic complement contributes a type 0 tile). One set of arcs on these tiles belongs exclusively
to the link and the complementary set of arcs belongs only to the mosaic complement.

Although the definition of the mosaic complement is not quite unique since we could choose
either type IV tile to replace each type I tile, there is an inverse function associated to the
definition that is unique (reverse the orders in the definition above), so the portion of the link
in the mosaic contained in S may be deduced from C. See Figure 2.1 for a picture of a knot
mosaic together with its mosaic complement (the outline of S is also pictured).

In general, the mosaic complement consists of loops, type 0 tiles, and arcs with both end-
points on ∂S which we call edges. The term arc will be used to refer to a subset of a loop or
an edge. The constant |C| is defined to be the total number of tiles in C (excluding the blank
type I tiles, of course). Throughout the paper Ri,j refers to the tile representing the
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knot and Ti,j refers to the corresponding tile for the mosaic complement. Although
Ti,j is defined by looking at Ri,j , we will be focused on the mosaic complement in most of our
arguments so we will almost always refer directly to Ti,j .

Figure 2.1: An example of a knot mosaic and its mosaic complement.

We next define an ordered triple T , which is computed from the mosaic complement. Recall
that C is the set of all tiles (that are not blank) in the mosaic complement. Let C ′ be the set
of all tiles that form the complement in C of all of the type 0 tiles in C. Note that the tiles of
C ′ together form a set of loops and properly embedded edges on the square disk S. Let C ′′ be
the set of all tiles Ti,j in C that are of type IV. Let l = |C|, l′ = |C ′| and l′′ = |C ′′|. We define
the ordered triple T = (l, l′, l′′). Notice that although the mosaic complement is not unique for
a given mosaic, the only choices were which of the two type IV tiles to pick and so any choice
of mosaic complement for a given mosaic will give the same ordered triple T . In Figure 2.1,
for example, T = (5, 3, 1) because the mosaic complement has 5 nontrivial tiles, 3 of those tiles
are not type 0, and 1 of those tiles is type IV. In Figure 3.2 , T = (3, 0, 0) because there are 3
nontrivial tiles in the mosaic complement, but 0 of those tiles are not type 0 and, of course, 0
of those tiles are type IV.

Of all possible ways to embed a specific knot K on an n × n mosaic, let Mn be a mosaic
that minimizes the ordered triple T lexicographically, and say that in such a case that T is
minimal. For example, if K can be built with with a mosaic complement yielding T1 = (7, 4, 2)
or with a mosaic complement yielding T2 = (8, 0, 0) we pick the first embedding since T1 < T2

lexicographically.

3 Saturation and mosaic complements

A mosaic is said to be saturated if every tile of S, the interior of the mosaic, is a crossing tile.
In this case C = ∅. Conversely, if a link mosaic has a nonempty mosaic complement, it is not
saturated. Theorem 8.2 stated above shows that the even and odd knot mosaic boards have
radically different properties regarding how “nearly saturated” they can be.

Lemma 3.1. In a link mosaic, boundary tiles cannot be crossing tiles. Therefore all crossings
of a link must fit on S, the interior of the mosaic.

Proof. This Lemma is easy to prove and well known. By definition for a mosaic to be suitably
connected, connection points cannot occur on the boundary of the mosaic. Every edge of a
crossing tile contains a connection point, so therefore boundary tiles cannot be crossing tiles
(Tile R1,2 in the mosaic on the left in Fig. 1.2.

Theorem 3.2. A saturated mosaic cannot contain the projection of a knot that achieves its
crossing number.
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Figure 3.1: An odd mosaic with |C| = 2.

Figure 3.2: There are three type 0 tiles in this mosaic complement on M6. One could think of the mosaic as a
saturated mosaic with three crossings smoothed reducing the number of components in the link from 4 to 1.

Figure 3.3: A projection of Solomon’s link on a saturated mosaic (M4).
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Proof. Start by filling S with type V tiles. The proof will not depend on if we choose type
Va or Vb so at this stage we have not lost generality of the argument no matter which type V
tiles we choose. Now we notice that since edges intersecting ∂S can only connect to one of its
two adjacent edges in ∂S there are only two choices of how to connect up the strands through
the boundary tiles to get a knot or link. The vertical strand in R2,3, for example, must either
connect to the vertical strand in R2,2 as it does in Figure 3.5 or R2,4 as in Figure 3.4. In the
first case this means tile R1,3 is a type IId and R1,2 is type IIc and in the second case tile R1,3

is a type IIc and R1,4 is a type IId, again both matching the examples in Figures 3.5 and 3.4
respectively. On a saturated board once this single choice has been made the rest of the choices
on the outside are uniquely determined.

Suppose K is a mosaic representation on Mn which is saturated. If n is odd, both choices
of how to connect up along the boundary tiles leads to a pair of nugatory crossings in opposite
corners of the board like the crossing shown in Fig. 3.4. If n is even, one choice will result in a
link (not a knot) and the other will result in a knot with a nugatory crossing in all four corners.
In each of the cases where we have a knot instead of a link type I Reidemeister moves will reduce
the number of crossings. Therefore a saturated mosaic cannot contain the projection of a knot
that achieves its crossing number.

Figure 3.4: A nugatory crossing in the corner.

Figure 3.5: A link of n− 2 components.

We next consider mosaics with mosaic complements consisting of a single tile, that is |C| = 1.
Almost every knot will fail to achieve its crossing number on such mosaics, and the following
lemma precedes a general theorem for mosaics with |C| = 1.
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Figure 3.6: Odd mosaic with corners easily removed by type I Reidemeister moves..

Lemma 3.3. The trefoil knot has mosaic number 4.

Proof. The trefoil knot has crossing number 3. Since a 3×3 board can only support one crossing,
we must have at least a 4×4 board to have a non-trivial knot. Indeed, the mosaic on the right in
Figure 1.2 shows that the trefoil knot may be embedded on M4 and achieve its crossing number
of 3. Therefore the trefoil knot has mosaic number 4.

Theorem 3.4. Given a knot K with crossing number c, suppose its mosaic number m is odd.
Then c ≤ (m− 2)2 − 2.

Proof. We showed above that an odd mosaic represents a knot with crossing number at most
(n − 2)2 − 1. A mosaic with two interior tiles that are not crossing tiles (type V) will have
c ≤ (m− 2)2− 2 so we are left to focus on the case of exactly one interior tile that is not a type
V tile. If the knot K is achieved with only one interior tile that is not a crossing tile, then this
means |C| = 1. This can only happen if C is either a single type 0 tile or if C is a single type II
tile in one of the corners of S. If C is not in one of the corners of S, then Mn has two opposite
corners with crossings that can be reduced by a type I Reidemeister move just as in a saturated
odd board. Placing the mosaic complement in one of the corners can at most remove one of
these nugatory crossings. Thus even though this embedding of K has (n− 2)2 − 1 crossings, K
does have an embedding with (n− 2)2− 2 crossings or less, bounding the crossing number from
above.

Theorem 3.4 establishes the first part of the main theorem in this paper (Theorem 8.2).
Moreover, an odd mosaic that is saturated and with the type V crossings chosen to give an
alternating knot achieves this bound, so the bound is sharp. See Figure 3.1 for the same knot
simplified via two type I Reidemeister moves to show that the knot achieves its crossing number.

Once the even case is established, it will follow that the trefoil is the only knot which can be
constructed on a mosaic whose mosaic complement consists of a single tile. For the rest of the
paper we focus on the even mosaic case Mn where we assume n is even and T is minimal with
respect to all n× n knot mosaics giving knot K.

4 Loops in the mosaic complement

We now construct an argument showing that we can assume C contains no loops while keeping
T minimal.

Lemma 4.1. Let Mn be a mosaic for a knot K for which T is minimal and the number of loops
in mosaic complement C is minimized over all such possible mosaics and for which |C| ≤ n− 4.
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Let {c1, c2, . . . , ck} be the set of loops in the mosaic complement. Then if the set of loops is not
empty, at least one of the c′is contains a type II tile.

Proof. Since each loop has at least 4 corners, the only way for a loop to avoid a type II tile
is if each corner is part of a type IV tile. If none of the corners are type II then the loop has
at least 4 type IV corners that meet other components of the mosaic complement. If one of
these corners is type IVa replace it with one that is type IVb; if not do the opposite. This swap
yields the connect sum of the loop in the mosaic complement with another component of the
mosaic complement, decreasing the number of loops in the mosaic complement by one. Since it
does not change T and since it still yields a mosaic complement for K (the type IV corners are
chosen arbitrarily) we see that the original mosaic complement did not meet the hypothesis of
the lemma, a contradiction. Thus the corners of each loop may be assumed to be type II, an
even stronger conclusion than the one type II tile in the lemma.

Lemma 4.2. If some loop in the mosaic complement contains a type II tile then T = (l, l′, l′′)
is not minimal.

Proof. If there is such a loop, call it c1. Any time c1 crosses the knot, K, we may dictate that
it goes under K. By virtue of the definition of the mosaic complement, c1 never crosses itself.
Now remove c1 from the mosaic complement and add it instead to the knot, replacing the knot
mosaic with a link mosaic containing K and an unknot. Next place a type V tile into the mosaic
(type V in the link, not the mosaic complement) where the type II tile of c1 had been. Because
c1 was entirely below K, and c1 had no crossings with itself, we have just taken the connect
sum of K with an unknot. Thus we have a new mosaic representing K, but |C| has dropped
contradicting the minimality of the ordered triple T in the original mosaic.

In the proof above we found an unknot in the mosaic complement that contained a type II
tile, swapped it out of the mosaic complement and into the mosaic and changed the type II tile
to a type V, yielding a connect sum of K with an unknot resulting in a new embedding of K
and lowering T . We will repeat this process multiple times in different contexts throughout the
paper and we call the process corner conversion.

Lemmas 4.1 and 4.2 imply

Corollary 4.3. Let Mn be a mosaic for knot K with |C| ≤ n− 4 and for which T achieves its
minimum over all such mosaics. We may then choose Mn so that simultaneously C contains
no loops and T is minimal.

We now want to look at a particular class of loops. These are the shortest possible loops:
ones of length 4 coming from a combination of 4 tiles of types II and IV. We call these short
loops bubbles. We see a bubble in each of the pictures in Figure 4.1.

The proof above showed that the mosaic complement may be chosen to contain no loops if
T is minimal, but it did not show that a mosaic complement containing loops could not also be
minimal. Later we may start with a mosaic complement that contains no loops and use moves
that create bubbles, which we then want to argue is impossible, so we need a stronger result
saying that if T is minimal the mosaic complement cannot contain bubbles. In the argument
it will be useful to have the following lemma that gives us some flexibility in where a bubble
might be positioned.

Lemma 4.4. Given a knot mosaic Mn for knot K with mosaic complement C and ordered
triple T , if Mn contains any 2 × n or n × 2 subset of tiles, n ≥ 2, that consists of exclusively
type IV tiles in the complement, then we may pick any 2 × 2 subset of these tiles and form a
(possibly) new mosaic complement for Mn and K in which there is a bubble in the 2× 2 subset
so that T is unchanged for the new mosaic complement.

Proof. The proof is easy. Pick each of the four tiles to be IVa or IVb so that they have a bubble
within them. Leave the other type IV tiles unchanged. Since swapping type IV tiles in the
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mosaic complement doesn’t affect K or T , the new mosaic complement has shifted the bubble
to the desired location and satisfies our requirements on K and T .

Figure 4.1: A bubble percolates up through a 3× 2 set of type IV tiles.

This process allows us to shift the location of an existing bubble through nearby type IV
tiles. We call this process of shifting a bubble to a new location percolation. A 3× 2 example is
shown in Figure 4.1.

Theorem 4.5. Let Mn be a mosaic for knot K for which T is minimal. C cannot contain a
bubble.

Proof. If we ever have a bubble which contains a type II tile, then we can do a corner conversion
as we did in Lemma 4.2, yielding a new embedding of K but lowering T . This contradicts the
fact that T was minimal. Thus we proceed with the argument under the assumption that the
bubble is entirely contained in type IV tiles.

Next we show the mosaic complement is not minimal if the knot intersects either a row or
a column of S containing the bubble. In this case, the ability to rotate the mosaic assures us
that we may assume that the intersection is in a column above the bubble. If there are any type
IV tiles below the knot in those columns, but above the bubble we use Lemma 4.4 to shift the
bubble up to the four tiles directly below the knot.

Explicitly, if K intersects Ti+1,s∪Ti+1,s+1 we let the bubble be contained in tiles Ti−1,s, Ti,s,
Ti−1,s+1, and Ti,s+1. Without loss of generality let K intersect Ti+1,s (and possibly Ti+1,s+1,
too). Because it is directly above a type IV tile, but it contains part of the knot, Ti+1,s is either
type IIb, IIa, or IIIb (the knot cannot intersect the bottom edge of the tile). Ti+1,s+1 is also
above a type IV tile and must pair with Ti+1,s. This means Ti+1,s+1 must be a type IIa tile or
a type IV tile if Ti+1,s is type IIb, and Ti+1,s+1 must be IIb tile or a type IIIb if Ti+1,s is IIa or
IIIb.

We show moves in Figure 4.2 for six possible combinations that allow us to connect sum
the bubble with the knot and reduce T contradicting minimality – in the case of a type IV in
Ti+1,s+1 we show only type IVb case since the IVa case is nearly identical.

Finally we are left with the case where neither the columns nor the rows of S containing the
bubble intersect the knot. Thus they are exclusively full of type IV tiles in the complement.
Since K exists and in any interesting case has at least one crossing, we know that some row of
S intersects K. (Of course the unknot fits on a 2×2 board with S = ∅ so we are only interested
in knots with positive crossing number.)

By Lemma 4.4 we can percolate the bubble within the columns containing it to make it
intersect the row that already contains part of K. Now as before we have not changed K or
T . We have, however, reduced to the previous case, which shows T can be reduced without
changing K, contradicting minimality.

5 Edges in the mosaic complement

Since we now know that we can get rid of loops in a mosaic complement without increasing T
we turn our attention to edges.

Lemma 5.1. If |C| ≤ n− 4 then no edge in C runs from one side S to the opposite side.
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Figure 4.2: A bubble can never appear in the mosaic complement when T is minimal. Here we see that if a tile
above the bubble contains an arc of K, there is always an embedding of K that decreases T and ‘bursts’ the bubble.

Proof. The proof is trivial since such an edge must be of length at least n− 2.

This implies that if e is an edge of the mosaic complement, then the endpoints will have to
either be on adjacent sides, as in edges f1, f2, f3 and f4 in Figure 7.3, or on the same side of S,
i.e. starting and ending in the exact same row or column as in edges e1, e2 and e3 in the same
figure. If the endpoints are on the same side as each other we call it an XX-edge and if adjacent
sides we call it an XY-edge.

Both XX and XY-edges cut S into two disks. The smaller side is considered the outside of
the edge. In topology we may not have a metric so we often avoid talking about the smaller
part of a disk, but a mosaic as an n×n subset of the plane has a natural metric on it so we are
free to use the term.

Because the edges in the mosaic complement are relatively short, if e is an XX-edge then the
boundary of the outside (smaller) disk consists of e together with part of one side of S. Likewise
if e is an XY-edge the outside consists of e together with parts of two sides of S. Thus for any
arc e we have a notion of outside. An edge e ⊂ C ′ is called outermost in C ′ if there are no edges
outside of e on S in C ′.

Note that if C contains no loops – which Corollary 4.3 allows us to assume – and C ′ 6= ∅, so
there is at least one edge, then there must be an outermost edge e. Also note that our definition
is not quite the same as the traditional definition of outermost arcs on disks in topology. If e is
outermost in our context it is outermost in the traditional definition, but not every traditionally
outermost arc is outermost in our definition because it might be outermost, but on the wrong
side (the side of its larger disk). An edge can still be outermost even if there is a type 0 tile of
C outside of it.

6 Reduction moves

We establish a set of moves that when applied to the arcs of the mosaic complement will reduce
the ordered triple T without changing the isotopy class of the knot. One primary use of the
moves is to lower an arc a of the mosaic complement that represents a local maximum (possibly
after rotating the mosaic). This will eventually lead to the conclusion first that no such moves
can be made to the edges of C, and then after a further argument that C contains no edges at
all if T is minimal. We define the moves starting with the more elementary moves.
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6.1 The type IV moves: bubble release and XX-through-XY moves

In the proof of Lemma 4.1 we swapped type IV tiles to reduce the number of loops in a mosaic
complement by taking the connect sum of a loop with another part of the mosaic complement.
We now consider the inverse operation on the mosaic complement when it would create a bubble.
We define a bubble release move when we swap a type IVa tile for IVb or vice versa to yield a
bubble without altering K or T . Such a move is pictured in Figure 6.1.

Figure 6.1: Neither the embedding of the knot nor T are altered when we break a bubble off of an arc of the mosaic
complement using the bubble release move. Note that the move is identical if any of the type II mosaic complement
tiles are swapped for type IV tiles.

We know, however, by Theorem 4.5 that a minimal mosaic complement can never contain
a bubble and T is unchanged by a bubble release move so we see immediately the following
lemma.

Lemma 6.1. If T is minimal then C cannot contain tiles on which we can perform a bubble
release move.

The other type IV move is the XX-through-XY move. Let C contain e1 an XY-edge that
has e2 an XX-edge outside of it such that the two edges share a type IV tile. Switching the tile
from IVa to IVb or vice versa will, of course, have no effect on T or K, but will replace e1 and
e2 with a new XY-edge and a new XX-edge. Call the XY-edge e′1 and the XX-edge e′2. The
move reduces the overall number of XX-edges outside of XY-edges. In particular at the very
least e′2 is not outside of e′1 and e′1 has fewer XX-edges outside of it than e1 did.

Iterating this process will eventually terminate since the number of type IV tiles is bounded
by |C|.

We define a knot mosaic together with a mosaic complement C and associated ordered triple
T to be a minimal embedding for a knot K if T is minimal, C contains no loops and in C no XX-
through-XY moves are possible. Corollary 4.3 together with the process we have just described
assures that every knot K that has a knot mosaic with |C| ≤ n− 4 has a minimal embedding.
We call the mosaic complement in a minimal embedding a minimal mosaic complement.

6.2 Corner-corner moves

We describe this move in terms of an arc that acts as a local maximum for an edge and is moved
downward. By symmetry, we can rotate the mosaic any multiple of 90 degrees or reflect along
a horizontal or vertical line so the move is equally valid if the arc is a minimum and is moved
upward, or one that is concave right and is moved to the right or concave left and is moved left.

Corner-corner move: Let e be an edge in C that intersects row i in an arc a that represents
a local maximum for e. A local maximum must run directly across row i, i > 2, from a type
IIb (or IVb) tile in column s to a type IIa (or IVa) tile in column t with s < t as in Figure 6.2.
We want to reduce the ordered triple T = (l, l′, l′′) by moving part of the knot up across a and
shorten a by moving it down. Figure 6.3 shows the basic move.

We pay close attention to any portion of the mosaic complement in tiles Ti−1,w with s ≤ w ≤ t
(row i− 1 directly under a). Since each of the tiles of a of the form Ti,w with s < w < t consists
exclusively of type IIIa tiles, clearly those tiles of the form Ti−1,w cannot ever be type IIc, IId
IIIb, IV or V.

Certainly Ti−1,w can be a Type 0 tile as shown, together with the corresponding corner-
corner move in, Figure 6.3. On the other hand, if there is a tile in the mosaic complement
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* * * * * *

Figure 6.2: Each * denotes one of four types of corners possible in a corner-corner arc (two up to reflective
symmetry).

Figure 6.3: We see a basic corner-corner move.

Ti−1,w with s < w < t that is type IIa, IIb, or IIIa then the corner-corner move is undefined
on a. Such examples are seen in the nested arcs in Figure 7.3. Another obstruction to the
definition we can encounter is that if Ti−1,t is type IId, IVa, or IVb. Symmetrically it is also
undefined if the mosaic complement tile Ti−1,s is type IIc, IVa, or IVb. We see arcs of this
form in Figure 6.4. We will never need to use the corner-corner move in any of the undefined
contexts, so the lack of definition here will not be a problem.

We now focus on the definition of the move in the situations where it can be applied. The
move at its core just takes an arc a that is a local maximum for the mosaic complement and
pushes it down one row when there is nothing from the mosaic complement already below it to
block it. The exact prescription is given in two parts. For each w, s < w < t we switch Ti−1,w
with Ti,w. This tells us how we apply the move to tiles that are between the corners of the arc,
but not in the corners themselves. We now specify the move on the two corner tiles and the two
tiles directly below them (Ti,s, Ti−1,s, Ti,t and Ti−1,t). The corner tiles Ti,s and Ti,t are either
type II tiles or type IV. When the move is defined tile Ti−1,s must be type IIIb tile or type IIc.
On the other corner, Ti−1,t is either type IIIb or IId. As mentioned earlier, the move is not
defined if either of the tiles below the corners are type IV; we address this situation later.

The swap for a typical situation is pictured in Figure 6.3. If the tile Ti,s or Ti,t is type II
we replace it with a type 0 tile. If it is type IVa it is replaced with a type IIc tile. A type IVb
is replaced with type IId. If the tile Ti−1,s is type IIIb it is replaced by a type IIb tile. If it is
type IId, it is replaced by IIIa. If Ti−1,t is type IIIb then it is replaced by type IIa. If it is IIc,
it is replaced by type IIIa.

Lemma 6.2. A corner-corner move causes a planar isotopy of K and reduces T . Hence there
cannot be an arc on which a corner-corner move can be applied in a mosaic that minimizes T .

Proof. The lemma follows directly from the definition of the move. The tiles between columns
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a1

a′1

a2

a′2

Figure 6.4: The corner-corner move is not defined on the arcs a1 and a2 at the top of the edges because of the
bottom tile in a′1 and a′2 blocking the move, but this is not a problem because it is defined on the two-tile arcs a′1
and a′2.

s and t swap places, but pairwise remain identical and thus cannot change T . As seen in the
figures no matter which configuration appears in column s and t, the ordered triple T decreases
in these columns. Specifically, the contributions to |C| remains the same, but the contribution
in column s to either |C ′| or |C ′′| is reduced by one and the same is true in column t.

We now turn our attention to the two cases in which the corner-corner move was not defined
to see that neither of these is a problem. The following lemma states that the first one can never
occur in a reduced mosaic complement.

Lemma 6.3. A corner-corner arc a with Ti−1,t either type IId or type IVb or with Ti−1,s type
IIc or IVa cannot occur if T is minimal.

Proof. Given a in the mosaic complement running from Ti,s to Ti,t if Ti−1,t in the mosaic
complement is either type IVb (meaning Ri−1,t is type I) or type IId then the corner-corner
move is not defined on a. Let the portion of e in tiles Ti,t and Ti−1,t be called a′. Arcs a′1 and a′2
in Figure 6.4 are examples of such arcs. If t = s+1 and Ti,s is type IV then we are in a situation
such as Figure 6.1, but this is impossible since T is minimal and the existence of a bubble release
move would contradict minimality. Given the structure of a corner-corner arc a together with
adjacent two-tile corner-corner arc a′, this is the only case in which the corner-corner move is
not defined on a′ Therefore we push it to the left so in all other cases a corner-corner move can
be applied to a′ reducing T just as it can be to a′1 and a′2 in Figure 6.4. By Corollary 6.2 we
know that the move cannot happen if T is minimal, so Ti−1,t cannot be type IId or IVb. The
analogous argument holds by reflective symmetry if Ti−1,s is type IIc or IVa.

Thus it is not a problem that the corner-corner move was not defined in this context. We
are left only with the following situations in which the corner-corner move was not defined. We
could have a corner-corner arc a in the mosaic complement running across row i from Ti,s to
Ti,t and if t > s + 1 we have a mosaic complement tile Ti−1,w with s < w < t that is type IIa,
IIb, or IIIa. If t = s + 1 then Ti,s is type IVb and Ti−1,t is type IVa; Ti,s may also be type IVb
and Ti−1,t may be type IVa if t > s + 1, too, of course.

Lemma 6.4. If T is minimal, then the only way we can have a corner-corner arc a in row i
is if a is part of a nested series of corner-corner arcs {a2, a3 . . . ai−1} with each aj contained in
row j for 2 ≤ j ≤ i− 1.

Proof. We have seen already that the definition of the mosaic complement dramatically limits
the choices for tiles beneath a in row i−1 so the arc of the mosaic complement containing Ti−1,w
must be a corner-corner arc ai−1 from Ti−1,s′ to Ti−1,t′ for some s′ and t′ with s ≤ s′ < t′ ≤ t.
Iterating the process we either find a corner-corner arc that does not have a corner-corner arc
below it in some row j with 2 < j ≤ i contradicting minimality or there are nested corner-corner
arcs extending in every row from i down to 2 as in the edges e1, e2 and e3 in Figure 7.3.
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6.3 Corner-edge moves

We again for simplicity choose to describe this move as it moves an arc a of the mosaic comple-
ment down, but as before, symmetrical moves to the right, left, or up are all valid by rotations
or reflections of the mosaic. The move is very similar to the corner-corner move as are the
arguments about it.

Our goal in applying the corner-edge move is to reduce T , and we will always do any available
corner-corner moves before doing any corner-edge moves, so we need not worry about defining
the corner-edge move on an edge for which a corner-corner move is possible.

Corner-edge move: Let e be an edge of the mosaic complement that intersects row i > 2
in an arc a running directly across i in columns 2 through t and turning down in column t, t ≥ 2.
More precisely e intersects row i in an arc a such that each tile in the mosaic complement Ti,w,
w < t is a type IIIa tile and tile Ti,t is a type IIa or IVa tile as in Figures 6.5 and 6.6, respectively.

As in the corner-corner move, we pay close attention to any portion of the mosaic complement
in tiles Ti−1,w with 2 ≤ w < t (row i − 1 directly under a). Again Ti−1,w cannot ever be type
IIc, IId IIIb, IV or V, but can be a type 0 tile without causing any problems.

As before, if there is a tile in the mosaic complement Ti−1,w with s < w < t that is type IIa,
IIb, or IIIa then the corner-edge move is undefined on a. Such examples are seen in the nested
edges f1, f2, f3 and f4 in Figure 7.3.

We may have an obstruction where t = 2, Ti−1,t is type IId or type IVb and Ti,t ∪ Ti−1,t
forms a two tile outermost XX-edge, but we never apply a corner-edge move in this context so
we do not mind this obstruction. With this exception we do not encounter an obstruction to the
definition where Ti−1,t is either type IId or type IVa because it would lead to a reduction via a
corner-corner move of tiles Ti,t ∪ Ti−1,t to the left which already contradicts the minimality of
T for the mosaic complement.

Figure 6.5: The corner-edge move may have a type II tile in its corner.

We again reduce T by moving part of the knot across the mosaic complement. Figures 6.5,
6.6, and 6.7 show the basic move.

Because there can be no corner-corner moves in a minimal mosaic complement and there are
never type V tiles in a mosaic complement, the tile Ti−1,t must be either a type IIIb, type IIc
or type IVa. If t = 2 and Ti−1,t is type IVa then the corner-edge move is not defined, but again
this is an obstruction that we do not mind as we will never need to apply it in this context.
Instead examine the case where t > 2. If Ti−1,t is type IVa we could swap the type IVa mosaic
complement tile with a type IVb tile, replacing mosaic complement C by mosaic complement
B without affecting the knot. Since the only thing we have changed to go from C to B is one
type IV tile for another, the ordered triple TC for C is clearly identical to the ordered triple
TB for B. TB is reduced by a corner-corner move, showing it was not minimal for the knot K
whose mosaic complement is B (and C) and therefore TC also was not minimal for K. Since we
always choose our embedding of K so that T is minimal we may assume that tile Ti−1,t is not
type IVa when t > 2.
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Figure 6.6: Alternatively, the corner-edge move may have a type IV tile in its corner. The resulting move is only
slightly different.

We are now left with the possibilities that Ti−1,t must be type IIIb (Figure 6.5) or IIc as
depicted in Figure 6.7 and we define the corner-edge move accordingly. The exact prescription
for the move is that for each w < s we switch tile Ti−1,w with tile Ti,w. Ti−1,t and tile Ti,t

are treated exactly as they were in the corner-corner move: if Ti,t is type II we replace it with
a type 0 tile. If it is type IVa it is replaced with a type IIc tile. If Ti−1,t is type IIIb then it
is replaced by type IIa. If it is IIc, it is replaced by type IIIa. Typical corner-edge moves are
depicted in Figures 6.5 through 6.7.

Figure 6.7: Ti−1,t may be a type II tile oriented as pictured instead of a type III tile. The resulting move still
reduces T .

Again this move was described in terms of a row, but it can be rotated or reflected to move
corner to edge row arcs up and down and corner to edge column arcs right and left.

Lemma 6.5. A corner-edge move causes only a planar isotopy of K and reduces T . Therefore
in a minimal mosaic, there cannot be an arc on which a corner-edge move may be applied.

Proof. The lemma follows directly from the definition of the move. The argument is analogous
to Lemma 6.2.

We now have the moves defined and in the next section will turn our focus to the XX-
edges (edges with both endpoints on the same edge), showing that they cannot exist without
contradicting minimality. Then once we know there are no edges of this type we will eliminate
XY-edges, too.
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7 Reduction steps towards the main theorem

Lemma 7.1. If E = {e1, e2, . . . , en} is the set of all edges in C and |C| ≤ n − 4 then there is
some ei containing a type II tile in the mosaic complement. If the XX-edges do not share a type
IV tile with the XY-edges then at least one of the XX-edges contains a type II tile or the set is
empty. The same is true for the XY-edges.

Proof. Each XX-edge has at least two corners which are either a type II tiles or else Type IV
tiles where they meet another edge of the mosaic complement. Similarly each XY-edge must
have at least one such corner. To avoid any type II tiles, the mosaic complement would have to
stretch from one side of S to the opposite side, but this would mean |C| ≥ n − 2 violating the
hypothesis of the lemma.

Lemmas 7.2 through 7.6 put together will show that if e is an XX-edge with both endpoints
on the bottom in a minimal mosaic complement then e contains exactly one corner-corner arc,
and that arc can only be concave down. We note that as always, symmetrical arguments can
be made by rotation and reflection for edges with endpoints on the other sides of S.

Lemma 7.2. If e is an XX-edge in C with both endpoints on the bottom side of S or an XY-edge
with one endpoint on the bottom of S and the other on the left side and |C| ≤ n − 4 and T is
minimal then e cannot contain a corner-corner arc a that is concave up. By symmetry this also
means the XY-edge cannot have a corner-corner arc that is concave right.

Proof. By Lemma 6.4, T can be reduced via a corner-corner move applied to a unless there is a
nested set of corner-corner arcs inside of a including one in each of the rows of S above a. This,
however, cannot happen since it would imply that there are mosaic complement tiles in every
row of S, contradicting |C| ≤ n− 4.

Lemma 7.3. Suppose |C| ≤ n−4 and T minimal. Let e be an XX-edge in C with both endpoints
on the bottom edge of S or an XY-edge with one end point on the bottom of S. If a is a corner-
corner arc of e in row i that is concave down, then a is the only corner-corner arc on e that is
concave down.

Proof. A second concave down corner-corner arc would require a concave up corner-corner arc
between the two: an edge in the plane with endpoints at the same height may not have two
local maxima without a local minimum. We know we cannot have a concave up corner-corner
arc on e by Lemma 7.2.

Lemma 7.4. Let e be an XX-edge or XY-edge in C where |C| ≤ n − 4 and T is minimal.
Then e cannot contain a corner-corner arc concave to the left (representing a maximum in the
direction right) and also a corner-corner arc concave right.

Proof. Each corner-corner arc would need nested corner-corner arcs going all the way to the
edge of S. This would, of course, require at least one tile in each column of S, contradicting the
fact that |C| ≤ n− 4.

We have now established several lemmas that work for both XX-edges and XY-edges. The
next few lemmas will be just concerned with XX-edges. After establishing further structure on
the XX-edges we will be able to return to the XY-edges and deal with them more efficiently.

Lemma 7.5. Let e be an XX-edge in C with both endpoints on the bottom edge of S with
|C| ≤ n − 4 and T minimal. Let the left endpoint of e be in column s and the right endpoint
in column t, s < t. We cannot encounter a corner-corner arc concave to the left intersecting
column w for w < t. The same is true for corner-corner arcs concave right in columns w with
s < w
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Proof. If a is such a corner-corner arc in e, to connect with T2,t in the first case and T2,s in the
second, e would need to turn around via a corner-corner arc concave in the opposite direction
contradicting Lemma 7.4.

Lemma 7.6. Let e be an XX-edge in a minimal mosaic complement C with both endpoints on
the bottom edge of S with |C| ≤ n − 4 and T minimal. Then e cannot have any corner-corner
arcs concave to the left or right.

Proof. We show the proof for corner-corner arcs concave to the right since the proof to the left
is identical up to symmetry. By Lemma 7.5 the concave right corner-corner arc a must start
and end in column w, w ≤ s. However by Lemma 6.4, a must have nested corner-corner arcs
inside of it extending all the way to the right side of S. Since a is on the left side of e, this
implies that at least one of the nested corner-corner arcs for a is also in e. For e to contain two
corner-corner arcs that are concave to the right it must also contain a corner-corner arc concave
to the left between them. This contradicts Lemma 7.4 . Thus there were no corner-corner arcs
concave to the right.

These lemmas imply

Corollary 7.7. Let e be an XX-edge in minimal mosaic complement C with both endpoints on
the bottom edge of S with |C| ≤ n − 4 and T minimal. Let the left endpoint of e be in column
s and the right endpoint in column t, s < t. Let row i contain the maximum of e. Then e is
strictly contained between columns s and t (inclusive) and below row i (inclusive).

We now apply this result to outermost XX-edges to build an argument that they must consist
of only two tiles exemplified by edge e1 in Figure 7.3.

Lemma 7.8. If e is an outermost XX-edge in minimal mosaic complement C with |C| ≤ n− 4
then e consists of two adjacent tiles in the second layer. Each of the tiles is either type II or
type IV.

Proof. Without loss of generality let both endpoints of e be on the bottom edge of S. First we
argue that if e is an outermost edge then e is totally contained in row 2 and consists of T2,s a
type IIb or IVb tile, T2,t a type IIa or IVa tile and type IIIa tiles T2,w for s < w < t (if t = s+ 1
then this last set of tiles is not used). Up to rotation, h and e1 are examples of such arcs in
Figure 7.3. We then strengthen the result to show that e not only is in the second row, but it
contains only two tiles.

Let a be the corner-corner arc of e in row i, the highest row that contains a tile of e. If
i = 2 we are done with the first step of the proof. If i > 2 then the row i + 1 just above a
cannot contain any portion of e since it is above the global maximum of e and this dictates that
the tiles in row i + 1 are inside (not outside) of e. In turn this means that the row i − 1 just
below a must either contain part of e or be outside of e. Since T is minimal, there must be a
corner-corner arc a′ ⊂ C below a or we could do a corner-corner move on a pushing it down
and reducing T . Then a′ cannot be part of an edge other than e since that would imply it was
outside of e and e is outermost. Thus a′ ⊂ e, but this contradicts Lemma 7.3. This implies that
a is in row 2 and this can only happen if e = a and consists of T2,s a type IIb tile, T2,t a type
IIa tile and T2,w type IIIa tiles for s < w < t.

Now we know that e is entirely contained in row 2. If e contains more than 2 tiles, then the
leftmost tile of e can be moved to the right using a corner-edge move to reduce T contradicting
minimality. Thus e must be just 2 tiles long and we are only left with the desired type of
outermost XX-edges (see arcs e1, c1, c2, g1 and g2 in Figure 7.3).

Lemma 7.9. If e is an XX-edge in a minimal mosaic complement C with both endpoints on the
bottom edge of S and |C| ≤ n − 4 and the maximum of e occurs in column i, i > 2 then there
is a set of nested edges {e2, e3 . . . ei−1} outside of e with the maximum of each ej in row j.
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Proof. We must have nested corner-corner arcs outside of e in each row and each edge has only
one corner-corner arc.

Lemma 7.10. If e is an XX-edge in minimal mosaic complement C with both endpoints on the
bottom edge of S and |C| ≤ n − 4 and the left endpoint of e occurs in column s at T2,s, and e
is not outermost, then there is a nested set of edges {es+1, es+2 . . . ek} outside of e with the left
endpoint of ej in column j for each j, s + 1 ≤ j ≤ k and ek an outermost edge in C.

Proof. Because the XX-edges contain no corner-corner arcs that are concave left or right we
can always use a corner-edge move to reduce T unless there is an edge with its endpoint in the
adjacent column blocking the move.

Lemma 7.11. If e is an XX-edge in C and |C| ≤ n−4 and all the edges outside of e are nested
with each other, and e contains a type II tile, then C is not minimal.

Proof. Examine the subset of Mn representing K. If the arcs of K contained in S are connected
using the tiles under e in row 1, as it does in the top mosaic in Figure 7.1, then the edge in row
1 also runs under an outermost edge e′ outside of e (e = e′ if e is outermost). We can add e′

to K, connecting it up to the original knot as in the bottom picture in Figure 7.1, and obtain
a knot isotopic to K, but we have reduced the ordered triple contradicting minimality.

If K does not use the tiles in row 1 under e, then K is disjoint from all of the tiles in
row 1 between the endpoints of e. If necessary change crossings between the knot and mosaic
complement – but not the knot with itself, thus not changing the knot at all – to make sure e
always goes under K, and connect e to itself through row 2 giving a loop. Remove the loop from
the mosaic complement and add it to the mosaic creating a link mosaic with two components, K
and an unknot. This takes us to the middle picture in Figure 7.2. Then use a corner conversion
by placing a type V crossing tile where the type II tile of e had been going from the middle to
the bottom picture in Figure 7.2. As in the proof of Lemma 4.2, a corner conversion takes the
connect sum of K with an unknot giving another version of K on an n× n mosaic, but with a
reduced ordered triple contradicting the minimality of T .

Figure 7.1: If K passes outside of an outermost arc of the mosaic complement, the move pictured shows the mosaic
complement is not reduced.

Lemma 7.12. If e is an XX-edge in a minimal mosaic complement C and |C| ≤ n− 4 then all
the edges outside of e are nested with each other.

Proof. If not, then examine the outermost edge e which has edges outside of it which are not
nested with each other. Let e1 and e2 be the innermost non-nested edges outside of e (so e1
is not outside of e2 and vice versa and e1 and e2 are just outside of e). Up to rotation, this
situation is depicted by arcs g1, g2, g3 and by c1, c2, c3 in Figure 7.3. None of the corners at the
top of e1 ∪ e2 can be type II or T is not minimal by the previous lemma, but if they are all type
IV tiles then e has a corner-corner arc that is concave up contradicting Lemma 7.2.
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Figure 7.2: If a nested XX-edge in the mosaic complement has a type II tile in the mosaic complement and K does
not pass outside the edge, we can alter the mosaic complement reducing T .

f1 f2 f3 f4 e1 e2 e3

h

c1 c2 c3

g1

g2

g3

Figure 7.3: An example of a knot mosaic and its mosaic complement.
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These lemmas imply

Theorem 7.13. C contains no XX-edges containing a type II tile if C is chosen minimally.

Now that we know that all the corners in an XX-edge are type IV we exploit this fact to get
rid of all XX-edges.

Theorem 7.14. If |C| ≤ n− 4 and C is chosen minimally, then C contains no XX-edges.

Proof. If C does contain an XX-edge then there is at least one that is not outside of any of the
other XX-edges – the innermost edge from any of the nested sequences would suffice. Call that
edge e. Without loss of generality let e have both end points on the bottom of S, specifically
in tiles T2,s and T2,t with s < t. We know e has no type II tiles by Theorem 7.13, but it must
contain two type IV tiles at its maximum. Let f be an edge that meets e in one of these type IV
tiles. Note that the tile coming from a maximum for e implies that f is not outside of e. Since
e has endpoints on the bottom of S and |C| ≤ n−4 we know f cannot have an end point on the
top edge of S. If there is a second edge g that shares the other type IV tile from the maximum
of e, it cannot be the case that one of these edges had an end point on the right side of S and
the other on the left side, since such an edge would stretch across S, forcing |C| ≥ n − 2. So
without loss of generality we may assume that the end points of f and g are contained in at
most the left and bottom sides of S.

We next argue that both end points of f (or g) cannot just be on the bottom of S. If f has
both end points on the bottom it is by definition an XX-edge, but recall that we chose e so it
was not outside of any XX-edges so we know that e is not outside of f . As a result both end
points of f have to be contained in rows that are on the same side of rows containing the end
points of e. In particular f must have end points in tiles T2,u and T2,v with u < v since they are
on the bottom of S, but then since the two edges are not nested and do not intersect we must
have u < v < s < t or s < t < u < v. Either way by Corollary 7.7 f never intersects any of the
columns between s and t and e never leaves these columns so they cannot contain a common
type IV tile. This implies that f does not have both end points on the bottom of S.

Now without loss of generality f (and any edge sharing a type IV tile with e) either has both
end points on the left side of S if it is an XX-edge or one on the left side of S and the other on
the bottom side if it is an XY-edge. In the latter case, since e is not outside of f we also know
that the end point on the bottom of S is in some tile T2,u with u < s < t.

Examine again the top right type IV tile from the maximum of e and the edge f that shares
this tile. The portion of f within this tile looks like a IIc tile. Because both of its end points are
to the left of e and it does not intersect e we know f must contain a concave up corner-corner
arc to contain this tile. This, however, contradicts Lemma 7.2.

Thus e cannot exist so there are no XX-edges in the mosaic complement.

From here we proceed by eliminating XY-edges.

Theorem 7.15. If |C| ≤ n− 4 and C is chosen minimally, then C contains no XY-edges.

Proof. We know all edges must be XY-edges, and that if the set of edges is nonempty then at
least one of the XY-edges contains a type II tile by Lemma 7.1.

Let e be such an XY-edge. We can rotate the entire mosaic if necessary until it encloses the
bottom left corner, so let e have one endpoint in tile Ts,2 on the left edge of S and the other
in T2,t on the bottom edge of S enclosing the bottom left corner on its outside. First observe
that e cannot contain a corner-corner arc. By Lemma 7.9, any corner-corner arc requires a set
of nested corner-corner arcs terminating in an XX-edge on the boundary of S. However by
Theorem 7.14, C contains no XX-edges so this is impossible.

The lack of any corner-corner arcs implies that e is completely contained in the rows below
row s (inclusive) and to the left of column t (inclusive). In turn this implies that if s > 2 then
there must be a set of nested XY-edges {e2, e3 . . . ew . . . es−1} for each w, 2 ≤ w < s. If not we
could apply a corner-edge move to reduce T . The analogous result holds for the endpoints on
the bottom of S with respect to the columns.
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Now we close the argument in the same manner as before. The outermost XY-edge must
be a type II tile or one of the arcs from a type IV tile in T2,2. The next most outermost has
one endpoint in tile T2,3 and the other in T3,2 etc. Examine the tiles representing K. If K runs
through row 1 and column 1 past the ends of these arcs, then we add the outermost XY-edge
to K and connect it up to give a planar isotopy of K and reducing T , contradicting minimality.
If not, recall that e contains a type II tile. Since K does not go through the tiles in row 1
or column 1 outside of e we can turn e into an unknot by hooking the endpoints of e to itself
through these tiles. There is no effect on K if we assume that e always passes under K. As
in previous theorems we use a corner conversion to replace the hypothesized type II tile from
e with a type V tile to connect sum the new unknot with K, yielding another embedding of a
knot isotopic to K for which T has decreased contradicting minimality. Thus there can be no
XY-edges.

Since the mosaic complement contains no XX-edges, no XY-edges and no loops, we may now
conclude the following Corollary.

Corollary 7.16. If Mn = M2k is an even knot mosaic yielding knot K, with minimal mosaic
complement C and |C| ≤ n − 4, then l′ = |C ′| = 0. Therefore we may assume C consists
exclusively of type 0 tiles.

8 Proof of the main result for even boards

We use Corollary 7.16 to show our main theorem below.

Theorem 8.1. If Mn = M2k is an even knot mosaic yielding knot K, then the crossing number
of K is less than (n− 2)2 − (n− 4).

Proof. A mosaic with |C| = l and C ′ = ∅ has l type 0 tiles in the mosaic complement and
nothing else. It therefore is obtained from a saturated mosaic by smoothing l crossings. In the
language of tiles, we are replacing l type V tiles in the link with l type IV tiles. Each time this
is done the number of components in the mosaic changes by at most one.

If l > n − 4 then K has at most (n − 2)2 − (n − 5) crossings failing to exceed our bound.
As we saw in the section on saturated mosaics, a saturated even mosaic has n − 2 or n − 3
components depending on how the arcs contained in S are connected in the boundary tiles of
the mosaic. Since we are only smoothing l crossings, we see that if l < n− 4 this leaves at least
2 components and we did not really have a knot mosaic. In this context we insist that we are
left with a knot, that l ≤ n− 4 and also that l ≥ n− 4 so it must be that l = n− 4.

If the saturated mosaic starts with n− 2 components, smoothing n− 4 crossings still leaves
at least 2 components, so to avoid a contradiction the original saturated mosaic must have
been connected to yield n− 3 components. This, however, can only happen when we also have
nugatory crossings in each of the four corners of the mosaic. If the n−4 type 0 tiles yield a knot
then none of them are in a corner of S as smoothing one of these crossings fails to lower the
number of components in the link. This means that the knot that results from smoothing n− 4
crossings will have (n−2)2−(n−4) crossings, but it also still has the 4 trivial loops in the corners
that can be removed with type I Reidemeister moves. Thus K could be embedded with 4 fewer
crossings, showing its crossing number is at most (n−2)2−(n−4)−4 < (n−2)2−(n−4) so this
knot does not exceed our bound on crossing number on even mosaics. Therefore a knot mosaic
on an even board cannot have crossing number greater than or equal to (n− 2)2 − (n− 4).

Note that the trefoil establishes that this bound is sharp since it is achievable on M4 showing
a knot of crossing number 3 can be built on a 4× 4 board, but our bound says that we cannot
have a knot of crossing number 4 on such a board.

The primary goal of this paper is to refine existing upper bounds for crossing number.
Theorems 3.4 and 8.1 together establish the following upper bound for crossing number given
mosaic number.
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Theorem 8.2 (New Upper Bound for Crossing Number). Given an m-mosaic and any knot
K that is projected onto the mosaic, the crossing number c of K is bounded above by the following:

c ≤

{
(m− 2)2 − 2 if m = 2k + 1

(m− 2)2 − (m− 3) if m = 2k.

9 Lower bound for mosaic number

At the beginning of this paper we used Theorem 1.1 to relate crossing number and mosaic
number. In a similar fashion, Theorem 8.2 may be used to bound a knot’s mosaic number from
below. First we define

B1 =
√

2 + c + 2

B2 =
5 +
√

4c− 3

2

As a corollary to Theorem 8.2, we have

Corollary 9.1 (New Lower Bound for Mosaic Number). Let K be a knot with crossing number
c and mosaic number m. Then m ≥ min{B1, B2}.

This will prove useful in future computations of mosaic number. For now, we will briefly
explore the behavior of B1 and B2. It is easy to see that B1 and B2 are asymptotic, as

lim
c→∞

B1

B2
= 1.

Informally, this means that B1 and B2, as functions of c, grow at relatively the same rate. A
stronger result is that the difference |B1 −B2| is bounded by 1

2 , and although this difference is
always increasing, it turns out that

lim
c→∞

|B1 −B2| = 1
2 .

This result may be somewhat surprising: our work has shown that the even and odd cases
require different approaches, but in reality the estimates for each are actually quite similar and
the predictive power of one never strays too far from the other.

10 Future research directions

Our research has provoked several questions about knot mosaics which are left open to further
investigation.

Question. How does mosaic number behave for the connect sum of knots?

Question. Are there any knots whose mosaic number is 2 greater than the number predicted by
Theorem 8.2?

Question. What are the mosaic numbers for all knots of 10 crossings or fewer?

We note that Lee, Ludwig, Paat, and Peiffer compute the mosaic number of all prime knots
of 8 crossings or fewer [6] so progress is currently being made in this direction.

It is also natural to look at a more general class of mosaics where instead of insisting the
board be n× n we allow it to be n×m. One might then define the rectangular mosaic number
in terms of the number of tiles in the mosaic or perhaps even better the number of tiles on its
interior. Mosaics that need not be square should allow for more efficient embeddings especially
in the case of knots that are not prime.

Question. How does crossing number relate to rectangular mosaic number?
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The authors in [5] establish an upper bound on the mosaic number of a knot using arc index,
and use this to prove stronger bounds for several classes of knots. Their results, together with
Theorem 8.2 and Corollary 9.1 of this paper, provide a clearer picture of the relation between
the mosaic number and crossing number of a knot. However, in general a more precise formula
that relates the mosaic number and crossing number of a knot would be desirable. The mosaic
number of some relatively simple knots remains unknown including many prime knots with 9
crossings and some composite knots with fewer than 9 crossings.

Note that a 5 × 5 board is simple enough that it can only support 9 crossings. It is likely
that one could build these composite knots on a 6×6 board and then simply analyze all possible
5×5 boards to establish the results for some of these composite knots, but for knots with higher
crossing numbers the complexity of their mosaic representations increases rapidly making a case
by case analysis impractical.

Finally, we suggest an extension of knot mosaics to three dimensions. Using cubic blocks
rather than square tiles, we can represent a knot in its three dimensional form without imposing
crossings onto a two dimensional representation, while still maintaining a degree of rigidity.
Define a standard cube as an analog of a mosaic tile: a cube contains 0, 1, 2 or 3 strands, and
each face of the cube intersects at most 1 strand in the center of the face. In addition, for
each strand within a cube there is at most one critical point in any direction on the interior
arc of the strand. Define an n-cubic knot as an n× n× n array of suitably connected standard
cubes. Furthermore, define the grid number of a knot (analog of mosaic number) to be the
smallest natural number g such that the knot is representable as a g-cubic knot. Note that
mosaic number is a (bad) upper bound for grid number. Further research questions on the topic
of cubic knots can be asked such as the one proposed below.

Question. For a knot K with mosaic number m and grid number g, g ≤ m. Find a sharper
upper bound for g.

The authors would like to thank Sam Lomonaco and Lou Kauffman for use of many of the
figures in this paper, as well as Joe Paat and Lew Ludwig for inspirational discussions resulting
from their paper with Erica Evans [8].
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