LINEAR RECURRENCE SEQUENCES AND THEIR CONVOLUTIONS VIA BELL POLYNOMIALS

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

Abstract

We recast homogeneous linear recurrence sequences with fixed coefficients in terms of partial Bell polynomials, and use their properties to obtain various combinatorial identities and multifold convolution formulas. Our approach relies on a basis of sequences that can be obtained as the INVERT transform of the coefficients of the given recurrence relation. For such a basis sequence $\left(y_{n}\right)$ with generating function $Y(t)$, and for any positive integer r, we give a formula for the convolved sequence generated by $Y(t)^{r}$ and prove that it satisfies an elegant recurrence relation.

1. Introduction

A linear recurrence sequence $\left(a_{n}\right)$ of elements in a commutative ring \mathcal{R} is a sequence given by a homogeneous linear recurrence relation

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{d} a_{n-d} \text { for } n \geq d, \tag{1.1}
\end{equation*}
$$

with fixed coefficients $c_{1}, \ldots, c_{d} \in \mathcal{R}$, together with initial values $a_{0}, a_{1}, \ldots, a_{d-1} \in \mathcal{R}$. The generating function of such a sequence is a rational function of the form $f(t)=\frac{p(t)}{q(t)}$ with

$$
q(t)=1-c_{1} t-c_{2} t^{2}-\cdots-c_{d} t^{d},
$$

and a polynomial $p(t)$ of degree at most $d-1$ that depends on the initial values. In other words, the function $f(t)$ is a linear combination of the rational functions

$$
\frac{1}{q(t)}, \frac{t}{q(t)}, \frac{t^{2}}{q(t)}, \ldots, \frac{t^{d-1}}{q(t)},
$$

and their respective associated sequences form a basis for the space of linear recurrence sequences with coefficients c_{1}, \ldots, c_{d}.

On the other hand, if $\left(c_{n}\right)$ is a sequence and $Q(t)$ is the formal power series

$$
Q(t)=1-\sum_{n=1}^{\infty} c_{n} t^{n}
$$

then its reciprocal $Y(t)=\frac{1}{Q(t)}$ can be written as $Y(t)=1+\sum_{n=1}^{\infty} y_{n} t^{n}$ with

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, 3!c_{3}, \ldots\right), \tag{1.2}
\end{equation*}
$$

where $B_{n, k}=B_{n, k}\left(x_{1}, x_{2}, \ldots\right)$ denotes the ($\left.n, k\right)$-th partial Bell polynomial in the variables $x_{1}, x_{2}, \ldots, x_{n-k+1}$. This is a direct consequence of Faà di Bruno's formula (cf. Theorem B in [7, Section 3.5]), and the sequence $\left(y_{n}\right)$ is precisely the INVERT] transform of $\left(c_{n}\right)$.

Observe that if $c_{n}=0$ for all $n>d$, then $1 / q(t)=1 / Q(t)$. Consequently, any linear recurrence sequence with fixed coefficients can be expressed in terms of partial Bell polynomials in the coefficients of the recurrence. An explicit formula is given in Section 2, see formula (2.2), together with a few illustrating examples. As a particular application, we provide an alternative derivation of the Girard-Waring formulas for the power sum symmetric functions.

The benefit of the representation (2.2) is that the partial Bell polynomials absorb the coefficients of the recurrence and facilitate the derivation of universal identities. This is particularly convenient when working with multifold self-convolutions. In Section 3, we recall a convolution formula given by the authors in [4 and discuss it in the context of multifold convolutions of linear recurrence sequences. For this type of convolved sequences we give a universal recurrence formula (of the same depth as the original sequence), which is obtained by using properties of the partial Bell polynomials. We conclude the paper with a few examples that illustrate some applications of our main result.

2. Linear Recurrence Sequences

The representation of linear recurrence sequences in terms of partial Bell polynomials, as discussed in the introduction, can be summarized as follows:

Proposition 2.1. Let $\left(a_{n}\right)$ be a linear recurrence sequence satisfying

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{d} a_{n-d} \text { for } n \geq d \geq 1,
$$

with initial values $a_{0}, a_{1}, \ldots, a_{d-1}$. Let $\left(y_{n}\right)$ be defined as in (1.2), and let

$$
\lambda_{0}=a_{0}, \quad \lambda_{n}=a_{n}-\sum_{j=1}^{n} c_{j} a_{n-j} \text { for } n=1, \ldots, d-1
$$

Then $a_{n}=\lambda_{0} y_{n}+\lambda_{1} y_{n-1}+\cdots+\lambda_{d-1} y_{n-d+1}$, so

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{d-1} \lambda_{k} \sum_{j=0}^{n-k} \frac{j!}{(n-k)!} B_{n-k, j}\left(1!c_{1}, 2!c_{2}, \ldots\right) \text { for } n \geq 1 \text {. } \tag{2.2}
\end{equation*}
$$

Proof. If S denotes the right-shift operator $S\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)$, then the sequences $\left(y_{n}\right), S\left(y_{n}\right), S^{2}\left(y_{n}\right), \ldots, S^{d-1}\left(y_{n}\right)$, clearly form a basis for the space of all linear recurrence sequences with coefficients c_{1}, \ldots, c_{d}. Thus there are constants $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{d-1}$ such that $a_{n}=\lambda_{0} y_{n}+\lambda_{1} y_{n-1}+\cdots+\lambda_{d-1} y_{n-d+1}$, with the convention that $y_{k}=0$ if $k<0$.

[^0]To find the λ_{k} 's, we just need to look at the initial values and solve the equation

$$
\left(\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & \cdots & 0 \\
y_{1} & 1 & 0 & \cdots & \cdots & 0 \\
y_{2} & y_{1} & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & & \ddots & & \vdots \\
\vdots & \vdots & & & \ddots & \vdots \\
y_{d-1} & y_{d-2} & \cdots & \cdots & y_{1} & 1
\end{array}\right)\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\vdots \\
\lambda_{d-1}
\end{array}\right)=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{d-1}
\end{array}\right) .
$$

By definition, $\left(y_{n}\right)$ satisfies the same recurrence as $\left(a_{n}\right)$, so $y_{n}=\sum_{j=1}^{n} c_{j} y_{n-j}$. Thus the inverse of the above $d \times d$ matrix is

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
-c_{1} & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
-c_{d-1} & -c_{d-2} & \cdots & -c_{1} & 1
\end{array}\right)
$$

and the claimed formula follows by applying this matrix to the vector $\left(a_{0}, \ldots, a_{d-1}\right)$.
Remark. It is worth mentioning, that the representation (2.2) provides a unifying approach to linear recurrence sequences in which the coefficients of the recurrence are separated and organized inside the partial Bell polynomials. In many cases, this gives known and new combinatorial identities for the sequence at hand (regardless of the order of recursion) as well as for their repeated convolutions, see Section (3),

For illustration purposes, let us consider a few basic examples.
Example 2.3. (Generalized Fibonacci) For arbitrary α and coefficients c_{1} and c_{2}, let (f_{n}) be the sequence defined by

$$
\begin{gathered}
f_{0}=0, \quad f_{1}=\alpha \\
f_{n}=c_{1} f_{n-1}+c_{2} f_{n-2} \text { for } n \geq 2
\end{gathered}
$$

In the terminology of Proposition 2.1, we then have $\lambda_{0}=0, \lambda_{1}=\alpha$, and for $n \geq 1$ we get

$$
f_{n}=\alpha y_{n-1}=\alpha \sum_{k=0}^{n-1} \frac{k!}{(n-1)!} B_{n-1, k}\left(1!c_{1}, 2!c_{2}, 0, \ldots\right),
$$

and since $B_{n-1, k}\left(c_{1}, 2 c_{2}, 0, \ldots\right)=\frac{(n-1)!}{k!}\binom{k}{n-1-k} c_{1}^{2 k-n+1} c_{2}^{n-1-k}$, we arrive at

$$
\begin{equation*}
f_{n}=\alpha \sum_{k=0}^{n-1}\binom{k}{n-1-k} c_{1}^{2 k-n+1} c_{2}^{n-1-k}=\alpha \sum_{j=0}^{n-1}\binom{n-1-j}{j} c_{1}^{n-1-2 j} c_{2}^{j} . \tag{2.4}
\end{equation*}
$$

Example 2.5. (Padovan, A000931 in [9]) Consider the sequence defined by

$$
\begin{gathered}
P_{0}=1, \quad P_{1}=P_{2}=0 \\
P_{n}=P_{n-2}+P_{n-3} \text { for } n \geq 3 .
\end{gathered}
$$

Using Proposition 2.1 with $c_{1}=0$ and $c_{2}=c_{3}=1$, we get $\lambda_{0}=1, \lambda_{1}=0, \lambda_{2}=-1$, and for $n \geq 3$,

$$
P_{n}=y_{n}-y_{n-2}=y_{n-3}=\sum_{k=0}^{n-3} \frac{k!}{(n-3)!} B_{n-3, k}(0,2!, 3!, 0 \ldots)
$$

Now, since $\frac{k!}{(n-3)!} B_{n-3, k}(0,2!, 3!, 0 \ldots)=\binom{k}{n-3-2 k}$, we conclude

$$
\begin{equation*}
P_{n}=\sum_{k=0}^{n-3}\binom{k}{n-3-2 k} \text { for } n \geq 3 \tag{2.6}
\end{equation*}
$$

Example 2.7. (Tribonacci, A000073 in [9]) Let $\left(t_{n}\right)$ be the sequence defined by

$$
\begin{gathered}
t_{0}=t_{1}=0, \quad t_{2}=1 \\
t_{n}=t_{n-1}+t_{n-2}+t_{n-3} \text { for } n \geq 3
\end{gathered}
$$

By Proposition 2.1, we have $t_{n}=y_{n-2}$, so

$$
t_{n}=\sum_{k=0}^{n-2} \frac{k!}{(n-2)!} B_{n-2, k}(1!, 2!, 3!, 0, \ldots)
$$

and since $B_{n, k}(1!, 2!, 3!, 0, \ldots)=\frac{n!}{k!} \sum_{\ell=0}^{k}\binom{k}{k-\ell}\binom{k-\ell}{n+\ell-2 k}$, we get

$$
t_{n}=\sum_{k=0}^{n-2} \sum_{\ell=0}^{k}\binom{k}{k-\ell}\binom{k-\ell}{n-2+\ell-2 k}=\sum_{k=0}^{n-2} \sum_{\ell=0}^{k}\binom{k}{\ell}\binom{\ell}{n-2-k-\ell} .
$$

With the change of variable $\ell=j-k$, and changing the order of summation, we arrive at

$$
\begin{equation*}
t_{n}=\sum_{j=0}^{n-2} \sum_{k=0}^{j}\binom{k}{j-k}\binom{j-k}{n-2-j} \text { for } n \geq 2 \tag{2.8}
\end{equation*}
$$

Example 2.9. (Chebyshev) We now consider the Chebyshev polynomials defined by

$$
\begin{gathered}
T_{0}(x)=1, \quad T_{1}(x)=x \\
T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x) \text { for } n \geq 2
\end{gathered}
$$

Here $c_{1}=2 x, c_{2}=-1$, so $\lambda_{0}=1, \lambda_{1}=-x$, and for $n \geq 1$ we get

$$
\begin{aligned}
T_{n}(x) & =y_{n}-x y_{n-1} \\
& =\sum_{j=0}^{n} \frac{j!}{n!} B_{n, j}(2 x,-2,0, \ldots)-x \sum_{j=0}^{n-1} \frac{j!}{(n-1)!} B_{n-1, j}(2 x,-2,0, \ldots) \\
& =\sum_{j=0}^{n}\binom{j}{n-j}(2 x)^{2 j-n}(-1)^{n-j}-x \sum_{j=0}^{n-1}\binom{j}{n-1-j}(2 x)^{2 j-n+1}(-1)^{n-1-j} \\
& =\sum_{j=0}^{n}\binom{j}{n-j}(2 x)^{2 j-n}(-1)^{n-j}-\frac{1}{2} \sum_{j=1}^{n}\binom{j-1}{n-j}(2 x)^{2 j-n}(-1)^{n-j}
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
T_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} \frac{n}{2(n-k)}\binom{n-k}{k}(2 x)^{n-2 k} \text { for } n \geq 1 . \tag{2.10}
\end{equation*}
$$

Similarly, for the Chebyshev polynomials of second kind $U_{n}(x)$, defined by the same recurrence relation as for $T_{n}(x)$, but with initial values $U_{0}(x)=1$ and $U_{1}(x)=2 x$, we get

$$
\begin{equation*}
U_{n}(x)=y_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}(2 x)^{n-2 k} \text { for } n \geq 1 \tag{2.11}
\end{equation*}
$$

Power Sums. We finish this section by considering the power sum symmetric functions

$$
s_{n}=x_{1}^{n}+\cdots+x_{d}^{n}
$$

with d variables. The sequence $\left(s_{n}\right)$ satisfies the relations (Newton's identities):

$$
\begin{aligned}
& s_{0}=d \\
& s_{1}=e_{1} \\
& s_{2}=e_{1} s_{1}-2 e_{2} \\
& s_{3}=e_{1} s_{2}-e_{2} s_{1}+3 e_{3} \\
& \quad \vdots \\
& s_{n}=e_{1} s_{n-1}-e_{2} s_{n-2}+\cdots+(-1)^{d-1} e_{d} s_{n-d} \text { for } n \geq d,
\end{aligned}
$$

where e_{1}, \ldots, e_{d} are the elementary symmetric functions in x_{1}, \ldots, x_{d}. In other words, $\left(s_{n}\right)$ is a linear recurrence sequence of length d with initial values $s_{0}, s_{1}, \ldots, s_{d-1}$. Thus, as a consequence of Proposition 2.1, each power sum s_{n} can be expressed in terms of partial Bell polynomials in e_{1}, \ldots, e_{d}. This representation is an efficient way to organize and prove the Girard-Waring formulas (see e.g. [8]).
Proposition 2.12. Let $s_{n}=x_{1}^{n}+\cdots+x_{d}^{n}$ and let e_{1}, \ldots, e_{d} be the elementary symmetric functions in the variables x_{1}, \ldots, x_{d}. Then, for $n \geq 1$, we have

$$
s_{n}=\sum_{k=1}^{n}(-1)^{n+k} \frac{(k-1)!}{(n-1)!} B_{n, k}\left(1!e_{1}, 2!e_{2}, \ldots, d!e_{d}, 0, \ldots\right)
$$

Our proof relies on the following basic recursive formula.
Lemma 2.13. For any sequence $x=\left(x_{1}, x_{2}, \ldots\right)$, we have

$$
n B_{n, k}(x)=\sum_{j=1}^{n-k+1} j\binom{n}{j} x_{j} B_{n-j, k-1}(x) .
$$

Proof. This is a consequence of the known identity

$$
B_{n, k}=\sum_{j=0}^{n-k}\binom{n-1}{j} x_{j+1} B_{n-1-j, k-1}=\sum_{j=1}^{n-k+1}\binom{n-1}{j-1} x_{j} B_{n-j, k-1},
$$

see equation (11.11) on p. 415 in [6. Therefore,

$$
n B_{n, k}=\sum_{j=1}^{n-k+1} n\binom{n-1}{j-1} x_{j} B_{n-j, k-1}=\sum_{j=1}^{n-k+1} j\binom{n}{j} x_{j} B_{n-j, k-1}
$$

as claimed.

Proof of Proposition 2.12. Let $s_{n}=x_{1}^{n}+\cdots+x_{d}^{n}$. As mentioned before, $\left(s_{n}\right)$ is a linear recurrence sequence with coefficients

$$
c_{j}=(-1)^{j-1} e_{j} \text { for } j=1, \ldots, d,
$$

and initial values

$$
s_{0}=d, \quad s_{k}=\sum_{j=1}^{k-1} c_{j} s_{k-j}+k c_{k} \text { for } k=1, \ldots, d-1
$$

By Proposition [2.1, we can write $s_{n}=\sum_{j=0}^{d-1} \lambda_{j} y_{n-j}$ with $\left(y_{n}\right)$ defined as in (1.2) and the λ_{j} 's given by $\lambda_{0}=s_{0}=d$ and

$$
\lambda_{j}=s_{j}-\sum_{i=1}^{j} c_{i} s_{j-i}=\left(\sum_{i=1}^{j-1} c_{i} s_{j-i}+j c_{j}\right)-\sum_{i=1}^{j} c_{i} s_{j-i}=(j-d) c_{j}
$$

for $j=1, \ldots, d-1$. Also, recall that $\left(y_{n}\right)$ is designed to satisfy the same recurrence relation as $\left(s_{n}\right)$ for $n \geq d$. Therefore, $y_{n}=\sum_{j=1}^{d} c_{j} y_{n-j}$ and we can rewrite s_{n} as follows

$$
\begin{aligned}
s_{n} & =\sum_{j=0}^{d-1} \lambda_{j} y_{n-j} \\
& =d\left(\sum_{j=1}^{d} c_{j} y_{n-j}\right)+\sum_{j=1}^{d-1}(j-d) c_{j} y_{n-j} \quad\left[\lambda_{j}=(j-d) c_{j}\right] \\
& =d c_{d} y_{n-d}+\sum_{j=1}^{d-1} j c_{j} y_{n-j}=\sum_{j=1}^{d} j c_{j} y_{n-j} \\
& =\sum_{j=1}^{d} \sum_{k=0}^{n-j} j c_{j} \frac{k!}{(n-j)!} B_{n-j, k}\left(1!c_{1}, 2!c_{2}, \ldots, d!c_{d}, 0, \ldots\right) .
\end{aligned}
$$

Since $c_{j}=0$ for $j>d$, we can write the sum over j up to n to facilitate a change of summation. Then

$$
\begin{aligned}
s_{n} & =\sum_{j=1}^{n} \sum_{k=0}^{n-j} j c_{j} \frac{k!}{(n-j)!} B_{n-j, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=0}^{n-1} \sum_{j=1}^{n-k} j c_{j} \frac{k!}{(n-j)!} B_{n-j, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=0}^{n-1} \frac{k!}{n!}\left[\sum_{j=1}^{n-k} j\binom{n}{j}\left(j!c_{j}\right) B_{n-j, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)\right]
\end{aligned}
$$

which by Lemma 2.13 yields

$$
s_{n}=\sum_{k=0}^{n-1} \frac{k!}{n!} n B_{n, k+1}\left(1!c_{1}, 2!c_{2}, \ldots\right)=\sum_{k=1}^{n} \frac{(k-1)!}{(n-1)!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) .
$$

The claimed identity for the power sum s_{n} follows by replacing back $c_{j}=(-1)^{j-1} e_{j}$ and using the homogeneity properties of the polynomial $B_{n, k}$.

3. Convolutions

We now turn our attention to convolutions of sequences of the form

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, 3!c_{3}, \ldots\right) . \tag{3.1}
\end{equation*}
$$

In [4], we considered a more general family of sequences and proved the following result:
Theorem 3.2 ([4, Thm. 2.1]). Let a and b be arbitrary numbers. Let $y_{0}=1$ and

$$
y_{n}=\sum_{k=1}^{n}\binom{a n+b k}{k-1} \frac{(k-1)!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \text { for } n \geq 1
$$

For $r \in \mathbb{N}$, we have

$$
\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}} \cdots y_{m_{r}}=r \sum_{k=1}^{n}\binom{a n+b k+r-1}{k-1} \frac{(k-1)!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) .
$$

The proof of this theorem relies on a convolution formula for partial Bell polynomials given by the authors in [3]. In particular, the special case when $a=0$ and $b=1$ can be formulated as follows.

Corollary 3.3. For (y_{n}) defined by (3.1) and $r \in \mathbb{N}$, we have

$$
\begin{align*}
y_{n}^{(r)}=\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}} \cdots y_{m_{r}} & =r \sum_{k=1}^{n}\binom{k+r-1}{k-1} \frac{(k-1)!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \tag{3.4}\\
& =\sum_{k=1}^{n}\binom{k+r-1}{k} \frac{k!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)
\end{align*}
$$

Remark. More generally, if $\delta \geq 0$ is an integer, and if we let $y_{-1}=\cdots=y_{-\delta}=0$, then

$$
\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}-\delta} \cdots y_{m_{r}-\delta}=\sum_{k=0}^{n-\delta r}\binom{k+r-1}{k} \frac{k!}{(n-\delta r)!} B_{n-\delta r, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) .
$$

Let us now revisit some of the basic examples considered in the previous section.
Example 3.5. (Generalized Fibonacci) For $\alpha, c_{1}, c_{2} \in \mathbb{R}$, consider $\left(f_{n}\right)$ defined by

$$
f_{0}=0, \quad f_{1}=\alpha, \quad f_{n}=c_{1} f_{n-1}+c_{2} f_{n-2} \quad \text { for } n \geq 2
$$

Then, as described in Example 2.3, we have $f_{n}=\alpha y_{n-1}$, and therefore

$$
\begin{aligned}
\sum_{m_{1}+\cdots+m_{r}=n} f_{m_{1}} \cdots f_{m_{r}} & =\alpha^{r} \sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}-1} \cdots y_{m_{r}-1} \\
& =\alpha^{r} \sum_{k=0}^{n-r}\binom{k+r-1}{k} \frac{k!}{(n-r)!} B_{n-r, k}\left(1!c_{1}, 2!c_{2}, 0, \ldots\right) \\
& =\alpha^{r} \sum_{k=0}^{n-r}\binom{k+r-1}{k}\binom{k}{n-r-k} c_{1}^{2 k-n+r} c_{2}^{n-r-k} .
\end{aligned}
$$

Example 3.6. (Padovan) Let $\left(P_{n}\right)$ be defined by

$$
P_{0}=1, \quad P_{1}=P_{2}=0, \quad P_{n}=P_{n-2}+P_{n-3} \quad \text { for } n \geq 3 .
$$

As mentioned in Example 2.5, we have $P_{n}=y_{n-3}$ and so

$$
\begin{aligned}
\sum_{m_{1}+\cdots+m_{r}=n} P_{m_{1}+1} \cdots P_{m_{r}+1} & =\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}-2} \cdots y_{m_{r}-2} \\
& =\sum_{k=0}^{n-2 r}\binom{k+r-1}{k} \frac{k!}{(n-2 r)!} B_{n-2 r, k}(0,2!, 3!, 0, \ldots) \\
& =\sum_{k=0}^{n-2 r}\binom{k+r-1}{k}\binom{k}{n-2 r-2 k} .
\end{aligned}
$$

And, with a little more work, we also get

$$
\sum_{m_{1}+\cdots+m_{r}=n} P_{m_{1}} \cdots P_{m_{r}}=\sum_{\ell=1}^{r}\binom{r}{\ell} \sum_{k=0}^{n-3 \ell}\binom{k+\ell-1}{k}\binom{k}{n-3 \ell-2 k} .
$$

Example 3.7. (Tribonacci) Let $\left(t_{n}\right)$ be defined by

$$
t_{0}=t_{1}=0, \quad t_{2}=1, \quad t_{n}=t_{n-1}+t_{n-2}+t_{n-3} \quad \text { for } n \geq 3
$$

As discussed in the previous section, we have $t_{n}=y_{n-2}$, so

$$
\begin{aligned}
\sum_{m_{1}+\cdots+m_{r}=n} t_{m_{1}} \cdots t_{m_{r}} & =\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}-2} \cdots y_{m_{r}-2} \\
& =\sum_{k=0}^{n-2 r}\binom{k+r-1}{k} \frac{k!}{(n-2 r)!} B_{n-2 r, k}(1!, 2!, 3!, 0, \ldots) \\
& =\sum_{k=0}^{n-2 r} \sum_{\ell=0}^{k}\binom{k+r-1}{k}\binom{k}{\ell}\binom{\ell}{n-2 r-k-\ell}
\end{aligned}
$$

We now present a recurrence relation for convolution sequences of the form (3.4).
Theorem 3.8. For any sequence of the form $y_{n}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)$, and for $r \in \mathbb{N}$, consider the convolution sequence

$$
y_{n}^{(r)}=\sum_{m_{1}+\cdots+m_{r}=n} y_{m_{1}} \cdots y_{m_{r}} \text { for } n \geq 0 .
$$

Then, for $n \geq 1$, we have the recurrence relation

$$
\begin{equation*}
n y_{n}^{(r)}=\sum_{m=1}^{n}[n+m(r-1)] c_{m} y_{n-m}^{(r)} \tag{3.9}
\end{equation*}
$$

Proof. By definition, we have $y_{0}^{(r)}=1$ and $y_{1}^{(r)}=c_{1}$, so (3.9) is true for $n=1$. For $n>1$, write

$$
\sum_{m=1}^{n}[n+m(r-1)] c_{m} y_{n-m}^{(r)}=n r c_{n}+\sum_{m=1}^{n-1}[n+m(r-1)] c_{m} y_{n-m}^{(r)}
$$

Now, by means of the identity (3.4), we have

$$
\begin{aligned}
\frac{1}{r} \sum_{m=1}^{n-1}[n & +m(r-1)] c_{m} y_{n-m}^{(r)} \\
& =\frac{1}{r} \sum_{m=1}^{n-1}[n+m(r-1)] c_{m} \sum_{k=1}^{n-m} r\binom{k+r-1}{k-1} \frac{(k-1)!}{(n-m)!} B_{n-m, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=1}^{n-1}\binom{k+r-1}{k-1}(k-1)!\sum_{m=1}^{n-k} \frac{[n+m(r-1)]}{(n-m)!} c_{m} B_{n-m, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=2}^{n}\binom{k+r-2}{k-2}(k-2)!\sum_{m=k-1}^{n-1} \frac{[n+(n-m)(r-1)]}{m!} c_{n-m} B_{m, k-1}\left(1!c_{1}, 2!c_{2}, \ldots\right)
\end{aligned}
$$

We split the last equation into two terms:

$$
=\sum_{k=2}^{n}\binom{k+r-2}{k-2}(k-2)!\left[\sum_{m=k-1}^{n-1} \frac{n}{m!} c_{n-m} B_{m, k-1}+\sum_{m=k-1}^{n-1} \frac{(n-m)(r-1)}{m!} c_{n-m} B_{m, k-1}\right] .
$$

On the one hand,

$$
\begin{aligned}
\sum_{k=2}^{n}\binom{k+r-2}{k-2} & (k-2)!\sum_{m=k-1}^{n-1} \frac{n}{m!} c_{n-m} B_{m, k-1}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=2}^{n}\binom{k+r-2}{k-2} \frac{(k-2)!k}{(n-1)!}\left[\frac{1}{k} \sum_{m=k-1}^{n-1}\binom{n}{m}(n-m)!c_{n-m} B_{m, k-1}\left(1!c_{1}, 2!c_{2}, \ldots\right)\right] \\
& =\sum_{k=2}^{n}\binom{k+r-2}{k-2} \frac{(k-2)!k}{(n-1)!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{k=2}^{n}\binom{k+r-2}{k-2} & (k-2)!\sum_{m=k-1}^{n-1} \frac{(n-m)(r-1)}{m!} c_{n-m} B_{m, k-1} \\
& =\sum_{k=2}^{n}\binom{k+r-2}{k-2} \frac{(k-2)!(r-1)}{(n-1)!}\left[\sum_{m=k-1}^{n-1}\binom{n-1}{m}(n-m)!c_{n-m} B_{m, k-1}\left(1!c_{1}, 2!c_{2}, \ldots\right)\right] \\
& =\sum_{k=2}^{n}\binom{k+r-2}{k-2} \frac{(k-2)!(r-1)}{(n-1)!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{1}{r} \sum_{m=1}^{n-1}[n+m(r-1)] c_{m} y_{n-m}^{(r)} & =\sum_{k=2}^{n}\binom{k+r-2}{k-2} \frac{(k-2)!}{(n-1)!}(k+r-1) B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =\sum_{k=2}^{n}\binom{k+r-1}{k-1} \frac{(k-1)!}{(n-1)!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
\sum_{m=1}^{n-1}[n+m(r-1)] c_{m} y_{n-m}^{(r)} & =r \sum_{k=2}^{n}\binom{k+r-1}{k-1} \frac{(k-1)!}{(n-1)!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right) \\
& =n \sum_{k=2}^{n}\binom{k+r-1}{k} \frac{k!}{n!} B_{n, k}\left(1!c_{1}, 2!c_{2}, \ldots\right)=n\left(y_{n}^{(r)}-r c_{n}\right)
\end{aligned}
$$

Finally, adding the term $n r c_{n}$ to both sides of this equation, we arrive at (3.9).
To illustrate our result, we now consider a few basic examples.
Example 3.10. Let $\left(a_{n}\right)$ be the sequence defined by

$$
a_{0}=1, \quad a_{1}=1, \quad a_{n}=a_{n-1}+a_{n-2} \text { for } n \geq 2 .
$$

This is a shift of the Fibonacci sequence $\left(a_{n}=F_{n+1}\right)$, and $a_{n}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}(1,2,0, \ldots)$.

By means of Corollary 3.3, we have

$$
a_{n}^{(r)}=\sum_{m_{1}+\cdots+m_{r}=n} a_{m_{1}} \cdots a_{m_{r}}=\sum_{k=1}^{n}\binom{k+r-1}{k}\binom{k}{n-k}
$$

and according to Theorem 3.8, this sequence satisfies

$$
n a_{n}^{(r)}=(n+r-1) a_{n-1}^{(r)}+(n+2(r-1)) a_{n-2}^{(r)}
$$

For $r=2,3,4$, this gives the recurrence relations (cf. 9]):

$$
\begin{align*}
n a_{n}^{(2)} & =(n+1) a_{n-1}^{(2)}+(n+2) a_{n-2}^{(2)} \tag{A001629}\\
n a_{n}^{(3)} & =(n+2) a_{n-1}^{(3)}+(n+4) a_{n-2}^{(3)} \tag{A001628}\\
n a_{n}^{(4)} & =(n+3) a_{n-1}^{(4)}+(n+6) a_{n-2}^{(4)} \tag{A001872}
\end{align*}
$$

Example 3.11. Let $\left(a_{n}\right)$ be the sequence defined by

$$
\begin{aligned}
a_{0} & =1, a_{1}=0, a_{2}=1, \text { and } \\
a_{n} & =a_{n-2}+a_{n-3} \text { for } n \geq 3
\end{aligned}
$$

This is a shifted version of the Padovan sequence, and $a_{n}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}(0,2!, 3!, 0, \ldots)$.
By Theorem 3.8, the corresponding convolution sequence (cf. Example 3.6)

$$
a_{n}^{(r)}=\sum_{k=1}^{n}\binom{k+r-1}{k}\binom{k}{n-2 k}
$$

satisfies the recurrence relation

$$
n a_{n}^{(r)}=(n+2(r-1)) a_{n-2}^{(r)}+(n+3(r-1)) a_{n-3}^{(r)}
$$

For $r=2$, we get a shift of the sequence A228577 in [9] (number of gaps of length 1 in all possible covers of a line of length n by segments of length 2). In this case, we obtain

$$
n a_{n}^{(2)}=(n+2) a_{n-2}^{(2)}+(n+3) a_{n-3}^{(2)}
$$

Example 3.12. Let $\left(a_{n}\right)$ be the sequence defined by

$$
\begin{aligned}
& \quad a_{0}=1, a_{1}=1, a_{2}=2, \text { and } \\
& a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \text { for } n \geq 3
\end{aligned}
$$

This is a shift of the Tribonacci sequence discussed in Examples 2.7 and 3.7. More precisely, $a_{n}=t_{n+2}=\sum_{k=0}^{n} \frac{k!}{n!} B_{n, k}(1!, 2!, 3!, 0, \ldots)$, and the convolution sequence $\left(a_{n}^{(r)}\right)$ takes the form

$$
a_{n}^{(r)}=\sum_{k=1}^{n}\binom{k+r-1}{k} \sum_{\ell=0}^{k}\binom{k}{k-\ell}\binom{k-\ell}{n+\ell-2 k}
$$

which satisfies

$$
n a_{n}^{(r)}=(n+r-1) a_{n-1}^{(r)}+(n+2(r-1)) a_{n-2}^{(r)}+(n+3(r-1)) a_{n-3}^{(r)}
$$

For $r=2$, we obtain a recurrence relation for A073778 in 9]:

$$
n a_{n}^{(2)}=(n+1) a_{n-1}^{(2)}+(n+2) a_{n-2}^{(2)}+(n+3) a_{n-3}^{(2)}
$$

References

[1] E.T. Bell, Exponential polynomials, Ann. of Math. 35 (1934), pp. 258-277.
[2] M. Bernstein and N.J.A. Sloane, Some canonical sequences of integers, Linear Algebra Appl. 226/228 (1995), 57-72.
[3] D. Birmajer, J. Gil, and M. Weiner, Some convolution identities and an inverse relation involving partial Bell polynomials, Electron. J. Combin. 19 (2012), no. 4, Paper 34, 14 pp.
[4] D. Birmajer, J. Gil, and M. Weiner, Convolutions of Tribonacci, Fuss-Catalan, and Motzkin sequences, 2014, preprint, submitted to the Fibonacci Quarterly.
[5] P.J. Cameron, Some sequences of integers, Discrete Math. 75 (1989), no. 1-3, 89-102.
[6] C.A. Charalambides, Enumerative Combinatorics, Chapman and Hall/CRC, Boca Raton, 2002.
[7] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Dordrecht, 1974.
[8] H. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart. 37 (1999), no. 2, 135-140.
[9] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
Department of Mathematics, Nazareth College, 4245 East Ave., Rochester, Ny 14618
Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601

[^0]: ${ }^{1}$ See 2. This is the operator A discussed in 5.

